1
|
Tamborino G, Engbers P, de Wolf TH, Reuvers TGA, Verhagen R, Konijnenberg M, Nonnekens J. Establishing In Vitro Dosimetric Models and Dose-Effect Relationships for 177Lu-DOTATATE in Neuroendocrine Tumors. J Nucl Med 2025:jnumed.125.269470. [PMID: 40404397 DOI: 10.2967/jnumed.125.269470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/08/2025] [Indexed: 05/24/2025] Open
Abstract
This study investigates the radiobiology of peptide receptor radionuclide therapy (PRRT) using clinically relevant cancer cell lines by developing a framework for realistic cellular dosimetry in 2- and 3-dimensional cluster-forming configurations. Methods: The radiobiologic responses of GOT1 and NCI-H69 tumor cell lines to PRRT and external beam radiotherapy (EBRT) were compared. Viability at 7 d and cell death at multiple time points were assessed. Image-based multicellular dosimetry models were developed to reflect in vitro exposure complexity and were compared with traditional approaches. Results: The PRRT absorbed dose in suspension was dominated by medium during incubation and by a cross-dose within small clusters after incubation. Our findings reveal that traditional dosimetry can underestimate absorbed doses by up to 90% in plated setups and overlooks dose heterogeneity, with initial dose rates varying by up to 2.3-fold based on cluster size and cell arrangement. The maximum relative biologic effectiveness of PRRT compared with EBRT for loss of viability at 7 d was 0.43 ± 0.07 for NCI-H69 cells and 0.22 ± 0.02 for GOT1 cells. NCI-H69 cells showed greater resistance to PRRT-induced cell death than to EBRT, whereas GOT1 cells exhibited similar cell death levels for both treatments, albeit with different dose-response dynamics. Conclusion: PRRT requires on average an absorbed dose 3 times higher than EBRT to achieve equivalent effects in vitro. Traditional dosimetry overestimates the relative biologic effectiveness by underestimating the absorbed dose.
Collapse
Affiliation(s)
- Giulia Tamborino
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; and
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pleun Engbers
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; and
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tijmen H de Wolf
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; and
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thom G A Reuvers
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; and
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rob Verhagen
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; and
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; and
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; and
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Miller C, Klyuzhin I, Chaussé G, Brosch-Lenz J, Koniar H, Shi K, Rahmim A, Uribe C. Impact of cell geometry, cellular uptake region, and tumour morphology on 225Ac and 177Lu dose distributions in prostate cancer. EJNMMI Phys 2024; 11:97. [PMID: 39570450 PMCID: PMC11582247 DOI: 10.1186/s40658-024-00700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Radiopharmaceutical therapy with 225Ac- and 177Lu-PSMA has shown promising results for the treatment of prostate cancer. However, the distinct physical properties of alpha and beta radiation elicit varying cellular responses, which could be influenced by factors such as tumour morphology. In this study, we use simulations to examine how cell geometry, region of pharmaceutical uptake within the cell to model different internalization fractions, and the presence of tumour hypoxia and necrosis impact nucleus absorbed doses and dose heterogeneity with 225Ac and 177Lu. We also develop nucleus absorbed dose kernels for application to autoradiography images. METHODS We used the GATE Monte Carlo software to simulate three geometries of LNCaP prostate cancer cells (spherical, cubic, and ovoid) with activity of 225Ac or 177Lu internalized in the cytoplasm or bound to the extracellular membrane. Nucleus S-values were calculated for each geometry, source region, and isotope. The cell models were used to create nucleus absorbed dose kernels for each source region describing the dose to each nucleus in a cell layer, which were applied to simulated tumours composed of normoxic, hypoxic, or necrotic cancer cells to obtain dose rate maps. Absorbed doses within the tumours and dose heterogeneity were analyzed for each tumour morphology and isotope. Cell geometry made a minimal impact on S-values to the nucleus, however internalization resulted in higher nucleus doses. Applying the kernels to the simulated tumour maps showed that doses to each cell type varied between 225Ac and 177Lu depending on tumour morphology. Dose heterogeneity within tumours was slightly higher with 225Ac, however the tumour morphology made a larger impact on dose heterogeneity compared to the choice of isotope, with hypoxic and necrotic tumours having very heterogeneous dose distributions. CONCLUSIONS Cell geometry simplifications may still allow robust results in simulation studies. Furthermore, the morphology of the tumour itself may make a larger impact on treatment response compared to other variables such as ratio of internalization. Finally, nucleus absorbed dose kernels were created that could enable microdosimetric studies with autoradiography.
Collapse
Affiliation(s)
- Cassandra Miller
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Physics, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Klyuzhin
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | | | - Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Helena Koniar
- Department of Physics, University of British Columbia, Vancouver, BC, Canada
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, The University of Bern, Bern, Switzerland
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Physics, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
- Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Wang Y, Tang B, Li X, Kong X, Wang X, Yan K, Tu Y, Sun L. MIMC- β: microdosimetric assessment method for internal exposure of β-emitters based on mesh-type cell cluster model. Phys Med Biol 2024; 69:225007. [PMID: 39526343 DOI: 10.1088/1361-6560/ad8c92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The method combining Monte Carlo (MC) simulation and mesh-type cell models provides a way to accurately assess the cellular dose induced byβ-emitters. Although this approach allows for a specific evaluation of various nuclides and cell type combinations, the associated time cost for obtaining results is relatively high. In this work, we propose a Microdosimetric assessment method for Internal exposure ofβ-emitters based on Mesh-type Cell cluster models (abbreviated as MIMC-β). This approach is applied to evaluate the dose in various types of cells (human bronchial epithelial cells, BEAS-2B; normal human liver cells, L-O2; and normal human small intestine epithelial cells, FHs74Int) exposed toβ-emitters. Furthermore, microdosimetric quantity based on the cell cluster model are employed to estimate the relative biological effectiveness (RBE) ofβ-emitters. The results indicate that this method can accurately and rapidly predict cellular doses caused by different types ofβ-emitters, significantly mitigating the efficiency challenges associated with directly employing MC to estimate the overall dose of the mesh-type cell cluster model. In comparison with results obtained from direct simulations of uniform administration ofβ- sources using PHITS for validation, the cellular cluster overallS-values obtained through MIMC-βshow discrepancies mostly below 5%, with the minimum deviation reaching 1.35%. Small sampling sizes within the cell nucleus led to larger average lineal energies. In comparison to C-14, the differences in cellular cluster average lineal energy for Cs-134, Cs-137, and I-131 are negligible, resulting in close numerical estimations of RBE based on lineal energy. The MIMC-βcan be extended to diverse cell types andβ-emitters. Additionally, the RBE assessment based on the cell cluster model offers valuable insights for predicting radiobiological damage resulting from internal exposure byβ-emitters. This method is expected to find applicability in various realistic scenarios, including radiation protection and radioligand therapy.
Collapse
Affiliation(s)
- Yidi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Bo Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
- Department of Public Health Surveillance and Evaluation, Shandong center for disease control and prevention, Jinan 250014, People's Republic of China
| | - Xinlei Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Xianghui Kong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Xinjie Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Kaijin Yan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
4
|
Spoormans K, Struelens L, Vermeulen K, De Saint-Hubert M, Koole M, Crabbé M. The Emission of Internal Conversion Electrons Rather Than Auger Electrons Increased the Nucleus-Absorbed Dose for 161Tb Compared with 177Lu with a Higher Dose Response for [ 161Tb]Tb-DOTA-LM3 Than for [ 161Tb]Tb-DOTATATE. J Nucl Med 2024; 65:1619-1625. [PMID: 39209546 DOI: 10.2967/jnumed.124.267873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Preclinical data have shown that 161Tb-labeled peptides targeting the somatostatin receptor are therapeutically more effective for peptide receptor radionuclide therapy than are their 177Lu-labeled counterparts. To further substantiate this enhanced therapeutic effect, we performed cellular dosimetry to quantify the absorbed dose to the cell nucleus and compared dose-response curves to evaluate differences in relative biological effectiveness in vitro. Methods: CA20948 cell survival was assessed after treatment with [161Tb]Tb- and [177Lu]Lu-DOTATATE (agonist) and with [161Tb]Tb- and [177Lu]Lu-DOTA-LM3 (antagonist) via a clonogenic assay. Cell binding, internalization, and dissociation assays were performed up to 7 d to acquire time-integrated activity coefficients. Separate S values for each type of particle emission (Auger/internal conversion [IC] electrons and β- particles) were computed via Monte Carlo simulations, while considering spheric cells. Once the absorbed dose to the cell nucleus was calculated, survival curves were fitted to the appropriate linear or linear-quadratic model and corresponding relative biological effectiveness was evaluated. Results: Although the radiopeptide uptake was independent of the radionuclide, [161Tb]Tb-DOTATATE and [161Tb]Tb-DOTA-LM3 delivered a 3.6 and 3.8 times higher dose to the nucleus, respectively, than their 177Lu-labeled counterparts on saturated receptor binding. This increased nucleus-absorbed dose was mainly due to the additional emission of IC and not Auger electrons by 161Tb. When activity concentrations were considered, both [161Tb]Tb-DOTATATE and [161Tb]Tb-DOTA-LM3 showed a lower survival fraction than did labeling with 177Lu. When the absorbed dose to the nucleus was considered, no significant difference could be observed between the dose-response curves for [161Tb]Tb- and [177Lu]Lu-DOTATATE. [161Tb]Tb-DOTA-LM3 showed a linear-quadratic dose response, whereas [161Tb]Tb-DOTATATE showed only a linear dose response within the observed dose range, suggesting additional cell membrane damage by Auger electrons. Conclusion: The IC, rather than Auger, electrons emitted by 161Tb resulted in a higher absorbed dose to the cell nucleus and lower clonogenic survival for [161Tb]Tb-DOTATATE and [161Tb]Tb-DOTA-LM3 than for the 177Lu-labeled analogs. In contrast, [161Tb]Tb-DOTATATE showed no higher dose response than [177Lu]Lu-DOTATATE, whereas for [161Tb]Tb-DOTA-LM3 an additional quadratic response was observed. Because of this quadratic response, potentially caused by cell membrane damage, [161Tb]Tb-DOTA-LM3 is a more effective radiopeptide than [161Tb]Tb-DOTATATE for labeling with 161Tb.
Collapse
Affiliation(s)
- Kaat Spoormans
- Nuclear Medical Applications, Belgian Nuclear Research Center, Mol, Belgium; and
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lara Struelens
- Nuclear Medical Applications, Belgian Nuclear Research Center, Mol, Belgium; and
| | - Koen Vermeulen
- Nuclear Medical Applications, Belgian Nuclear Research Center, Mol, Belgium; and
| | | | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Melissa Crabbé
- Nuclear Medical Applications, Belgian Nuclear Research Center, Mol, Belgium; and
| |
Collapse
|
5
|
Lim A, Andriotty M, Yusufaly T, Agasthya G, Lee B, Wang C. A fast Monte Carlo cell-by-cell simulation for radiobiological effects in targeted radionuclide therapy using pre-calculated single-particle track standard DNA damage data. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1284558. [PMID: 39380956 PMCID: PMC11460290 DOI: 10.3389/fnume.2023.1284558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 10/10/2024]
Abstract
Introduction We developed a new method that drastically speeds up radiobiological Monte Carlo radiation-track-structure (MC-RTS) calculations on a cell-by-cell basis. Methods The technique is based on random sampling and superposition of single-particle track (SPT) standard DNA damage (SDD) files from a "pre-calculated" data library, constructed using the RTS code TOPAS-nBio, with "time stamps" manually added to incorporate dose-rate effects. This time-stamped SDD file can then be input into MEDRAS, a mechanistic kinetic model that calculates various radiation-induced biological endpoints, such as DNA double-strand breaks (DSBs), misrepairs and chromosomal aberrations, and cell death. As a benchmark validation of the approach, we calculated the predicted energy-dependent DSB yield and the ratio of direct-to-total DNA damage, both of which agreed with published in vitro experimental data. We subsequently applied the method to perform a superfast cell-by-cell simulation of an experimental in vitro system consisting of neuroendocrine tumor cells uniformly incubated with 177Lu. Results and discussion The results for residual DSBs, both at 24 and 48 h post-irradiation, are in line with the published literature values. Our work serves as a proof-of-concept demonstration of the feasibility of a cost-effective "in silico clonogenic cell survival assay" for the computational design and development of radiopharmaceuticals and novel radiotherapy treatments more generally.
Collapse
Affiliation(s)
- A. Lim
- Nuclear & Radiological Engineering & Medical Physics Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - M. Andriotty
- Nuclear & Radiological Engineering & Medical Physics Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - T. Yusufaly
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - G. Agasthya
- Advanced Computing in Health Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - B. Lee
- Radiation Oncology Department, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - C. Wang
- Nuclear & Radiological Engineering & Medical Physics Program, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
6
|
Hull A, Hsieh W, Tieu W, Bartholomeusz D, Li Y, Bezak E. In vitro characterisation of [ 177Lu]Lu-DOTA-C595 as a novel radioimmunotherapy for MUC1-CE positive pancreatic cancer. EJNMMI Radiopharm Chem 2023; 8:18. [PMID: 37578571 PMCID: PMC10425306 DOI: 10.1186/s41181-023-00204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) continues to be a malignancy with an unmet clinical demand. Development of radioimmunoconjugates which target cancer-specific receptors provides an opportunity for radioimmunotherapy of both metastatic and primary PDAC. In this study, we characterised the in vitro behaviour of a novel beta-emitting radioimmunoconjugate [177Lu]Lu-DOTA-C595 as a therapeutic agent against PDAC. [177Lu]Lu-DOTA-C595 is designed to target cancer-specific mucin 1 epitopes (MUC1-CE) overexpressed on most epithelial cancers, including PDAC. RESULTS A series of in vitro experiments were performed on PDAC cell lines (PANC-1, CAPAN-1, BxPC-3 and AsPC-1) exhibiting strong to weak MUC1-CE expression. [177Lu]Lu-DOTA-C595 bound to all cell lines relative to their expression of MUC1-CE. [177Lu]Lu-DOTA-C595 was also rapidly internalised across all cell lines, with a maximum of 75.4% of activity internalised within the PANC-1 cell line at 48 h. The expression of γH2AX foci and clonogenic survival of PANC-1 and AsPC-1 cell lines after exposure to [177Lu]Lu-DOTA-C595 were used to quantify the in vitro cytotoxicity of [177Lu]Lu-DOTA-C595. At 1 h post treatment, the expression of γH2AX foci exceeded 97% in both cell lines. The expression of γH2AX foci continued to increase in PANC-1 cells at 24 h, although expression reduced in AsPC-1. Clonogenic assays showed a high level of cell kill induced by [177Lu]Lu-DOTA-C595. CONCLUSION [177Lu]Lu-DOTA-C595 has favourable in vitro characteristics to target and treat MUC1-CE positive PDAC. Further investigations to characterise the in vivo effects and potential value of [177Lu]Lu-DOTA-C595 in other MUC1-CE expressing malignancies such as lung, ovarian and colorectal adenocarcinoma are warranted.
Collapse
Affiliation(s)
- Ashleigh Hull
- Allied Health and Human Performance Academic Unit, University of South Australia, City East Campus, Cnr North Tce and Frome Road, Adelaide, SA, 5001, Australia.
- Department of PET, Nuclear Medicine and Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA, 5000, Australia.
| | - William Hsieh
- Allied Health and Human Performance Academic Unit, University of South Australia, City East Campus, Cnr North Tce and Frome Road, Adelaide, SA, 5001, Australia
- Department of PET, Nuclear Medicine and Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA, 5000, Australia
| | - William Tieu
- School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Dylan Bartholomeusz
- Department of PET, Nuclear Medicine and Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA, 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Yanrui Li
- Allied Health and Human Performance Academic Unit, University of South Australia, City East Campus, Cnr North Tce and Frome Road, Adelaide, SA, 5001, Australia
| | - Eva Bezak
- Allied Health and Human Performance Academic Unit, University of South Australia, City East Campus, Cnr North Tce and Frome Road, Adelaide, SA, 5001, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
7
|
Wang Y, Kong D, Gao H, Du C, Xue H, Liu K, Kong X, Zhang W, Yin Y, Wu T, Jiao Y, Sun L. Multiple Mesh-type Real Human Cell Models for Dosimetric Application Coupled with Monte Carlo Simulations. Radiat Res 2023; 200:176-187. [PMID: 37410090 DOI: 10.1667/rade-23-00020.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
The mesh-type models are superior to voxel models in cellular dose assessment coupled with Monte Carlo codes. The aim of this study was to expand the micron-scale mesh-type models based on the fluorescence tomography of real human cells, and to investigate the feasibility of these models in the application of various irradiation scenarios and Monte Carlo codes. Six different human cell lines, including pulmonary epithelial BEAS-2B, embryonic kidney 293T, hepatocyte L-02, B-lymphoblastoid HMy2.CIR, Gastric mucosal GES-1, and intestine epithelial FHs74Int, were adopted for single mesh-type models reconstruction and optimization based on laser confocal tomography images. Mesh-type models were transformed into the format of polygon mesh and tetrahedral mesh for the GATE and PHITS Monte Carlo codes, respectively. The effect of model reduction was analyzed by dose assessment and geometry consideration. The cytoplasm and nucleus doses were obtained by designating monoenergetic electrons and protons as external irradiation, and S values with different "target-source" combinations were calculated by assigning radioisotopes as internal exposure. Four kinds of Monte Carlo codes were employed, i.e., GATE with "Livermore," "Standard" and "Standard and Geant4-DNA mixed" models for electrons and protons, as well as PHITS with "EGS" mode for electrons and radioisotopes. Multiple mesh-type real human cellular models can be applied to Monte Carlo codes directly without voxelization when combined with certain necessary surface reduction. Relative deviations between different cell types were observed among various irradiation scenarios. The relative deviation of nucleus S value reaches up to 85.65% between L-02 and GES-1 cells by 3H for the "nucleus-nucleus" combination, while that of 293T and FHs74Int nucleus dose for external beams at a 5.12 cm depth of water is 106.99%. Nucleus with smaller volume is far more affected by physical codes. There is a considerable deviation for dose within BEAS-2B at the nanoscale. The multiple mesh-type real cell models were more versatile than voxel models and mathematical models. The present study provided several models which can easily be extended to other cell types and irradiation scenarios for RBE estimations and biological effect predictions, including radiation biological experiments, radiotherapy and radiation protection.
Collapse
Affiliation(s)
- YiDi Wang
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Dong Kong
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Han Gao
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - ChuanSheng Du
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - HuiYuan Xue
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Kun Liu
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - XiangHui Kong
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - WenYue Zhang
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - YuChen Yin
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Tao Wu
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
8
|
Koniar H, Miller C, Rahmim A, Schaffer P, Uribe C. A GATE simulation study for dosimetry in cancer cell and micrometastasis from the 225Ac decay chain. EJNMMI Phys 2023; 10:46. [PMID: 37525027 PMCID: PMC10390455 DOI: 10.1186/s40658-023-00564-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Radiopharmaceutical therapy (RPT) with alpha-emitting radionuclides has shown great promise in treating metastatic cancers. The successive emission of four alpha particles in the 225Ac decay chain leads to highly targeted and effective cancer cell death. Quantifying cellular dosimetry for 225Ac RPT is essential for predicting cell survival and therapeutic success. However, the leading assumption that all 225Ac progeny remain localized at their target sites likely overestimates the absorbed dose to cancer cells. To address limitations in existing semi-analytic approaches, this work evaluates S-values for 225Ac's progeny radionuclides with GATE Monte Carlo simulations. METHODS The cellular geometries considered were an individual cell (10 µm diameter with a nucleus of 8 µm diameter) and a cluster of cells (micrometastasis) with radionuclides localized in four subcellular regions: cell membrane, cytoplasm, nucleus, or whole cell. The absorbed dose to the cell nucleus was scored, and self- and cross-dose S-values were derived. We also evaluated the total absorbed dose with various degrees of radiopharmaceutical internalization and retention of the progeny radionuclides 221Fr (t1/2 = 4.80 m) and 213Bi (t1/2 = 45.6 m). RESULTS For the cumulative 225Ac decay chain, our self- and cross-dose nuclear S-values were both in good agreement with S-values published by MIRDcell, with per cent differences ranging from - 2.7 to - 8.7% for the various radionuclide source locations. Source location had greater effects on self-dose S-values than the intercellular cross-dose S-values. Cumulative 225Ac decay chain self-dose S-values increased from 0.167 to 0.364 GyBq-1 s-1 with radionuclide internalization from the cell surface into the cell. When progeny migration from the target site was modelled, the cumulative self-dose S-values to the cell nucleus decreased by up to 71% and 21% for 221Fr and 213Bi retention, respectively. CONCLUSIONS Our GATE Monte Carlo simulations resulted in cellular S-values in agreement with existing MIRD S-values for the alpha-emitting radionuclides in the 225Ac decay chain. To obtain accurate absorbed dose estimates in 225Ac studies, accurate understanding of daughter migration is critical for optimized injected activities. Future work will investigate other novel preclinical alpha-emitting radionuclides to evaluate therapeutic potency and explore realistic cellular geometries corresponding to targeted cancer cell lines.
Collapse
Affiliation(s)
- Helena Koniar
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| | - Cassandra Miller
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Functional Imaging, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
9
|
Funeh CN, Bridoux J, Ertveldt T, De Groof TWM, Chigoho DM, Asiabi P, Covens P, D'Huyvetter M, Devoogdt N. Optimizing the Safety and Efficacy of Bio-Radiopharmaceuticals for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051378. [PMID: 37242621 DOI: 10.3390/pharmaceutics15051378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed.
Collapse
Affiliation(s)
- Cyprine Neba Funeh
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Jessica Bridoux
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Timo W M De Groof
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Dora Mugoli Chigoho
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Parinaz Asiabi
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Peter Covens
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Matthias D'Huyvetter
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| |
Collapse
|
10
|
Raheem SJ, Salih AK, Garcia MD, Sharpe JC, Toosi BM, Price EW. A Systematic Investigation into the Influence of Net Charge on the Biological Distribution of Radiometalated Peptides Using [ 68Ga]Ga-DOTA-TATE Derivatives. Bioconjug Chem 2023; 34:549-561. [PMID: 36800496 DOI: 10.1021/acs.bioconjchem.3c00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Recently, several radiometalated peptides have been approved for clinical imaging and/or therapy (theranostics) of several types of cancer; nonetheless, the primary challenge that most of these peptides confront is significant renal uptake and retention, which is often dose limiting and can cause nephrotoxicity. In response to this, numerous methods have been employed to reduce the uptake of radiometalated peptides in the kidneys, and among these is adding a linker to modulate polarity and/or charge. To better understand the influence of net charge on the biodistribution of radiometalated peptides, we selected the clinically popular construct DOTA-TATE (NETSPOT/LUTATHERA) as a model system. We synthesized derivatives using manual solid-phase peptide synthesis methods including mechanical and ultrasonic agitation to effectively yield the gold standard DOTA-TATE and a series of derivatives with different net charges (+2, +1, 0, -1, -2). Dynamic PET imaging from 0 to 90 min in healthy female mice (CD1) revealed high accumulation and retention of activity in the kidneys for the net-neutral (0) charged [68Ga]Ga-DOTA-TATE and even higher for positively charged derivatives, whereas negatively charged derivatives exhibited low accumulation and fast renal excretion. Ex vivo biodistribution at 2 h post injection demonstrated a significant retention of [68Ga]Ga-DOTA-TATE (∼74 %ID/g) in the kidneys, which increased as the net positive charge per molecule increased to +1 and +2 (∼272 %ID/g and ∼333 %ID/g, respectively), but the -1 and -2 net charged molecules exhibited lower renal uptake (∼15 %ID/g and 16 %ID/g, respectively). Interestingly, the net -2 charged [68Ga]Ga-DOTA-(Glu)2-PEG4-TATE was stable in blood serum but had much higher healthy organ uptake (lungs, liver, spleen) than the net -1 compound, suggesting instability in vivo. Although the [68Ga]Ga-DOTA-PEG4-TATE derivative with a net charge of 0 also showed a decrease in kidney uptake, it also showed instability in blood serum and in vivo. Despite the superior pharmacokinetics of the net -1 charged [68Ga]Ga-DOTA-Glu-PEG4-TATE in healthy mice with respect to kidney uptake and overall profile, dynamic PET images and ex vivo biodistribution in male mice (NSG) bearing AR42J (SSTR2 overexpressing) subcutaneous tumor xenografts showed significantly diminished tumor uptake when compared to the gold standard [68Ga]Ga-DOTA-TATE. Taken together, these findings indicate unambiguously that kidney uptake and retention are significantly influenced by the net charge of peptide-based radiotracers. In addition, it was illustrated that the negatively charged peptides had substantially decreased kidney uptake, but in this instantiation the tumor uptake was also impaired.
Collapse
Affiliation(s)
- Shvan J Raheem
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Akam K Salih
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Moralba Dominguez Garcia
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| | - Jessica C Sharpe
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N-5B4, Saskatoon, Saskatchewan, Canada
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N-5B4, Saskatoon, Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, S7N-5C9, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Mentana A, Lamartinière Y, Orsière T, Malard V, Payet M, Slomberg D, Guardamagna I, Lonati L, Grisolia C, Jha A, Lebaron-Jacobs L, Rose J, Ottolenghi A, Baiocco G. Tritiated Steel Micro-Particles: Computational Dosimetry and Prediction of Radiation-Induced DNA Damage for In Vitro Cell Culture Exposures. Radiat Res 2023; 199:25-38. [PMID: 36442022 DOI: 10.1667/rade-22-00043.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Biological effects of radioactive particles can be experimentally investigated in vitro as a function of particle concentration, specific activity and exposure time. However, a careful dosimetric analysis is needed to elucidate the role of radiation emitted by radioactive products in inducing cyto- and geno-toxicity: the quantification of radiation dose is essential to eventually inform dose-risk correlations. This is even more fundamental when radioactive particles are short-range emitters and when they have a chemical speciation that might further concur to the heterogeneity of energy deposition at the cellular and sub-cellular level. To this aim, we need to use computational models. In this work, we made use of a Monte Carlo radiation transport code to perform a computational dosimetric reconstruction for in vitro exposure of cells to tritiated steel particles of micrometric size. Particles of this kind have been identified as worth of attention in nuclear power industry and research: tritium easily permeates in steel elements of nuclear reactor machinery, and mechanical operations on these elements (e.g., sawing) during decommissioning of old facilities can result in particle dispersion, leading to human exposure via inhalation. Considering the software replica of a representative in vitro setup to study the effect of such particles, we therefore modelled the radiation field due to the presence of particles in proximity of cells. We developed a computational approach to reconstruct the dose range to individual cell nuclei in contact with a particle, as well as the fraction of "hit" cells and the average dose for the whole cell population, as a function of particle concentration in the culture medium. The dosimetric analysis also provided the basis to make predictions on tritium-induced DNA damage: we estimated the dose-dependent expected yield of DNA double strand breaks due to tritiated steel particle radiation, as an indicator of their expected biological effectiveness.
Collapse
Affiliation(s)
- Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Thierry Orsière
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | | | - Danielle Slomberg
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Awadhesh Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Jerome Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Andrea Ottolenghi
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Delbart W, Karabet J, Marin G, Penninckx S, Derrien J, Ghanem GE, Flamen P, Wimana Z. Understanding the Radiobiological Mechanisms Induced by 177Lu-DOTATATE in Comparison to External Beam Radiation Therapy. Int J Mol Sci 2022; 23:ijms232012369. [PMID: 36293222 PMCID: PMC9604190 DOI: 10.3390/ijms232012369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Radionuclide Therapy (RNT) with 177Lu-DOTATATE targeting somatostatin receptors (SSTRs) in neuroendocrine tumours (NET) has been successfully used in routine clinical practice, mainly leading to stable disease. Radiobiology holds promise for RNT improvement but is often extrapolated from external beam radiation therapy (EBRT) studies despite differences in these two radiation-based treatment modalities. In a panel of six human cancer cell lines expressing SSTRs, common radiobiological endpoints (i.e., cell survival, cell cycle, cell death, oxidative stress and DNA damage) were evaluated over time in 177Lu-DOTATATE- and EBRT-treated cells, as well as the radiosensitizing potential of poly (ADP-ribose) polymerase inhibition (PARPi). Our study showed that common radiobiological mechanisms were induced by both 177Lu-DOTATATE and EBRT, but to a different extent and/or with variable kinetics, including in the DNA damage response. A higher radiosensitizing potential of PARPi was observed for EBRT compared to 177Lu-DOTATATE. Our data reinforce the need for dedicated RNT radiobiology studies, in order to derive its maximum therapeutic benefit.
Collapse
Affiliation(s)
- Wendy Delbart
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-541-30-05
| | - Jirair Karabet
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gwennaëlle Marin
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Jonathan Derrien
- Laboratoire de Physique Nucléaire et Des Radiations, Institut Supérieur Industriel de Bruxelles (ISIB), 1000 Brussels, Belgium
- NEMP Applied Research Lab, Institut de Recherche de l’Institut Supérieur Industriel de Bruxelles (IRISIB), 1000 Brussels, Belgium
| | - Ghanem E. Ghanem
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Patrick Flamen
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Zéna Wimana
- Nuclear Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
13
|
Léost F, Delpon G, Garcion E, Gestin JF, Hatt M, Potiron V, Rbah-Vidal L, Supiot S. ["Adaptation of the tumour and its ecosystem to radiotherapies: Mechanisms, imaging and therapeutic approaches" XIVth edition of the workshop organised by the "Vectorisation, Imagerie, Radiothérapies" network of the Cancéropôle Grand-Ouest, 22-25 September 2021, Le Bono, France]. Bull Cancer 2022; 109:1088-1093. [PMID: 35908990 DOI: 10.1016/j.bulcan.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 10/16/2022]
Abstract
The fourteenth edition of the workshop covered the latest advances in internal and external radiotherapy obtained through a better understanding of the adaptive capacity of the tumor and its microenvironment, from different disciplinary angles, chemistry, biology, physics, and medicine, paving the way for numerous technological innovations. The biological aspects and the contribution of imaging in monitoring and understanding the adaptation of tumors to radiotherapy were presented, before focusing on innovative radiotherapy strategies and machine learning and data-driven techniques. Finally, the challenges were explored in the radiobiology of targeted radionuclide therapy as well as data science and machine learning in radiomics.
Collapse
Affiliation(s)
- Françoise Léost
- Cancéropôle Grand-Ouest, IRS-UN, 8, quai Moncousu, 44007 Nantes cedex 1, France.
| | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, département de physique médicale, boulevard Jacques-Monod, 44800 Nantes Saint-Herblain, France
| | - Emmanuel Garcion
- Université d'Angers, Nantes université, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, 49000 Angers, France
| | - Jean-François Gestin
- Nantes Université, université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, 44000 Nantes, France
| | - Mathieu Hatt
- LaTIM, Inserm, UMR 1101, IBSAM, UBO, UBL, 22, rue Camille-Desmoulins, 29238 Brest, France
| | - Vincent Potiron
- Institut de cancérologie de l'Ouest, département de radiothérapie, boulevard Jacques-Monod, 44800 Nantes Saint-Herblain, France
| | - Latifa Rbah-Vidal
- Nantes Université, université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, 44000 Nantes, France
| | - Stéphane Supiot
- Institut de cancérologie de l'Ouest, département de radiothérapie, boulevard Jacques-Monod, 44800 Nantes Saint-Herblain, France
| |
Collapse
|
14
|
Spoormans K, Crabbé M, Struelens L, De Saint-Hubert M, Koole M. A Review on Tumor Control Probability (TCP) and Preclinical Dosimetry in Targeted Radionuclide Therapy (TRT). Pharmaceutics 2022; 14:2007. [PMID: 36297446 PMCID: PMC9608466 DOI: 10.3390/pharmaceutics14102007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Targeted radionuclide therapy (TRT) uses radiopharmaceuticals to specifically irradiate tumor cells while sparing healthy tissue. Response to this treatment highly depends on the absorbed dose. Tumor control probability (TCP) models aim to predict the tumor response based on the absorbed dose by taking into account the different characteristics of TRT. For instance, TRT employs radiation with a high linear energy transfer (LET), which results in an increased effectiveness. Furthermore, a heterogeneous radiopharmaceutical distribution could result in a heterogeneous dose distribution at a tissue, cellular as well as subcellular level, which will generally reduce the tumor response. Finally, the dose rate in TRT is protracted, relatively low, and variable over time. This allows cells to repair more DNA damage, which may reduce the effectiveness of TRT. Within this review, an overview is given on how these characteristics can be included in TCP models, while some experimental findings are also discussed. Many parameters in TCP models are preclinically determined and TCP models also play a role in the preclinical stage of radiopharmaceutical development; however, this all depends critically on the calculated absorbed dose. Accordingly, an overview of the existing preclinical dosimetry methods is given, together with their limitation and applications. It can be concluded that although the theoretical extension of TCP models from external beam radiotherapy towards TRT has been established quite well, the experimental confirmation is lacking. Thus, requiring additional comprehensive studies at the sub-cellular, cellular, and organ level, which should be provided with accurate preclinical dosimetry.
Collapse
Affiliation(s)
- Kaat Spoormans
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), 3000 Leuven, Belgium
| | - Melissa Crabbé
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Lara Struelens
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Marijke De Saint-Hubert
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Michel Koole
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), 3000 Leuven, Belgium
| |
Collapse
|
15
|
Mellhammar E, Dahlbom M, Vilhelmsson-Timmermand O, Strand SE. Small-scale dosimetry for alpha particle 241Am source cell irradiation and estimation of γ-H2AX foci distribution in prostate cancer cell line PC3. EJNMMI Phys 2022; 9:46. [PMID: 35852717 PMCID: PMC9296737 DOI: 10.1186/s40658-022-00475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The development of new targeted alpha therapies motivates improving alpha particle dosimetry. For alpha particles, microscopic targets must be considered to estimate dosimetric quantities that can predict the biological response. As double-strand breaks (DSB) on DNA are the main cause of cell death by ionizing radiation, cell nuclei are relevant volumes necessary to consider as targets. Since a large variance is expected of alpha particle hits in individual cell nuclei irradiated by an uncollimated alpha-emitting source, the damage induced should have a similar distribution. The induction of DSB can be measured by immunofluorescent γ-H2AX staining. The cell γ-H2AX foci distribution and alpha particle hits distribution should be comparable and thereby verify the necessity to consider the relevant dosimetric volumes. Methods A Monte Carlo simulation model of an 241Am source alpha particle irradiation setup was combined with two versions of realistic cell nuclei phantoms. These were generated from DAPI-stained PC3 cells imaged with fluorescent microscopy, one consisting of elliptical cylinders and the other of segmented mesh volumes. PC3 cells were irradiated with the 241Am source for 4, 8 and 12 min, and after 30 min fixated and stained with immunofluorescent γ-H2AX marker. The detected radiation-induced foci (RIF) were compared to simulated RIF. Results The mesh volume phantom detected a higher mean of alpha particle hits and energy imparted (MeV) per cell nuclei than the elliptical cylinder phantom, but the mean specific energy (Gy) was very similar. The mesh volume phantom detected a slightly larger variance between individual cells, stemming from the more extreme and less continuous distribution of cell nuclei sizes represented in this phantom. The simulated RIF distribution from both phantoms was in good agreement with the detected RIF, although the detected distribution had a zero-inflated shape not seen in the simulated distributions. An estimate of undetected foci was used to correct the detected RIF distribution and improved the agreement with the simulations. Conclusion Two methods to generate cell nuclei phantoms for Monte Carlo dosimetry simulations were tested and generated similar results. The simulated and detected RIF distributions from alpha particle-irradiated PC3 cells were in good agreement, proposing the necessity to consider microscopic targets in alpha particle dosimetry. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00475-x.
Collapse
Affiliation(s)
- Emma Mellhammar
- Department of Clinical Sciences Lund, Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden.
| | - Magnus Dahlbom
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Oskar Vilhelmsson-Timmermand
- Department of Clinical Sciences Lund, Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden.,Imaging Chemistry and Biology, Kings Collage London, London, UK
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
16
|
In vitro dose effect relationships of actinium-225- and lutetium-177-labeled PSMA-I&T. Eur J Nucl Med Mol Imaging 2022; 49:3627-3638. [PMID: 35556158 PMCID: PMC9399067 DOI: 10.1007/s00259-022-05821-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/25/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Targeting the prostate-specific membrane antigen (PSMA) using lutetium-177-labeled PSMA-specific tracers has become a very promising novel therapy option for prostate cancer (PCa). The efficacy of this therapy might be further improved by replacing the β-emitting lutetium-177 with the α-emitting actinium-225. Actinium-225 is thought to have a higher therapeutic efficacy due to the high linear energy transfer (LET) of the emitted α-particles, which can increase the amount and complexity of the therapy induced DNA double strand breaks (DSBs). Here we evaluated the relative biological effectiveness of [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T by assessing in vitro binding characteristics, dosimetry, and therapeutic efficacy. METHODS AND RESULTS The PSMA-expressing PCa cell line PC3-PIP was used for all in vitro assays. First, binding and displacement assays were performed, which revealed similar binding characteristics between [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T. Next, the assessment of the number of 53BP1 foci, a marker for the number of DNA double strand breaks (DSBs), showed that cells treated with [225Ac]Ac-PSMA-I&T had slower DSB repair kinetics compared to cells treated with [177Lu]Lu-PSMA-I&T. Additionally, clonogenic survival assays showed that specific targeting with [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T caused a dose-dependent decrease in survival. Lastly, after dosimetric assessment, the relative biological effectiveness (RBE) of [225Ac]Ac-PSMA-I&T was found to be 4.2 times higher compared to [177Lu]Lu-PSMA-I&T. CONCLUSION We found that labeling of PSMA-I&T with lutetium-177 or actinium-225 resulted in similar in vitro binding characteristics, indicating that the distinct biological effects observed in this study are not caused by a difference in uptake of the two tracers. The slower repair kinetics of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T correlates to the assumption that irradiation with actinium-225 causes more complex, more difficult to repair DSBs compared to lutetium-177 irradiation. Furthermore, the higher RBE of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T underlines the therapeutic potential for the treatment of PCa.
Collapse
|
17
|
Therapeutic efficacy of heterogeneously distributed radiolabelled peptides: Influence of radionuclide choice. Phys Med 2022; 96:90-100. [DOI: 10.1016/j.ejmp.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
|
18
|
Liatsou I, Yu J, Bastiaannet R, Li Z, Hobbs RF, Torgue J, Sgouros G. 212Pb-conjugated anti-rat HER2/ neu antibody against a neu-N derived murine mammary carcinoma cell line: cell kill and RBE in vitro. Int J Radiat Biol 2022; 98:1452-1461. [PMID: 35073214 PMCID: PMC9673603 DOI: 10.1080/09553002.2022.2033341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE In the current work, the RBE of a 212Pb-conjugated anti-HER2/neu antibody construct has been evaluated, in vitro, by colony formation assay. The RBE was estimated by comparing two absorbed dose-survival curves: the first obtained from the conjugated 212Pb experiments (test radiation), the second obtained by parallel experiments of single bolus irradiation of external beam (reference radiation). MATERIALS AND METHODS Mammary carcinoma NT2.5 cells were treated with (0-3.70) kBq/ml of radiolabeled antibody. Nonspecific binding was assessed with addition of excess amount of unlabeled antibody. The colony formation curves were converted from activity concentration to cell nucleus absorbed dose by simulating the decay and transport of all daughter and secondary particles of 212Pb, using the Monte Carlo code GEANT 4. RESULTS The radiolabeled antibody yielded an RBE of 8.3 at 37% survival and a survival independent RBE (i.e. RBE2) of 9.9. Unbound/untargeted 212Pb-labeled antibody, as obtained in blocking experiments yielded minimal alpha-particle radiation to cells. Conclusions: These results further highlight the importance of specific targeting toward achieving tumor cell kill and low toxicity to normal tissue.
Collapse
Affiliation(s)
- Ioanna Liatsou
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Jing Yu
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Remco Bastiaannet
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Zhi Li
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Robert F. Hobbs
- Department of Radiation Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| | | | - George Sgouros
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
19
|
Tamborino G, Nonnekens J, De Saint-Hubert M, Struelens L, Feijtel D, de Jong M, Konijnenberg MW. Dosimetric Evaluation of the Effect of Receptor Heterogeneity on the Therapeutic Efficacy of Peptide Receptor Radionuclide Therapy: Correlation with DNA Damage Induction and In Vivo Survival. J Nucl Med 2022; 63:100-107. [PMID: 33837068 PMCID: PMC8717202 DOI: 10.2967/jnumed.121.262122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Our rationale was to build a refined dosimetry model for 177Lu-DOTATATE in vivo experiments enabling the correlation of absorbed dose with double-strand break (DSB) induction and cell death. Methods: Somatostatin receptor type 2 expression of NCI-H69 xenografted mice, injected with 177Lu-DOTATATE, was imaged at 0, 2, 5, and 11 d. This expression was used as input to reconstruct realistic 3-dimensional heterogeneous activity distributions and tissue geometries of both cancer and heathy cells. The resulting volumetric absorbed dose rate distributions were calculated using the GATE (Geant4 Application for Tomographic Emission) Monte Carlo code and compared with homogeneous dose rate distributions. The absorbed dose (0-2 d) on micrometer-scale sections was correlated with DSB induction, measured by γH2AX foci. Moreover, the absorbed dose on larger millimeter-scale sections delivered over the whole treatment (0-14 d) was correlated to the modeled in vivo survival to determine the radiosensitivity parameters α and β for comparison with experimental data (cell death assay, volume response) and external-beam radiotherapy. The DNA-damage repair half-life Tμ and proliferation doubling time TD were obtained by fitting the DSB and tumor volume data over time. Results: A linear correlation with a slope of 0.0223 DSB/cell mGy-1 between the absorbed dose and the number of DSBs per cell has been established. The heterogeneous dose distributions differed significantly from the homogeneous dose distributions, with their corresponding average S values diverging at 11 d by up to 58%. No significant difference between modeled in vivo survival was observed in the first 5 d when using heterogeneous and uniform dose distributions. The radiosensitivity parameter analysis for the in vivo survival correlation indicated that the minimal effective dose rates for cell kill was 13.72 and 7.40 mGy/h, with an α of 0.14 and 0.264 Gy-1, respectively, and an α/β of 100 Gy; decreasing the α/β led to a decrease in the minimal effective dose rate for cell kill. Within the linear quadratic model, the best matching in vivo survival correlation (α = 0.1 Gy-1, α/β = 100 Gy, Tμ = 60 h, TD = 14.5 d) indicated a relative biological effectiveness of 0.4 in comparison to external-beam radiotherapy. Conclusion: Our results demonstrated that accurate dosimetric modeling is crucial to establishing dose-response correlations enabling optimization of treatment protocols.
Collapse
Affiliation(s)
- Giulia Tamborino
- Research in Dosimetric Application, Belgian Nuclear Research Centre, Mol, Belgium
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands; and
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | | | - Lara Struelens
- Research in Dosimetric Application, Belgian Nuclear Research Centre, Mol, Belgium
| | - Danny Feijtel
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands; and
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands;
| |
Collapse
|
20
|
Aerts A, Eberlein U, Holm S, Hustinx R, Konijnenberg M, Strigari L, van Leeuwen FWB, Glatting G, Lassmann M. EANM position paper on the role of radiobiology in nuclear medicine. Eur J Nucl Med Mol Imaging 2021; 48:3365-3377. [PMID: 33912987 PMCID: PMC8440244 DOI: 10.1007/s00259-021-05345-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.
Collapse
Affiliation(s)
- An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Sören Holm
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, GIGA-CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lidia Strigari
- Medical Physics Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Jacquemin M, Ribeiro F, Aliane K, Broggio D, Franck D, Desbrée A. Using radial distribution functions to calculate cellular cross-absorbed dose for βemitters: comparison with reference methods and application for 18F-FDG cell labeling. Phys Med Biol 2021; 66. [PMID: 33571977 DOI: 10.1088/1361-6560/abe555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/11/2021] [Indexed: 11/12/2022]
Abstract
To further improve the understanding ofin vitrobiological effects of incorporated radionuclides, it is essential to accurately determine cellular absorbed doses. In the case ofβemitters, the cross-dose is a major contribution, and can involve up to millions of cells. Realistic and efficient computational models are needed for that purpose. Conventionally, distances between each cell are calculated and the related dose contributions are cumulated to get the total cross-dose (standard method). In this work, we developed a novel approach for the calculation of the cross-absorbed dose, based on the use of the radial distribution function (rdf)) that describes the spatial properties of the cellular model considered. The dynamic molecular tool LAMMPS was used to create 3D cellular models and computerdfsfor various conditions of cell density, volume size, and configuration type (lattice and randomized geometry). The novel method is suitable for any radionuclide of nuclear medicine. Here, the model was applied for the labeling of cells with18F-FDG used for PET imaging, and first validated by comparison with other reference methods. MeanScrossvalues calculated with the novel approach versus the standard method agreed very well (relative differences less that 0.1%). Implementation of therdf-based approach with LAMMPS allowed to achieved results considerably faster than with the standard method, the computing time decreasing from hours to seconds for 106cells. Therdf-based approach was also faster and easier to accommodate more complex cellular models than the standard and other published methods. Finally, a comparative study of the meanScrossfor different types of configuration was carried out, as a function of the cell density and the volume size, allowing to better understand the impact of the configuration on the cross-absorbed dose.
Collapse
Affiliation(s)
- M Jacquemin
- Université Paris-Saclay, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260, Fontenay-aux-Roses, France
| | - F Ribeiro
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 13115, Cadarache, France
| | - K Aliane
- CNRS UMR 7343, Centre National d'études Spatiales, 13000, Marseille, France
| | - D Broggio
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260, Fontenay-aux-Roses, France
| | - D Franck
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260, Fontenay-aux-Roses, France
| | - A Desbrée
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260, Fontenay-aux-Roses, France
| |
Collapse
|
22
|
Alcocer-Ávila ME, Ferreira A, Quinto MA, Morgat C, Hindié E, Champion C. Radiation doses from 161Tb and 177Lu in single tumour cells and micrometastases. EJNMMI Phys 2020; 7:33. [PMID: 32430671 PMCID: PMC7237560 DOI: 10.1186/s40658-020-00301-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Targeted radionuclide therapy (TRT) is gaining importance. For TRT to be also used as adjuvant therapy or for treating minimal residual disease, there is a need to increase the radiation dose to small tumours. The aim of this in silico study was to compare the performances of 161Tb (a medium-energy β− emitter with additional Auger and conversion electron emissions) and 177Lu for irradiating single tumour cells and micrometastases, with various distributions of the radionuclide. Methods We used the Monte Carlo track-structure (MCTS) code CELLDOSE to compute the radiation doses delivered by 161Tb and 177Lu to single cells (14 μm cell diameter with 10 μm nucleus diameter) and to a tumour cluster consisting of a central cell surrounded by two layers of cells (18 neighbours). We focused the analysis on the absorbed dose to the nucleus of the single tumoral cell and to the nuclei of the cells in the cluster. For both radionuclides, the simulations were run assuming that 1 MeV was released per μm3 (1436 MeV/cell). We considered various distributions of the radionuclides: either at the cell surface, intracytoplasmic or intranuclear. Results For the single cell, the dose to the nucleus was substantially higher with 161Tb compared to 177Lu, regardless of the radionuclide distribution: 5.0 Gy vs. 1.9 Gy in the case of cell surface distribution; 8.3 Gy vs. 3.0 Gy for intracytoplasmic distribution; and 38.6 Gy vs. 10.7 Gy for intranuclear location. With the addition of the neighbouring cells, the radiation doses increased, but remained consistently higher for 161Tb compared to 177Lu. For example, the dose to the nucleus of the central cell of the cluster was 15.1 Gy for 161Tb and 7.2 Gy for 177Lu in the case of cell surface distribution of the radionuclide, 17.9 Gy for 161Tb and 8.3 Gy for 177Lu for intracytoplasmic distribution and 47.8 Gy for 161Tb and 15.7 Gy for 177Lu in the case of intranuclear location. Conclusion 161Tb should be a better candidate than 177Lu for irradiating single tumour cells and micrometastases, regardless of the radionuclide distribution.
Collapse
Affiliation(s)
- Mario E Alcocer-Ávila
- Centre Lasers Intenses et Applications, Université de Bordeaux - CNRS - CEA, Talence, F-33400, France
| | - Aymeric Ferreira
- CERVO Brain Research Center, Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, G1J 2G3, Quebec, Canada
| | - Michele A Quinto
- Instituto de Física Rosario, CONICET - Universidad Nacional de Rosario, Rosario, S2000 EKF, Argentina
| | - Clément Morgat
- Service de Médecine Nucléaire, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, 33604, France
| | - Elif Hindié
- Service de Médecine Nucléaire, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, 33604, France.
| | - Christophe Champion
- Centre Lasers Intenses et Applications, Université de Bordeaux - CNRS - CEA, Talence, F-33400, France.
| |
Collapse
|