1
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Yu J, Yuan S, Song J, Yu S. USP39 interacts with SIRT7 to promote cervical squamous cell carcinoma by modulating autophagy and oxidative stress via FOXM1. J Transl Med 2023; 21:807. [PMID: 37957720 PMCID: PMC10641974 DOI: 10.1186/s12967-023-04623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Sirtuin 7 (SIRT7) is an oncogene that promotes tumor progression in various malignancies, however, its role and regulatory mechanism in cervical squamous cell carcinoma (CSCC) is unknown. Herein, we attempted to investigate the functional role and molecular mechanism of SIRT7 underlying CSCC progression. METHODS SIRT7 expression was evaluated in CSCC cells using various assays. We then used a series of function gain-and-loss experiments to determine the role of SIRT7 in CSCC progression. Furthermore, mechanism experiments were conducted to assess the interaction between SIRT7/USP39/FOXM1 in CSCC cells. Additionally, rescue assays were conducted to explore the regulatory function of USP39/FOXM1 in CSCC cellular processes. RESULTS SIRT7 was highly expressed in CSCC patient tissues and cell lines. SIRT7 deficiency showed significant repression on the proliferation, and autophagy of CSCC cells in vitro and tumorigenesis in vivo. Similarly, apoptosis and ROS production in CSCC cells were accelerated after the SIRT7 knockdown. Moreover, SIRT7 and USP39 were found colocalized in the cell nucleus. Interestingly, SIRT7 was revealed to deacetylate USP39 to promote its protein stability in CSCC cells. USP39 protein was also verified to be upregulated in CSCC tissues and cells. USP39 silencing showed suppressive effects on CSCC cell growth. Mechanistically, USP39 was revealed to upregulate SIRT7 by promoting the transcriptional activity of FOXM1. Rescue assays also indicated that SIRT7 promoted autophagy and inhibited ROS production in CSCC cells by regulating USP39/FOXM1. CONCLUSION The SIRT7/USP39/FOXM1 positive feedback network regulates autophagy and oxidative stress in CSCC, thus providing a new direction for CSCC-targeted therapy.
Collapse
Affiliation(s)
- Juanpeng Yu
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Shuai Yuan
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Jinglin Song
- Department of Obstetrics and Gynecology, Langao County Hospital of Traditional Chinese Medicine, Ankang, 725400, Shaanxi, China
| | - Shengsheng Yu
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
3
|
Zheng J, Wu S, Tang M, Xi S, Wang Y, Ren J, Luo H, Hu P, Sun L, Du Y, Yang H, Wang F, Gao H, Dai Z, Ou X, Li Y. USP39 promotes hepatocellular carcinogenesis through regulating alternative splicing in cooperation with SRSF6/HNRNPC. Cell Death Dis 2023; 14:670. [PMID: 37821439 PMCID: PMC10567755 DOI: 10.1038/s41419-023-06210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Abnormal alternative splicing (AS) caused by alterations in spliceosomal factors is implicated in cancers. Standard models posit that splice site selection is mainly determined by early spliceosomal U1 and U2 snRNPs. Whether and how other mid/late-acting spliceosome components such as USP39 modulate tumorigenic splice site choice remains largely elusive. We observed that hepatocyte-specific overexpression of USP39 promoted hepatocarcinogenesis and potently regulated splice site selection in transgenic mice. In human liver cancer cells, USP39 promoted tumor proliferation in a spliceosome-dependent manner. USP39 depletion deregulated hundreds of AS events, including the oncogenic splice-switching of KANK2. Mechanistically, we developed a novel RBP-motif enrichment analysis and found that USP39 modulated exon inclusion/exclusion by interacting with SRSF6/HNRNPC in both humans and mice. Our data represented a paradigm for the control of splice site selection by mid/late-acting spliceosome proteins and their interacting RBPs. USP39 and possibly other mid/late-acting spliceosome proteins may represent potential prognostic biomarkers and targets for cancer therapy.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shasha Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mao Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanchen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ren
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hao Luo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Pengchao Hu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liangzhan Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hui Yang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fenfen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Han Gao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
USPs in Pancreatic Ductal Adenocarcinoma: A Comprehensive Bioinformatic Analysis of Expression, Prognostic Significance, and Immune Infiltration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6109052. [PMID: 36582601 PMCID: PMC9794441 DOI: 10.1155/2022/6109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as an intractable malignancy, still causes an extremely high mortality worldwide. The ubiquitin-specific protease (USP) family constitutes the major part of deubiquitinating enzymes (DUBs) which has been reported to be involved in initiation and progression of various malignancies via the function of deubiquitination. However, the biological function and clinical values of USPs in PDAC have not been comprehensively elucidated. In this study, Gene Expression Profiling Interactive Analysis (GEPIA), Gene Expression Omnibus (GEO) datasets, UALCAN database, and the Human Protein Atlas (HPA) online tool were used to analyze the expression level and the relationship between USP expression and clinicopathological features in PDAC. Survival module of HPA and Kaplan-Meier plotter (KMP) databases was recruited to explore the prognostic value of USPs. Tumor Immune Estimation Resource (TIMER) online tool and KMP databases were utilized to elucidate tumor immune infiltration and immune-related survival of USPs. CBioPortal online tool was used to identify the gene mutation level of USPs in PDAC. Both cBioPortal and LinkedOmics were used to confirm the potential biological functions of USPs in PDAC. Our study showed that USP10, USP14, USP18, USP32, USP33, and USP39 (termed as six-USPs) expressions were significantly elevated in tumor tissues. The high expression of the four USPs (USP10, USP14, USP18, and USP39) indicated a poor prognosis. A significant relationship was indicated between the expression of six-USPs and clinicopathological features. Also, the expression of six-USPs was related to promoter methylation level. Moreover, more than 40% genetic alterations and mutations were discovered in six-USPs. Furthermore, the six-USP expression was correlated with immune infiltration and immune-related prognosis. The functional analysis found that the six-USPs were involved in various biological processes and signaling pathways, such as nucleocytoplasmic transport, choline metabolism in cancer, cell cycle, ErbB signaling pathway, RIG-I-like receptor signaling pathway, TGF-β signaling pathway, and TNF signaling pathway. In conclusion, the results showed that six-USPs are potential prognostic biomarkers and can be recruited as possible therapeutic targets of PDAC.
Collapse
|
5
|
Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals (Basel) 2021; 14:ph14090848. [PMID: 34577547 PMCID: PMC8469789 DOI: 10.3390/ph14090848] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.
Collapse
Affiliation(s)
- Lucas Cruz
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade Do Porto, 4200-139 Porto, Portugal
| | - Marcelo Correia
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
8
|
Lv XY, Duan T, Li J. The multiple roles of deubiquitinases in liver cancer. Am J Cancer Res 2020; 10:1647-1657. [PMID: 32642281 PMCID: PMC7339268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023] Open
Abstract
Primary liver cancer ranks the second leading cause of death associated with cancer in the world and therefore a major public health challenge. The mortality rates of liver cancer has been increasing during the past decades with the reality that the alternative therapeutic drugs are not available. Although growing numbers of proteins involved in liver cancer progression have been identified, many of these are not suitable drug targets, which hinders the development of new drugs to cure liver cancer. It is in urgent demand that novel therapeutic approaches should be explored. Deubiquitinases (DUBs), specifically removing ubiquitin chains from the target protein, have showed vital roles for protein homeostasis and quality control by rigidly regulating the balance between ubiquitination and deubiquitination in normal physiology. Recent studies have revealed deregulation or dysfunction of DUBs always associates with cancer and other diseases. Targeting certain DUBs, leading to degradation or loss function of the key oncoproteins, including undruggable ones, seems to provide a potential therapy for cancer patients. In liver cancer, numberous of DUBs are demonstrated to participate in hepatocarcinogenesis, metastasis and so on. Depending on the substrates, some DUBs may suppress liver cancers while others promote. In this review, we primarily summarize the roles of DUBs in liver tumors, and illustrate opportunities for the application of targeting DUBs for cancer therapy.
Collapse
Affiliation(s)
- Xin-You Lv
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Ting Duan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Jin Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
9
|
Yan C, Yuan J, Xu J, Zhang G, Li X, Zhang B, Hu T, Huang X, Mao Y, Song G. Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT. Med Oncol 2019; 36:95. [PMID: 31637536 DOI: 10.1007/s12032-019-1308-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Abstract
Ovarian cancer is one of the most lethal gynecological cancers; owning to its late detection and chemoresistance, understanding the pathogenesis of this malignant tumor is much critical. Previous studies have reported that ubiquitin-specific peptidase 39 (USP39) is generally overexpressed in a variety of cancers, including hepatocellular carcinoma, gastric cancer and so forth. Furthermore, USP39 is proved to be associated with the proliferation of malignant tumors. However, the function and mechanism of USP39 in ovarian cancer have not been elucidated. In the present study, we observed that USP39 was frequently overexpressed in human ovarian cancer and was highly correlated with TNM stage. Suppression of USP39 markedly inhibited the growth and migration of ovarian cancer cell lines HO-8910 and SKOV3 and induced cell cycle G2/M arrest. Moreover, knockdown of USP39 inhibited ovarian tumor growth in a xenograft model. In addition, our findings indicated that cell cycle arrest induced by USP39 knockdown might be involved in p53/p21 signaling pathway. Furthermore, we found that the depletion of USP39 inhibited the migration of ovarian cancer cells via blocking epithelial-mesenchymal transition. Taken together, these results suggest that USP39 may play vital roles in the genesis and progression and may serve as a potential biomarker for diagnosis and therapeutic target of ovarian cancer.
Collapse
Affiliation(s)
- Congcong Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiajia Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Bing Zhang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xiaohua Huang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yubin Mao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China. .,Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Wang L, Chen T, Li X, Yan W, Lou Y, Liu Z, Chen H, Cui Z. USP39 promotes ovarian cancer malignant phenotypes and carboplatin chemoresistance. Int J Oncol 2019; 55:277-288. [PMID: 31180526 DOI: 10.3892/ijo.2019.4818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/24/2019] [Indexed: 11/05/2022] Open
Abstract
Ubiquitin‑specific protease 39 (USP39), as one of the deubiquitinating enzymes (DUBs), exhibits aberrant an expression and has oncogenic functions in several types of cancer. However, the function and underlying molecular mechanisms of action of USP39 in ovarian cancer remain largely undetermined. The present study thus aimed to investigate whether USP39 is a promising tumor‑associated gene and whether it could be a viable target for overcoming chemotherapeutic resistance in ovarian cancer. The present study identified that USP39 was highly expressed in ovarian cancer samples with carboplatin resistance. A series of functional assays revealed that the knockdown of USP39 in ES2 and SKOV3 cells significantly decreased cell proliferation, induced cell cycle arrest at the G2/M phase and impaired the cell colony formation ability. USP39 deficiency enhanced the carboplatin‑induced apoptosis of the SKOV3 cells via the activation of poly‑ADP ribose polymerase and caspase‑3. USP39 knockdown led to the inhibition of cell migration and invasion. The opposite effects were observed when USP39 was overexpressed in the ES2 and SKOV3 cells. In vivo animal models revealed that the subcutaneous transplantation and intraperitoneal injection of USP39‑overexpressing ES2 cells increased tumor burden with or without treatment with carboplatin. However, the knockdown of USP39 suppressed SKOV3 cell growth in vivo. Mechanistic analyses also demonstrated that USP39 induced the phosphorylation of extracellular signal‑regulated kinase and AKT and increased the expression of epidermal growth factor receptor and cyclin B1. Collectively, the findings of this study suggest that USP39 may paly a vital role in regulating ovarian cancer malignant phenotypes and carboplatin resistance. Therefore, USP39 may prove to be a promising therapeutic target for patients with ovarian cancer.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Tanxiu Chen
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xukun Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing 100021, P.R. China
| | - Wei Yan
- 6th Department of Internal Medicine, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Yanhui Lou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing 100021, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing 100021, P.R. China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| |
Collapse
|
11
|
Liu C, Yao X, Li M, Xi Y, Zhao L. USP39 regulates the cell cycle, survival, and growth of human leukemia cells. Biosci Rep 2019; 39:BSR20190040. [PMID: 30898977 PMCID: PMC6449567 DOI: 10.1042/bsr20190040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022] Open
Abstract
Ubiquitin-specific peptidase 39 (USP39) is one member of the cysteine proteases of the USP family, which represents the largest group of DeUbiquitinases with more than 50 members in humans. The roles of USP39 in human cancer have been widely investigated. However, the roles of USP39 in human leukemia and the underlying mechanism remain unknown. Here we reported the function of USP39 in human leukemia. We observed that the expression of USP39 was up-regulated in human leukemia cells and the high expression of USP39 was correlated with poor survival of the patients with leukemia. Lentivirus-mediated knockdown of USP39 repressed the proliferation and colony formation of human leukemia cell lines HL-60 and Jurkat cells. Mechanism study showed that USP39 knockdown induced the arrest of cell cycle and apoptosis of leukemia cells. In addition, our microarray and bioinformatic analysis demonstrated that USP39 regulated diverse cellular signaling pathways that were involved in tumor biology, and several pivotal genes (IRF1, Caspase 8, and SP1) have been validated by quantitative real-time polymerase chain reaction. Knockdown or IRF1 partially restored the proliferation rate of leukemia cells with USP39 knockdown. Taken together, our findings implicate that USP39 promotes the development of human leukemia by regulating cell cycle, survival, and proliferation of the cells.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaojian Yao
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Ming Li
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Yaming Xi
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Li Zhao
- Department of Hematology, the First Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
12
|
Pan Z, Pan H, Zhang J, Yang Y, Liu H, Yang Y, Huang G, Ni J, Huang J, Zhou W. Expression of Concern to: Lentivirus mediated silencing of Ubiquitin Specific Peptidase 39 inhibits cell proliferation of human hepatocellular carcinoma cells in vitro. Biol Res 2018; 51:19. [PMID: 29933754 PMCID: PMC6013891 DOI: 10.1186/s40659-018-0170-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/02/2023] Open
Affiliation(s)
- Zeya Pan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Hao Pan
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, 200336, Shanghai, China
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Yun Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Gang Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Junsheng Ni
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Jian Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| |
Collapse
|
13
|
Xing Z, Sun F, He W, Wang Z, Song X, Zhang F. Downregulation of ubiquitin-specific peptidase 39 suppresses the proliferation and induces the apoptosis of human colorectal cancer cells. Oncol Lett 2018; 15:5443-5450. [PMID: 29556295 PMCID: PMC5844003 DOI: 10.3892/ol.2018.8061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Ubiquitin-specific peptidase 39 (USP39) has been reported to participate in the mitotic spindle checkpoint and the process of cytokinesis. and has been identified as a therapeutic target for various types of cancer. However, the effect of USP39 in colorectal cancer (CRC) has not been investigated. To explore the functional role of USP39 in CRC cell growth, lentivirus-mediated RNA interference was applied to inhibit USP39 expression in SW1116 and HCT116 cells. The relative USP39 mRNA and protein expression levels were significantly reduced in the USP39 knockdown cells, as verified by reverse transcription-quantitative polymerase chain reaction and western blot analysis. USP39 knockdown significantly reduced the proliferation and colony formation abilities of CRC cells, and induced apoptosis and cell cycle arrest in the G2/M phases, as determined by an MTT assay, a colony formation assay and flow cytometry analysis. Furthermore, western blot analysis demonstrated that USP39 knockdown may have induced apoptosis through the upregulation of p53, p-p53, PARP and caspase-3 expression in SW1116 cells. In conclusion, USP39 may be a novel biological marker for targeted therapy against CRC, and requires further investigation.
Collapse
Affiliation(s)
- Zhiyuan Xing
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Fengbo Sun
- Department of General Surgery, Qingdao Haici Medical Group, Qingdao, Shandong 266000, P.R. China
| | - Wang He
- Department of Hepatopathy, Qingdao Sixth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhiwei Wang
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Xiuqi Song
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Fengjuan Zhang
- Department of Infection, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
14
|
Overexpression of USP39 predicts poor prognosis and promotes tumorigenesis of prostate cancer via promoting EGFR mRNA maturation and transcription elongation. Oncotarget 2017; 7:22016-30. [PMID: 26959883 PMCID: PMC5008341 DOI: 10.18632/oncotarget.7882] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022] Open
Abstract
Castration resistance is a serious problem facing clinical treatment of prostate cancer (PCa). The underlying molecular mechanisms of acquired proliferation ability of tumor cells upon androgen deprivation are largely undetermined. In the present study, we identified that ubiquitin specific peptidase 39 (USP39) was significantly upregulated in PCa samples and cell lines. Elevated USP39 expression was positively correlated with Gleason score, predicted a poor outcome, and functioned as an independent risk factor for biochemical recurrence (BCR) especially in patients with a Gleason score ≤7. Our cell-based study showed that the expression level of USP39 was the highest in AR-negative PCa cell lines. Knockdown of USP39 in PCa cells inhibited cancer colony formation and tumor cell growth, and induced G2/M arrest and cell apoptosis. Microarray analysis suggested that knockdown of USP39 caused a reduced expression of EGFR. Silencing of USP39 inhibited the expression of EGFR 3′-end, and presented a remarkable block to the maturation of EGFR mRNA, suggesting that silencing of USP39 decreased the transcriptional elongation and maturation of EGFR mRNA. Oncomine datasets analysis showed that USP39 expression was positively correlated with EGFR level. The above findings suggest that USP39 plays a vital oncogenic role in the tumorigenesis of PCa and may prove to be a potential biomarker for predicting the prognosis of PCa patients.
Collapse
|
15
|
Hu W, Wei H, Li K, Li P, Lin J, Feng R. Downregulation of USP32 inhibits cell proliferation, migration and invasion in human small cell lung cancer. Cell Prolif 2017; 50. [PMID: 28597490 DOI: 10.1111/cpr.12343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/14/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Ubiquitin specific protease 32 (USP32) is a highly conserved but uncharacterized gene, which has been reported to be associated with growth of breast cancer cells. However, the role of USP32 in human small cell lung cancer (SCLC) has not been uncovered. The aim of this study was to investigate and evaluate the clinical significance of USP32 in patients with SCLC. MATERIALS AND METHODS Expression of USP32 was firstly investigated using public online data sets and then determined in SCLC tissues and cell lines using quantitative real-time PCR, Western blotting and immunohistochemical staining. SCLC cells were transfected with a small-interfering RNA targeting USP32 mRNA and analysed for cell viability, proliferation ability, cell cycle distribution, apoptosis and invasion. RESULTS USP32 was found to be overexpressed in SCLC tissues compared with normal tissues. High USP32 expression was significantly correlated with disease stage and invasion. In vitro experiments demonstrated that silencing of USP32 caused a significant decrease in the proliferation and migration rate of cells. Furthermore, USP32 silencing arrested cell cycle progression at G0/G1 phase via decreasing CDK4/Cyclin D1 complex and elevating p21. In addition, downregulation of USP32 significantly induced cell apoptosis by activating cleaved caspase-3 and cleaved PARP, as well as inhibiting cell invasiveness via altering epithelial mesenchymal transition expression. CONCLUSIONS Our results suggest for the first time that USP32 is important for SCLC progression and might be a potential target for molecular therapy of SCLC.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Haiyan Wei
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Ji Nan, Shandong, China
| | - Keming Li
- Department of Medicine science, Shandong Academy of Traditional Medicine, Ji Nan, Shandong, China
| | - Pei Li
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Jiamao Lin
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Rui Feng
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| |
Collapse
|
16
|
Role of γ-glutamyl cyclotransferase as a therapeutic target for colorectal cancer based on the lentivirus-mediated system. Anticancer Drugs 2016; 27:1011-20. [DOI: 10.1097/cad.0000000000000407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Masoumi KC, Marfany G, Wu Y, Massoumi R. Putative role of SUMOylation in controlling the activity of deubiquitinating enzymes in cancer. Future Oncol 2016; 12:565-74. [PMID: 26777062 DOI: 10.2217/fon.15.320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) are specialized proteins that can recognize ubiquitinated proteins, and after direct interaction, deconjugate monomeric or polymeric ubiquitin chains, thus changing the fate of the substrates. This process is instrumental in mediating or changing downstream signaling pathways. Beside mutations and alterations in their expression levels, the activity and stability of deubiquitinating enzymes is vital for their function. SUMOylations consist of the conjugation of the small peptide SUMO to protein substrates which is very similar to ubiquitination in the mechanistic and machinery required. In this review, we will focus on how SUMOylation can regulate DUB enzymatic activity, stability or DUB interaction with partners and substrates, in cancer. Furthermore, we will discuss the impact of these recent findings in the identification of new potential tools for efficient anticancer treatment strategies.
Collapse
Affiliation(s)
- Katarzyna C Masoumi
- Department of Laboratory Medicine, Medicon Village, Lund University, 22381 Lund, Sweden
| | - Gemma Marfany
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Institut de Biomedicina (IBUB), Universitat de Barcelona, 08007 Barcelona, Spain.,CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Yingli Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ramin Massoumi
- Department of Laboratory Medicine, Medicon Village, Lund University, 22381 Lund, Sweden
| |
Collapse
|