1
|
Razipour M, Jamali Z, Sohrabpour S, Heidari F, Lotfi M, Ghadami E, Abtin M, Maghsudlu M, Sahebi L, Shakoori A. Dysregulated LINC01133 expression in laryngeal carcinoma: Prognostic implications and predicted ceRNA interactome. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:93-107. [PMID: 39744510 PMCID: PMC11624609 DOI: 10.22099/mbrc.2024.50390.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Long non-coding RNAs (lncRNAs) have recently emerged as critical regulators of oncogenic or tumor-suppressive pathways in human cancers. LINC01133 is a lncRNA that has exhibited dichotomous roles in various malignancies but to the best of our knowledge, the role of LINC01133 in laryngeal squamous cell carcinoma (LSCC) has not been previously investigated. This study aimed to investigate the expression, clinical significance, and potential functions of the LINC01133 in LSCC. Integrative bioinformatics analysis of sequencing data obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed LINC01133 as a differentially expressed lncRNA in head and neck/laryngeal cancers. Experimental validation via quantitative real-time PCR in 41 pairs of stage III and IV LSCC tissues and normal tissues adjacent to the tumor (NAT) demonstrated significant downregulation of LINC01133 in tumors (p<0.0001). Decreased LINC01133 expression associated with advanced tumor stage (p=0.0206) and lymph node metastasis (p=0.0203). The receiver operating characteristic analysis indicated potential diagnostic utility (AUC=0.7115, p=0.001). Bioinformatic predictions and literature mining suggested two potential competing endogenous RNA (ceRNA) mechanisms whereby LINC01133 may act as a tumor suppressor by sponging miR-205-5p to derepress the leucine-rich repeat kinase 2 (LRRK2) and androgen receptor, leading to dysregulation of cancer-related signaling cascades. This study provides initial evidence that loss of lncRNA LINC01133 expression may promote LSCC tumorigenesis, possibly by dysregulating microRNA interactions. Further verification of its regulatory mechanisms and diagnostic value is warranted.
Collapse
Affiliation(s)
- Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- These two authors contributed equally to this work
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- These two authors contributed equally to this work
| | - Saeed Sohrabpour
- Otorhinolaryngology Research Center, AmirAlam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farrokh Heidari
- Otorhinolaryngology Research Center, AmirAlam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Lotfi
- Department of Pathology and Otorhinolaryngology Research Center, AmirAlam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abtin
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohaddese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sahebi
- Family Health Research Institute, Maternal-Fetal and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Stabile R, Cabezas MR, Verhagen MP, Tucci FA, van den Bosch TPP, De Herdt MJ, van der Steen B, Nigg AL, Chen M, Ivan C, Shimizu M, Koljenović S, Hardillo JA, Verrijzer CP, Baatenburg de Jong RJ, Calin GA, Fodde R. The deleted in oral cancer (DOC1 aka CDK2AP1) tumor suppressor gene is downregulated in oral squamous cell carcinoma by multiple microRNAs. Cell Death Dis 2023; 14:337. [PMID: 37217493 DOI: 10.1038/s41419-023-05857-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare. Accordingly, CDK2AP1 protein-deficient oral cancer cell lines express as much CDK2AP1 mRNA as proficient cell lines. Here, by combining in silico and in vitro approaches, and by taking advantage of patient-derived data and tumor material in the analysis of loss of CDK2AP1 expression, we identified a set of microRNAs, namely miR-21-5p, miR-23b-3p, miR-26b-5p, miR-93-5p, and miR-155-5p, which inhibit its translation in both cell lines and patient-derived OSCCs. Of note, no synergistic effects were observed of the different miRs on the CDK2AP1-3-UTR common target. We also developed a novel approach to the combined ISH/IF tissue microarray analysis to study the expression patterns of miRs and their target genes in the context of tumor architecture. Last, we show that CDK2AP1 loss, as the result of miRNA expression, correlates with overall survival, thus highlighting the clinical relevance of these processes for carcinomas of the oral cavity.
Collapse
Affiliation(s)
- Roberto Stabile
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mario Román Cabezas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Francesco A Tucci
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Maria J De Herdt
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex L Nigg
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meng Chen
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Caris Life Science, Irving, TX, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senada Koljenović
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Jose A Hardillo
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - George A Calin
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Hegazy M, Elkady MA, Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Abdelghany TM, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Doghish AS. The role of miRNAs in laryngeal cancer pathogenesis and therapeutic resistance - A focus on signaling pathways interplay. Pathol Res Pract 2023; 246:154510. [PMID: 37167812 DOI: 10.1016/j.prp.2023.154510] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Laryngeal cancer (LC)is the malignancy of the larynx (voice box). The majority of LC are squamous cell carcinomas. Many risk factors were reported to be associated with LC as tobacco use, obesity, alcohol intake, human papillomavirus (HPV) infection, and asbestos exposure. Besides, epigenetics as non-coding nucleic acids also have a great role in LC. miRNAs are short nucleic acid molecules that can modulate multiple cellular processes by regulating the expression of their genes. Therefore, LC progression, apoptosis evasions, initiation, EMT, and angiogenesis are associated with dysregulated miRNA expressions. miRNAs also could have some vital signaling pathways such as mTOR/P-gp, Wnt/-catenin signaling, JAK/STAT, KRAS, and EGF. Besides, miRNAs also have a role in the modulation of LC response to different therapeutic modalities. In this review, we have provided a comprehensive and updated overview highlighting the microRNAs biogenesis, general biological functions, regulatory mechanisms, and signaling dysfunction in LC carcinogenesis, in addition to their clinical potential for LC diagnosis, prognosis, and chemotherapeutics response implications.
Collapse
Affiliation(s)
- Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
5
|
Broseghini E, Filippini DM, Fabbri L, Leonardi R, Abeshi A, Dal Molin D, Fermi M, Ferracin M, Fernandez IJ. Diagnostic and Prognostic Value of microRNAs in Patients with Laryngeal Cancer: A Systematic Review. Noncoding RNA 2023; 9:ncrna9010009. [PMID: 36827542 PMCID: PMC9966707 DOI: 10.3390/ncrna9010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is one of the most common malignant tumors of the head and neck region, with a poor survival rate (5-year overall survival 50-80%) as a consequence of an advanced-stage diagnosis and high recurrence rate. Tobacco smoking and alcohol abuse are the main risk factors of LSCC development. An early diagnosis of LSCC, a prompt detection of recurrence and a more precise monitoring of the efficacy of different treatment modalities are currently needed to reduce the mortality. Therefore, the identification of effective diagnostic and prognostic biomarkers for LSCC is crucial to guide disease management and improve clinical outcomes. In the past years, a dysregulated expression of small non-coding RNAs, including microRNAs (miRNAs), has been reported in many human cancers, including LSCC, and many miRNAs have been explored for their diagnostic and prognostic potential and proposed as biomarkers. We searched electronic databases for original papers that were focused on miRNAs and LSCC, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. According to the outcome, 566 articles were initially screened, of which 177 studies were selected and included in the analysis. In this systematic review, we provide an overview of the current literature on the function and the potential diagnostic and prognostic role of tissue and circulating miRNAs in LSCC.
Collapse
Affiliation(s)
- Elisabetta Broseghini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Daria Maria Filippini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Laura Fabbri
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Roberta Leonardi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Andi Abeshi
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Davide Dal Molin
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Matteo Fermi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Ignacio Javier Fernandez
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| |
Collapse
|
6
|
Abstract
Yang J, Shao X, Wang L, et al. Angelica polysaccharide exhibits antitumor effect in neuroblastoma cell line SH-SY5Y by up-regulation of miR-205. BioFactors. 2023;49:201. https://doi.org/10.1002/biof.1586 This article, published online on 23 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 2, 3, 4, 5 and 6. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
7
|
Micronome Revealed miR-205-5p as Key Regulator of VEGFA During Cancer Related Angiogenesis in Hepatocellular Carcinoma. Mol Biotechnol 2022:10.1007/s12033-022-00619-5. [DOI: 10.1007/s12033-022-00619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
|
8
|
Yigider AP, Yigit O. Biomarkers in Otorhinolaryngology. Biomark Med 2022. [DOI: 10.2174/9789815040463122010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biomarkers of otorhinolaryngologic diseases with higher insult over a
person’s him/herself and overall health services are summarized in brief. In order to
define, diagnose, treat and monitor any disease markers are needed.
Otorhinolaryngology (ORL) is interested in special disease entities of the region
besides otorhinolaryngologic involvements of the systemic diseases and unique forms
of pathologies such as cholesteatoma, Meniere’s disease and otosclerosis. Neoplasia is
another heading to deal with. In the following chapter, one will find an overview of
molecules that have been used as a biomarker as well as the end points of the present
research on the issue relevant with ORL. Day by day, new molecules are being named
however, the pathways of action are rather the same. Readers will find the headings
related to the most common diseases of the field, informing them about where to look
for defining new strategies of understanding of each disease.
Collapse
Affiliation(s)
- Ayse Pelin Yigider
- Istanbul Research and Training Hospital Otorhinolaryngology,Istanbul Research and Training Hospital Otorhinolaryngology, Istanbul,Turkey
| | - Ozgur Yigit
- Istanbul Research and Training Hospital Otorhinolaryngology, Istanbul, Turkey
| |
Collapse
|
9
|
Miao Z, Haider MS, Nazar M, Mansoor MK, Zhang H, Tang Z, Li Y. Potential molecular mechanism of ascites syndrome in broilers. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2075299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhenyan Miao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, GD, China
| | | | - Mudassar Nazar
- Veterinary Sciences, University of Agriculture Faisalabad, Sub-Campus Burewala, Burewala, Pakistan
| | - Muhammad Khalid Mansoor
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, GD, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, GD, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, GD, China
| |
Collapse
|
10
|
Weiss BG, Anczykowski MZ, Ihler F, Bertlich M, Spiegel JL, Haubner F, Canis M, Küffer S, Hess J, Unger K, Kitz J, Jakob M. MicroRNA-182-5p and microRNA-205-5p as potential biomarkers for prognostic stratification of p16-positive oropharyngeal squamous cell carcinoma. Cancer Biomark 2021; 33:331-347. [PMID: 34542062 DOI: 10.3233/cbm-203149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs constitute promising biomarkers. OBJECTIVE The aim was to investigate diagnostic and prognostic implications of miR-182-5p and miR-205-5p in p16-positive and p16-negative oropharyngeal squamous cell carcinomas (OPSCCs). METHODS Expression of miR-182-5p, miR-205-5p were determined via quantitative real-time-PCR in fresh frozen tissues of 26 p16-positive, 19 p16-negative OPSCCs and 18 HPV-negative oropharyngeal controls. Associations between miRNA-expression, clinicopathological characteristics and prognosis were analyzed. RESULTS Higher miR-182-5p expression was associated with significant inferior disease-specific survival for p16-positive OPSCCs (HR = 1.98E+09, 95% CI 0-Inf; P= 0.028) and a similar trend was observed for p16-negative OPSCCs (HR = 1.56E+09, 95% CI 0-Inf; P= 0.051). Higher miR-205-5p expression was associated with an inferior progression-free survival (HR = 4.62, 95% CI 0.98-21.83; P= 0.034) and local control rate (HR = 2.18E+09, 95% CI 0-Inf; P= 0.048) for p16-positive OPSCCs. CONCLUSIONS Results indicate that miR-182-5p and miR-205-5p can further stratify patients with p16-positive OPSCC into prognostic groups.
Collapse
Affiliation(s)
- Bernhard G Weiss
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mahalia Zoe Anczykowski
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Jennifer L Spiegel
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
11
|
Peng W, Xu B, Ge X, Du J, Xi L, Xia L, Wang Q, Huang S. Vof16-miR-205-Gnb3 axis regulates hippocampal neuron functions in cognitively impaired diabetic rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:965. [PMID: 34277765 PMCID: PMC8267322 DOI: 10.21037/atm-21-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Background Diabetes is a chronic metabolic disease and an independent risk factor for cognitive damage. Non-protein coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are involved in various pathophysiological conditions. Methods In this study, cognitive impairment was induced in diabetics rats by streptozotocin (STZ) injection, and the differential lncRNAs and mRNAs in rat hippocampal tissue between control and STZ-treated groups were analyzed with microarray. Results In the hippocampus of STZ-treated diabetic rats, lncRNA Vof-16, and Gnb3 mRNA were significantly upregulated and silicon analysis showed that Vof-16 and miR-205 share the same miRNA response element (MRE). In addition, the overexpression of Vof-16 in primary hippocampal neurons inhibited the expression of miR-205, and vice versa. Dual luciferase assay verified the binding between Vof-16 and miR-205, and Vof-16 was seen to promote the proliferation of primary hippocampal neurons via sponging miR-205. Silicon analysis predicted that miR-205 could bind with Gnb3, which was verified with dual luciferase assay, and the overexpression of miR-205 could inhibit the protein level of Gnb3, which could be rescued by co-expression with Vof-16. In conclusion, lncRNA Vof-16 regulated Gnb3 expression by competitively binding to miR-205. Conclusions These results provided a novel regulation axis for the pathogenesis of STZ-induced diabetes.
Collapse
Affiliation(s)
- Wenfang Peng
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Bojin Xu
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xiaoxu Ge
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Liuqing Xi
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lili Xia
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Qianqian Wang
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Shan Huang
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
12
|
Shen Y, Xu Y, Huang L, Chi Y, Meng L. MiR-205 suppressed the malignant behaviors of breast cancer cells by targeting CLDN11 via modulation of the epithelial-to-mesenchymal transition. Aging (Albany NY) 2021; 13:13073-13086. [PMID: 33971623 PMCID: PMC8148491 DOI: 10.18632/aging.202988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Some Aberrant expression of miRNAs plays an important role in the occurrence and distant metastasis of breast cancer. This study aimed to identify crucial miRNA signatures for breast cancer using microarray data from the Gene Expression Omnibus database, including ductal carcinoma in situ and invasive duct carcinoma. In this study, we founded that miR-205 was significantly down-regulated in breast cancer, and the low expression of miR-205 was significantly associated with the TNM stage of breast cancer. In vitro, functional studies revealed that over-expression of miR-205 inhibited the proliferation and promoted apoptosis of breast cancer cells MDA-MB-231. Mechanistically, claudin 11 (CLDN11) was found to be the direct target of miR-205; the function of miR-205 could be exerted via downregulation of the target gene CLDN11 in breast cancer cells. Furthermore, the over-expression of miR-205 promoted the expression of the epithelial marker E-cadherin but reduced the mesenchymal markers in breast cancer cells. These results collectively indicated the tumor-suppressive role of miR-205 in breast cancer by targeting CLDN11; implying miR-205 may serve as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yupeng Shen
- Medical School of Shaoxing University, Yuecheng, Shaoxing 312000, Zhejiang Province, People's Republic of China
| | - Yingchun Xu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, People's Republic of China
| | - Liming Huang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, People's Republic of China
| | - Yongxin Chi
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, People's Republic of China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, People's Republic of China
| |
Collapse
|
13
|
Takeuchi T, Kawasaki H, Luce A, Cossu AM, Misso G, Scrima M, Bocchetti M, Ricciardiello F, Caraglia M, Zappavigna S. Insight toward the MicroRNA Profiling of Laryngeal Cancers: Biological Role and Clinical Impact. Int J Mol Sci 2020; 21:E3693. [PMID: 32456271 PMCID: PMC7279294 DOI: 10.3390/ijms21103693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), a heterogeneous disease arising from various anatomical locations including the larynx, is a leading cause of death worldwide. Despite advances in multimodality treatment, the overall survival rate of the disease is still largely dismal. Early and accurate diagnosis of HNSCC is urgently demanded in order to prevent cancer progression and to improve the quality of the patient's life. Recently, microRNAs (miRNAs), a family of small non-coding RNAs, have been widely reported as new robust tools for prediction, diagnosis, prognosis, and therapeutic approaches of human diseases. Abnormally expressed miRNAs are strongly associated with cancer development, resistance to chemo-/radiotherapy, and metastatic potential through targeting a large variety of genes. In this review, we summarize on the recent reports that emphasize the pivotal biological roles of miRNAs in regulating carcinogenesis of HNSCC, particularly laryngeal cancer. In more detail, we report the characterized miRNAs with an evident either oncogenic or tumor suppressive role in the cancers. In addition, we also focus on the correlation between miRNA deregulation and clinical relevance in cancer patients. On the basis of intriguing findings, the study of miRNAs will provide a new great opportunity to access better clinical management of the malignancies.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Hiromichi Kawasaki
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| | - Marianna Scrima
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | | | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| |
Collapse
|
14
|
Gu J, Han T, Sun L, Yan AH, Jiang XJ. miR-552 promotes laryngocarcinoma cells proliferation and metastasis by targeting p53 pathway. Cell Cycle 2020; 19:1012-1021. [PMID: 32233984 DOI: 10.1080/15384101.2020.1743910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous researches show that MicroRNAs (miRNAs) participate in tumorigenesis, progression, recurrence and drug resistance of malignant tumors, including laryngocarcinoma. miR-552 works as an oncogene in both colorectal cancer and liver cancer. However, the potential role of miR-552 in laryngocarcinoma is unknown. Herein, we for first found that miR-552 expression was upregulated in laryngocarcinoma tissues compared with their normal controls. Moreover, miR-552 expression was also increasing in the laryngocarcinoma cells. miR-552 interference inhibited the proliferation and metastasis of laryngocarcinoma cells in vitro and in vivo. Mechanically, bioinformatics and luciferase reporter analysis identified p53 as a direct target of miR-552. miR-552 knockdown upregulated the p53 mRNA and protein expression in laryngocarcinoma cells. miR-552 expression was negatively associated with p53 expression in laryngocarcinoma tissues. More importantly, the p53 siRNA or p53 overexpression virus abrogated the discrepancy of growth and metastasis capacity between miR-552 interference laryngocarcinoma cells and control cells.
Collapse
Affiliation(s)
- Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tao Han
- Department of Oncology, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Lei Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ai-Hui Yan
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue-Jun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Silencing of miR-17-5p suppresses cell proliferation and promotes cell apoptosis by directly targeting PIK3R1 in laryngeal squamous cell carcinoma. Cancer Cell Int 2020; 20:14. [PMID: 31938022 PMCID: PMC6954602 DOI: 10.1186/s12935-020-1096-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has suggested that microRNAs (miRNAs) act as key post-transcriptional regulators in tumor progression. Previous studies have confirmed that miR-17-5p functions as an oncogene in multiple cancers and contributes to tumor progression. However, the role and biological functions of miR-17-5p in the development of laryngeal squamous cell carcinoma (LSCC) still remain unknown. Methods qRT-PCR was used to detect miRNA and mRNA expression levels in LSCC tissues and cell lines. CCK-8 assay was used to measure cell viability and flow cytometry was performed to evaluate cell apoptosis. Western blot analysis was used to detect the protein levels of BAX, BCL-2, cleaved Caspase-3, PIK3R1 and AKT. Luciferase reporter assay was used to detect the effect of miR-17-5p on PIK3R1 expression. Xenograft animal model was used to test the effect of miR-17-5p on LSCC cell in vivo. Results In the present study, we found that miR-17-5p expression level was upregulated in LSCC tissues and cell lines. Depletion of miR-17-5p in LSCC cells significantly reduced cell proliferation and promoted cell apoptosis in vitro and in vivo. Mechanically, knockdown of miR-17-5p in LSCC cells inhibited BCL-2 expression while enhanced BAX and cleaved Caspase-3 protein expression. Moreover, depletion of miR-17-5p in LSCC cells suppressed AKT phosphorylation but did not influence PTEN expression. Importantly, miR-17-5p positively regulated PIK3R1 expression by directly binding to its 3′-untranslated region (UTR). Additionally, PIK3R1, which expression was downregulated in LSCC tissues and cell lines, was involved in LSCC cell survival by modulating the activation of AKT signal pathway. Dysregulation of miR-17-5p/PIK3R1 axis was participated in LSCC cell proliferation and apoptosis by inhibiting the activation of the PI3K/AKT signaling pathway. Conclusions In conclusion, our study indicates that the miR-17-5p/PIK3R1 axis plays an essential role in the development of LSCC and provides a potential therapeutic target for LSCC treatment.
Collapse
|
16
|
Gong C, Hu Y, Zhou M, Yao M, Ning Z, Wang Z, Ren J. Identification of specific modules and hub genes associated with the progression of gastric cancer. Carcinogenesis 2019; 40:1269-1277. [PMID: 30805585 DOI: 10.1093/carcin/bgz040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/01/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) has high morbidity and mortality rates worldwide. Abundant literature has reported several individual genes and their related pathways intimately involved in tumor progression. However, little is known about GC progression at the gene network level. Therefore, understanding the underlying mechanisms of pathological transition from early stage to late stage is urgently needed. This study aims to identify potential vital genes and modules involved in the progression of GC. To understand the gene regulatory network of GC progression, we analyzed micro RNAs and messenger RNA s expression profiles by using a couple of bioinformatics tools. miR-205 was identified by differentially expressed analysis and was further confirmed through using multiple kernel learning-based Kronecker regularized least squares. Using weighted gene co-expression network analysis, the gastric cancer progression-related module, which has the highest correlation value with cancer progression, was obtained. Kyoto Encyclopedia of Genes and Genomes pathways and biological processes of the GCPR module genes were related to cell adhesion. Meanwhile, large-scale genes of GCPR module were found to be targeted by miR-205, including two hub genes SORBS1 and LPAR1. In brief, through multiple analytical methods, we found that miR-205 and the GCPR module play critical roles in GC progression. In addition, miR-205 might maintain cell adhesion by regulating SORBS1 and LPAR1. To screen the potential drug candidates, the gene expression profile of the GCPR module was mapped connectivity map (Cmap), and the mTOR inhibitor (Sirolimus) was found to be the most promising candidate. We further confirmed that Sirolimus can suppress cell proliferation of GC cell in vitro.
Collapse
Affiliation(s)
- Congcong Gong
- School of Food Science and Technology, South China University of Technology, Guangzhou, Guangdong, China
| | - Yang Hu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mao Zhou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Maojin Yao
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Zhengxiang Ning
- School of Food Science and Technology, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiaoyan Ren
- School of Food Science and Technology, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Zhuang L, Guo J, Yao Y, Li Z. miR-205 targets runt-related transcription factor 2 to inhibit human pancreatic cancer progression. Oncol Lett 2019; 17:843-848. [PMID: 30655837 PMCID: PMC6313060 DOI: 10.3892/ol.2018.9689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated that microRNAs (miRs) serve important roles in the progression of human cancer types, including pancreatic cancer (PC), a highly lethal malignancy. In the past few decades, several miRs have been identified to be associated with the overall survival of patients with PC and have been demonstrated to be potential therapeutic targets. However, to the best of our knowledge, the association between miR-205 expression and the progression of PC has rarely been investigated. In the current study, low miR-205 expression was revealed in PC tumor tissues and indicated poor prognosis in patients with PC. In addition, miR-205 overexpression reduced and miR-205 depletion enhanced PC cell proliferation and migration in vitro. Using bioinformatics, a luciferase reporter assay and western blot analyses, the current study identified that runt-related transcription factor 2 (RUNX2) was a target of miR-205 in PC and overexpression of miR-205 suppressed the expression of RUNX2. Notably, overexpression of RUNX2 partially reversed the inhibitory effect of miR-205 on PC cell proliferation and migration in vitro. Therefore, the results of the present study revealed that miR-205 functions as a tumor suppressor in PC by targeting RUNX2.
Collapse
Affiliation(s)
- Lu Zhuang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Jia Guo
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yao Yao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
18
|
Gera R, Mokbel L, Jiang WG, Mokbel K. mRNA Expression of CDK2AP1 in Human Breast Cancer: Correlation with Clinical and Pathological Parameters. Cancer Genomics Proteomics 2018; 15:447-452. [PMID: 30343278 DOI: 10.21873/cgp.20103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1) interacts with CDK2AP2, modulates the actions of transforming growth factor-B1, cyclin-dependent kinase 2 and retinoblastoma protein, and closely interacts with micro-RNA21 and micro-RNA25. Our objective was to determine if CDK2AP1 mRNA expression levels were consistent with tumour-suppressive functions in breast cancer. MATERIALS AND METHODS A total of 134 samples were analysed. CDK2AP1 mRNA levels were measured using quantitative polymerase chain reaction (RT-PCR) and normalised against glyceraldehyde 3-phosphate dehydrogenase mRNA. Levels in breast cancer and adjacent non-cancerous breast tissue were analysed against pathological and clinical parameters (TNM staging, survival over a 10-year follow-up period). RESULTS Normalised CDK2AP1 expression was 38-fold higher in adjacent non-cancerous breast tissue than in breast cancer. CDK2AP1 expression in disease-free patients at 10 years was more than threefold that of patients who died of breast cancer. However, neither of these differences in expression levels reached statistical significance. CDK2AP1 mRNA levels were higher in TNM1 compared to TNM3 (p=0.016) and with TNM4 (p=0.016). There were no significant associations between CDK2AP1 expression and estrogen receptor status, tumour grade and tumour type. There was no significant difference in overall survival between patients with high and those with low CDK2AP1 mRNA levels after a median follow-up of 10 years (Kaplan-Meier analysis, p=0.872). CONCLUSION To our knowledge, this is the first study in the literature to examine the mRNA expression of CDK2AP1 in human breast cancer over a long-term follow-up period. A compelling relationship exists between high CDK2AP1 mRNA expression and lower TNM classification of breast cancer, which is consistent with CDK2AP1 having a tumour-suppressive function.
Collapse
Affiliation(s)
- Ritika Gera
- The London Breast Institute, The Princess Grace Hospital, London, U.K
| | - Leon Mokbel
- The London Breast Institute, The Princess Grace Hospital, London, U.K
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, U.K
| | - Kefah Mokbel
- The London Breast Institute, The Princess Grace Hospital, London, U.K.
| |
Collapse
|
19
|
Ricciardiello F, Capasso R, Kawasaki H, Abate T, Oliva F, Lombardi A, Misso G, Ingrosso D, Leone CA, Iengo M, Caraglia M. A miRNA signature suggestive of nodal metastases from laryngeal carcinoma. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:467-474. [PMID: 29327732 PMCID: PMC5782423 DOI: 10.14639/0392-100x-851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
Abstract
The discovery that miRNAs are frequently deregulated in tumours offers the opportunity to identify them as prognostic and diagnostic markers. The aim of this multicentric study is to identify a miRNA expression profile specific for laryngeal cancer. The secondary endpoint was to identify specific deregulated miRNAs with potential as prognostic biomarkers for tumour spread and nodal involvement, and specifically to search for a miRNA pattern pathognomonic for N+ laryngeal cancer and for N- tissues. We identified 20 miRNAs specific for laryngeal cancer and a tissue-specific miRNA signature that is predictive of lymph node metastases in laryngeal carcinoma characterised by 11 miRNAs, seven of which are overexpressed (upregulated) and four downregulated. These results allow the identification of a group of potential specific tumour biomarkers for laryngeal carcinoma that can be used to improve its diagnosis, particularly in early stages, as well as its prognosis.
Collapse
Affiliation(s)
- F Ricciardiello
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - R Capasso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - H Kawasaki
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| | - T Abate
- Ear Nose and Throat Unit, University of Naples Federico II, Naples, Italy
| | - F Oliva
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - A Lombardi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - G Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - D Ingrosso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - C A Leone
- Ear Nose and Throat Unit and Neck Surgery, Monaldi Hospital, Naples, Italy
| | - M Iengo
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
20
|
Zhao X, Zhou S, Wang D, He W, Li J, Zhang S. MicroRNA-205 is downregulated in hepatocellular carcinoma and inhibits cell growth and metastasis via directly targeting vascular endothelial growth factor A. Oncol Lett 2018; 16:2207-2214. [PMID: 30008920 DOI: 10.3892/ol.2018.8933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) are an emerging class of non-coding, endogenous and small RNA molecules that serve important functions in tumorigenesis and development. The present study investigated the expression, functions and molecular mechanism underlying miR-205 in hepatocellular carcinoma. miR-205 was downregulated in hepatocellular carcinoma tissues and cell lines. Ectopic miR-205 expression suppressed hepatocellular carcinoma cell proliferation, migration and invasion in vitro. In addition, vascular endothelial growth factor A (VEGFA) was identified as a functional downstream target of miR-205 in hepatocellular carcinoma. Furthermore, knockdown of VEGFA revealed the same functions with miR-205 overexpression in hepatocellular carcinoma cells. These results provided evidence that miR-205 served important functions in the inhibition of hepatocellular carcinoma cells growth and metastasis via directly targeting VEGFA, which indicated that miR-205 may have therapeutic value for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xuya Zhao
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Shi Zhou
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Dazhi Wang
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Wei He
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Junxiang Li
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| | - Shuai Zhang
- Department of Interventional Radiology, Guizhou Cancer Hospital, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550003, P.R. China
| |
Collapse
|
21
|
Song S, Yu W, Lin S, Zhang M, Wang T, Guo S, Wang H. LncRNA ADPGK-AS1 promotes pancreatic cancer progression through activating ZEB1-mediated epithelial-mesenchymal transition. Cancer Biol Ther 2018; 19:573-583. [PMID: 29667486 DOI: 10.1080/15384047.2018.1423912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study was conducted to investigate the effects of ADP dependent glucokinase antisense RNA 1 (ADPGK-AS1)/ miR-205-5p/ zinc finger E-box binding homeobox 1 (ZEB1) on PC cells. METHODS Differentially expressed lncRNAs and miRNAs in pancreatic cancer (PC) were identified by microarray analysis. In silico ceRNA analysis was conducted to find out the interactions among lncRNAs, miRNAs and mRNAs. Quantitative real-time PCR (qRT-PCR) was utilized to examine the expression of miR-205-5p and lncRNA ADPGK-AS1 in PC and non-cancerous cells. The association between miR-205-5p and ADPGK-AS1 as well as miR-205-5p and ZEB1 was determined by dual-luciferase reporter gene assay. After manipulating the expression of ADPGK-AS1, mir-205-5p and ZEB1 in PANC-1 and SW-1990 cells, cell proliferation, migration, invasion and apoptosis were respectively confirmed by cell counting kit-8 (CCK-8) assay, transwell assay and TUNEL. Western blot was applied to examine the expression of Epithelial-mesenchymal Transition-related proteins. In vivo experiment was conducted to further determine the effect of miR-205-5p/ZEB1 on tumorigenic ability of PC cells. RESULTS MiR-205-5p was low-expressed while ZEB1 and ADPGK-AS1 were high-expressed in PC tissues and cells compared with the normal. Dual-luciferase reporter gene assay proved that ADPGK-AS1 could directly target miR-205-5p and miR-205-5p could directly target ZEB1 3'UTR. The expression of MiR-205-5p was negatively correlated with proliferation, migration and invasion, and positively correlated with apoptosis rate of PC cells, while ZEB1 and ADPGK-AS1 had an inversed effect. Further in vitro and in vivo investigation indicated that epithelial-mesenchymal transition (EMT) could be restrained by miR-205-5p through targeting ZEB1. ADPGK-AS1 strongly promoted the tumorigenesis via downregulating miR-205-5p expression and induced the EMT process in vivo. CONCLUSION ADPGK-AS1 inhibited miR-205-5p and therefore promoted PC progression through activating ZEB1-induced EMT.
Collapse
Affiliation(s)
- Suzhen Song
- a Department of Internal Medicine , Shandong University of Traditional Chinese Medicine , Jinan , Shandong , China
| | - Weihua Yu
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Sen Lin
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Mingbao Zhang
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Teng Wang
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Shuang Guo
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| | - Hongbo Wang
- b Department of Digestive Disease , the Qilu Second Hospital of Shandong University , Jinan , Shandong , China
| |
Collapse
|
22
|
Dysregulated expression of microRNAs and mRNAs in pulmonary artery remodeling in ascites syndrome in broiler chickens. Oncotarget 2018; 8:1993-2007. [PMID: 27791988 PMCID: PMC5356772 DOI: 10.18632/oncotarget.12888] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
Ascites syndrome (AS), also known as pulmonary artery hypertension, remains a challenging disease that severely affects both humans and broiler chickens. Pulmonary artery remodeling presents a key step in the development of AS. In this study, we obtained pulmonary artery tissues from broilers with and without AS to perform miRNA sequencing analysis, miRNA-mRNA association analysis and pathological examinations. 29 significantly differentially expressed miRNAs were found both in known and novel miRNAs with 18 up-regulated and 11 down-regulated miRNAs. Their predicted potential targets were involved in a wide range of functional clusters as indicated via GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses. The upregulation of miR-155, miR-23b-3p, miR-146b-5p and miR-146b-3p were found closely associated with the pathogenesis of pulmonary artery remodeling in AS progression. The association analysis for the miRNAs-mRNAs showed that these 29 significantly differentially expressed miRNAs regulate 162 differentially expressed target genes. Among them, 20 miRNAs correlated with 18 predicted target genes that appear to be involved in pulmonary artery remodeling, mainly in three broad physiological processes: the hypoxia sensing response (HIF1α, NHE1, STAT5 and STAT3), endothelial permeability dysfunction (CD44, TRAF2, CDK2AP1, LZTFL1, JAZF1, PEBP1, LRP1B, RPS14 and THBS2) and inflammation (MEOX2, STAT5, STAT3, IRF8, MAP3K8, IL-1BETA and TNFRSF1B). Pathological pulmonary artery remodeling in the AS broilers was consistently observed in the present study. Taken together, the current analysis further illuminates the molecular mechanism of pulmonary artery remodeling underlying AS progression.
Collapse
|
23
|
Polysaccharides isolated from Hedyotis diffusa inhibits the aggressive phenotypes of laryngeal squamous carcinoma cells via inhibition of Bcl-2, MMP-2, and μPA. Gene 2017; 637:124-129. [DOI: 10.1016/j.gene.2017.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 01/06/2023]
|
24
|
Shuang Y, Li C, Zhou X, Huang Y, Zhang L. MicroRNA-195 inhibits growth and invasion of laryngeal carcinoma cells by directly targeting DCUN1D1. Oncol Rep 2017; 38:2155-2165. [PMID: 28791411 PMCID: PMC5652960 DOI: 10.3892/or.2017.5875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that regulate gene expression and are involved in cell biological processes. The aberrant expression of miR-195 has been found in various types of human cancer. However, the effect of miR-195 on the initiation and development of laryngeal squamous cell carcinoma (LSCC) remains to be elucidated. Accordingly, in the present study, we detected the expression level of miR-195 in the LSCC and the normal tissues and found that miR-195 were significantly downregulated in the LSCC tissues. Gain-of-function or loss-of-function studies including cell proliferation, wound healing assay, Transwell assay, cell cycle and apoptosis assays were performed to investigate the biological function of miR-195. Luciferase reporter assay and the rescue study confirmed that DCUN1D1 was a target of miR-195. Furthermore, DCUN1D1 expression levels were found to be upregulated in laryngeal tissues and to have a negative correlation with miR-195. We also found that both miR-195 and DCUN1D1 siRNAs can inhibit cell invasion possibly through downregulating Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) at the post-transcriptional level, which can be attenuated by restoring the expression of DCUN1D1. In summary, these data suggest that low expression of miR-195 contributes to the poor prognosis of LSCC and miR-195 regulates the proliferation and invasion ability of LSCC cells in vitro. miR-195 may suppress growth and invasion of LSCC cells possibly through targeting DCUN1D1, which would provide a candidate target for cancer therapy.
Collapse
Affiliation(s)
- Yu Shuang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Chao Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xuan Zhou
- Department of Otorhinolaryngology and Maxillofacial Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer; Tianjin 300211, P.R. China
| | - Yongwang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Lun Zhang
- Department of Otorhinolaryngology and Maxillofacial Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer; Tianjin 300211, P.R. China
| |
Collapse
|
25
|
Chen S, Jin L, Nie S, Han L, Lu N, Zhou Y. miR-205 Inhibits Neuroblastoma Growth by Targeting cAMP-Responsive Element-Binding Protein 1. Oncol Res 2017; 26:445-455. [PMID: 28653600 PMCID: PMC7844742 DOI: 10.3727/096504017x14974834436195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence indicates that microRNA-205 (miR-205) is involved in tumor initiation, development, and metastasis in various cancers. However, its functions in neuroblastoma (NB) remain largely unclear. Here we found that miR-205 was significantly downregulated in human NB tissue samples and cell lines. miR-205 expression was lower in poorly differentiated NB tissues and those of advanced International Neuroblastoma Staging System stage. In addition, restoration of miR-205 in NB cells suppressed proliferation, migration, and invasion and induced cell apoptosis in vitro, as well as impaired tumor growth in vivo. cAMP-responsive element-binding protein 1 (CREB1) was identified as a direct target gene of miR-205. Expression of an miR-205 mimic in NB cells significantly diminished expression of CREB1 and the CREB1 targets BCL-2 and MMP9. CREB1 was also found to be upregulated in human NB tissues, its expression being inversely correlated with miR-205 expression (r = −0.554, p = 0.003). Importantly, CREB1 upregulation partially rescued the inhibitory effects of miR-205 on NB cells. These findings suggest that miR-205 may function as a tumor suppressor in NB by targeting CREB1.
Collapse
Affiliation(s)
- Shu Chen
- Department of Thoracic Surgery, The Second Hospital of Jilin UniversityChangchunP.R. China
| | - Lianhua Jin
- Department of Pediatrics, The First Hospital of Jilin UniversityChangchunP.R. China
| | - Shu Nie
- Department of Pediatrics, The First Hospital of Jilin UniversityChangchunP.R. China
| | - Lizhi Han
- Department of Pediatrics, The First Hospital of Jilin UniversityChangchunP.R. China
| | - Na Lu
- Department of Pediatrics, The First Hospital of Jilin UniversityChangchunP.R. China
| | - Yan Zhou
- Department of Pediatrics, The First Hospital of Jilin UniversityChangchunP.R. China
| |
Collapse
|
26
|
Ji T, Zhang X, Li W. microRNA-205 acts as a tumor suppressor and directly targets YAP1 in glioma. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Su J, Lu E, Lu L, Zhang C. MiR-29a-3p suppresses cell proliferation in laryngocarcinoma by targeting prominin 1. FEBS Open Bio 2017; 7:645-651. [PMID: 28469977 PMCID: PMC5407896 DOI: 10.1002/2211-5463.12199] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are known to play a regulatory role in various cancers including laryngocarcinoma. MiR‐29a‐3p is a potential tumor‐suppressive miRNA, but its function in laryngocarcinoma is unknown. The purpose of this study was to investigate the roles of miR‐29a‐3p in laryngocarcinoma. Prominin1 (PROM1) was predicted as a target gene of miR‐29a‐3p and this was verified using a luciferase reporter assay. Transfection of miR‐29a‐3p into two laryngocarcinoma cell lines indicated that miR‐29a‐3p could decrease cell proliferation and enhance the chemotherapy response by targeting PROM1. PROM1 expression was up‐regulated in the laryngocarcinoma cells when miR‐29a‐3p was down‐regulated. We found miR‐29a‐3p expression levels were lower in laryngocarcinoma tissues than in control tissues. We also found that miR‐29a‐3p expression was negatively correlated with PROM1 expression in laryngocarcinoma tissues. The study demonstrates that miR‐29a‐3p suppresses cell proliferation in laryngocarcinoma by targeting PROM1.
Collapse
Affiliation(s)
- Jili Su
- Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Eryong Lu
- Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Lijuan Lu
- Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| | - Chao Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang China
| |
Collapse
|
28
|
Abstract
microRNAs (miRNAs) and DNA methylation are the 2 epigenetic modifications that have emerged in recent years as the most critical players in the regulation of gene expression. Compelling evidence has indicated the roles of miRNAs and DNA methylation in modulating cellular transformation and tumorigenesis. miRNAs act as negative regulators of gene expression and are involved in the regulation of both physiologic conditions and during diseases, such as cancer, inflammatory diseases, and psychiatric disorders, among others. Meanwhile, aberrant DNA methylation manifests in both global genome changes and in localized gene promoter changes, which influences the transcription of cancer genes. In this review, we described the mutual regulation of miRNAs and DNA methylation in human cancers. miRNAs regulate DNA methylation by targeting DNA methyltransferases or methylation-related proteins. On the other hand, both hyper- and hypo-methylation of miRNAs occur frequently in human cancers and represent a new level of complexity in gene regulation. Therefore, understanding the mechanisms underlying the mutual regulation of miRNAs and DNA methylation may provide helpful insights in the development of efficient therapeutic approaches.
Collapse
Affiliation(s)
- Sumei Wang
- a Department of Oncology , Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, Guangdong , P. R. China.,b Department of Systems Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Wanyin Wu
- a Department of Oncology , Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, Guangdong , P. R. China
| | - Francois X Claret
- b Department of Systems Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,c Experimental Therapeutics Academic Program and Cancer Biology Program , The University of Texas Graduate School of Biomedical Sciences at Houston , Houston , TX , USA
| |
Collapse
|
29
|
CCL20/CCR6 promotes cell proliferation and metastasis in laryngeal cancer by activating p38 pathway. Biomed Pharmacother 2017; 85:486-492. [DOI: 10.1016/j.biopha.2016.11.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 01/25/2023] Open
|
30
|
miR-375 and miR-205 Regulate the Invasion and Migration of Laryngeal Squamous Cell Carcinoma Synergistically via AKT-Mediated EMT. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9652789. [PMID: 28078305 PMCID: PMC5204095 DOI: 10.1155/2016/9652789] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Previous studies have found that miR-375 and miR-205 were significantly dysregulated in laryngeal squamous cell carcinoma, which contributed to the invasion and migration of LSCC. However, the mechanisms of miR-375 and miR-205 regulating the invasion and migration of LSCC remain unknown. qRT-PCR was performed in 40 pairs of tissue samples to investigate the expression of miR-375 and miR-205 in LSCC and paracarcinoma tissues. To investigate whether or not miR-375 and miR-205 regulated the invasion and migration of LSCC synergistically via AKT-mediated epithelial-mesenchymal transition, miR-375 mimic and miR-205 inhibitor were transfected into SNU899 cells and miR-375 inhibitor and miR-205 mimic were transfected into SNU899 cells, respectively, with or without AKT inhibitor. Then the expressions of miR-375 and miR-205 were validated by qRT-PCR, cell migration and invasion were determined by wound healing assay and transwell invasive assay, and western blot analysis was performed to detect the expression of related proteins. Our results showed that miR-375 and miR-205 regulated the invasion and migration of LSCC via AKT-mediated EMT synergistically. In conclusion, our findings provided not only new information about the molecular mechanism of miRNAs regulating invasion and migration of LSCC, but also a theoretical principle for potential targeting therapy of laryngeal squamous carcinoma.
Collapse
|
31
|
Enhanced miR-9 promotes laryngocarcinoma cell survival via down-regulating PTEN. Biomed Pharmacother 2016; 84:608-613. [PMID: 27694005 DOI: 10.1016/j.biopha.2016.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in gene regulation during laryngocarcinoma. MiR-9 is a potential oncomiR, but its function in laryngocarcinoma is not known. The aim of this study is to investigate the roles of miR-9 in laryngocarcinoma. We found miR-9 expression was higher in laryngocarcinoma tissues compared with their normal controls, so did the laryngocarcinoma cells. Cellular function of miR-9 indicated that miR-9 restoration in laryngocarcinoma cells could promote cell proliferation and metastasis. Phosphatase and tensin homolog (PTEN) was predicted as a target gene of miR-9 and verified using luciferase reporter assay. PTEN expression was down-regulated in the laryngocarcinoma cells with miR-9 overexpression. We also found that miR-9 expression was negatively associated with PTEN expression in laryngocarcinoma tissues.
Collapse
|