1
|
Martiniakova M, Kovacova V, Biro R, Mondockova V, Sarocka A, Penzes N, Folwarczna J, Omelka R. Relationships among osteoporosis, redox homeostasis, and alcohol addiction: Importance of the brain-bone axis. Biomed Pharmacother 2025; 187:118063. [PMID: 40253828 DOI: 10.1016/j.biopha.2025.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Overabundance of reactive oxygen species (oxidative distress) leads to redox homeostasis disturbance and is associated with many pathological conditions. Accumulating evidence suggests that oxidative distress may contribute to osteoporosis. This review thoroughly outlines the relationships among osteoporosis, redox homeostasis, and alcohol addiction, since these relations are not sufficiently known and subsequently summarized. The brain-bone axis plays a crucial role in alcohol-induced damage to the nervous and skeletal systems. Alterations in the nervous system can lead to osteoporosis because the central nervous system is involved in bone remodeling through various neural pathways. Conversely, as an endocrine organ, bone secretes a number of bone-derived factors (osteokines), which can influence brain function and behavior. As a result, osteoporosis is more common in individuals with neurological disorders, and sudden neurological events can rapidly increase the risk of osteoporosis. Excessive alcohol consumption is linked to many neurological complications, as well as osteoporosis, which are manifested by disrupted redox homeostasis, inflammation, neurodegeneration, inhibition of neurogenesis, decreased bone mineral density, impaired bone microarchitecture, altered mineral homeostasis, raising fracture risk, hormonal dysregulation, and altered gut microbiota composition. Compared to men, alcohol dependence has more negative consequences for women, including an increased risk of liver, cardiovascular, metabolic, mental disorders, and breast cancer. Abstinence has been demonstrated to improve bone and brain health in alcohol addiction. The discovery of the brain-bone axis may lead to the development of new therapeutic approaches for alcohol and other substance addictions. Further research is needed in this direction, as many questions remain unanswered.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| |
Collapse
|
2
|
Syed Hashim SA, Naina Mohamed I, Mohamed N. The Effects of Acute and Chronic Alcohol Administration and Withdrawal on Bone Microstructure, Mechanical Strength, and Remodeling Protein Expression and Their Relation to an Antioxidant and FGF23 In Vivo. Biomedicines 2024; 12:1515. [PMID: 39062088 PMCID: PMC11274769 DOI: 10.3390/biomedicines12071515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Alcohol's detrimental effects on bone health are well established, yet some literature suggests moderate consumption may offer benefits. With alcohol use on the rise, we investigate the impact of acute and chronic alcohol administration, along with withdrawal, on male Wistar rat femurs. We observed a transient cortical thickness increase with acute alcohol (AA) compared to chronic exposure (CA) but no significant changes in trabecular parameters or mechanical properties. High osteocalcin and osteopontin expression levels were noted in AA, alongside elevated RANKL expression. Conversely, CA showed low TRAP levels. FGF23 expression significantly increased during alcohol withdrawal (AW), while GPX decreased after chronic exposure but rose during withdrawal. Although mechanical strength changes were insignificant, biochemical shifts suggest alcohol exposure promotes bone resorption, reduces antioxidant protection, and potentially hampers active vitamin D and phosphate reabsorption via FGF23 upregulation.
Collapse
Affiliation(s)
- Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.S.H.); (I.N.M.)
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.S.H.); (I.N.M.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.S.H.); (I.N.M.)
| |
Collapse
|
3
|
Qian D, Zhou H, Fan P, Yu T, Patel A, O’Brien M, Wang Z, Lu S, Tong G, Shan Y, Wang L, Gao Y, Xiong Y, Zhang L, Wang X, Liu Y, Zhou S. A Traditional Chinese Medicine Plant Extract Prevents Alcohol-Induced Osteopenia. Front Pharmacol 2021; 12:754088. [PMID: 35002697 PMCID: PMC8730326 DOI: 10.3389/fphar.2021.754088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced in the treatment of bone diseases and alcoholism. Chronic excessive alcohol use results in alcohol-induced bone diseases, including osteopenia and osteoporosis, which increases fracture risk, deficient bone repair, and osteonecrosis. This preclinical study investigated the therapeutic effects of TCM herbal extracts in animal models of chronic excessive alcohol consumption-induced osteopenia. TCM herbal extracts (Jing extracts) were prepared from nine Chinese herbal medicines, a combinative herbal formula for antifatigue and immune regulation, including Astragalus, Cistanche deserticola, Dioscorea polystachya, Lycium barbarum, Epimedium, Cinnamomum cassia, Syzygium aromaticum, Angelica sinensis, and Curculigo orchioides. In this study, Balb/c male mice were orally administrated alcohol (3.2 g/kg/day) with/without TCM herbal extracts (0.125 g/kg, 0.25 g/kg, or 0.5 g/kg) by gavage. Our results showed that after 50 days of oral administration, TCM herbal extracts prevented alcohol-induced osteopenia demonstrated by μ-CT bone morphological analysis in young adults and middle-aged/old Balb/c male mice. Biochemical analysis demonstrated that chronic alcohol consumption inhibits bone formation and has a neutral impact on bone resorption, suggesting that TCM herbal extracts (Jing extracts) mitigate the alcohol-induced abnormal bone metabolism in middle-aged/old male mice. Protocatechuic acid, a natural phenolic acid in Jing extracts, mitigates in vivo alcohol-induced decline of alkaline phosphatase (ALP) gene expression in the bone marrow of Balb/c male mice and in vitro ALP activity in pre-osteoblast MC3T3-E1 cells. Our study suggests that TCM herbal extracts prevent chronic excessive alcohol consumption-induced osteopenia in male mice, implying that traditional medicinal plants have the therapeutic potential of preventing alcohol-induced bone diseases.
Collapse
Affiliation(s)
- Dongyang Qian
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopedics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhou
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Pan Fan
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Spine Center, Zhongda Hospital, Southeast University Medical School, Nanjing, China
| | - Tao Yu
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopedic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anish Patel
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Morgan O’Brien
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Zhe Wang
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Shiguang Lu
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Guoqiang Tong
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yimin Shan
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Lei Wang
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, China
| | - Yuan Xiong
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lily Zhang
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuancai Liu
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
- *Correspondence: Shuanhu Zhou, , ; Yuancai Liu,
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
- *Correspondence: Shuanhu Zhou, , ; Yuancai Liu,
| |
Collapse
|
4
|
The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. Hemasphere 2021; 5:e615. [PMID: 34291194 PMCID: PMC8288907 DOI: 10.1097/hs9.0000000000000615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone marrow (BM) at special microenvironments called “niches.” Niches are thought to extrinsically orchestrate the HSC fate including their quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemiological data concerning the influence of lifestyle factors on hematological disorders and malignancies.
Collapse
|
5
|
Cheng M, Tan B, Wu X, Liao F, Wang F, Huang Z. Gut Microbiota Is Involved in Alcohol-Induced Osteoporosis in Young and Old Rats Through Immune Regulation. Front Cell Infect Microbiol 2021; 11:636231. [PMID: 34336709 PMCID: PMC8317599 DOI: 10.3389/fcimb.2021.636231] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Long-term and excessive alcohol consumption are risk factors for osteoporosis. Excessive drinking can reduce bone density and also cause imbalance of gut microbiota. And gut microbiota can affect bone metabolism through various mechanisms, and the regulation of gut microbiota is closely related to age. However, the effects of gut microbiota on alcohol-induced osteoporosis at different ages are unclear. In this study, young and old rats were used to induce osteoporosis by long-term alcohol consumption, and alcohol metabolism, bone morphology, bone absorption and immune activity of rats were analyzed to determine the effects of alcohol on rats of different ages. In addition, changes of gut microbiota in rats were analyzed to explore the role of gut microbiota in alcohol-induced osteoporosis in rats of different ages. The results showed the ability of alcohol metabolism was only associated with age, but not with alcohol consumption. Long-term alcohol consumption resulted in the changes of bone metabolism regulating hormones, bone loss, activation of receptor activator of NF-κB ligand (RANKL) signaling and inflammatory response. And osteoporosis was more severe in old rats than young rats, suggesting that alcohol-induced osteoporosis is age-related. In addition, long-term drinking also affected the composition of gut microbiota in rats, with a significant increase in the proportion of pro-inflammatory microorganisms. Overall, this study found that long-term alcohol consumption induced osteoporosis and affected the composition of gut microbiota. And alcohol can activate T lymphocytes directly or indirectly by regulating the changes of gut microbiota to produce cytokines, and further activate osteoclasts. In addition, the osteoporosis was more severe in the old rats than young rats, which may be due to the higher diversity and stronger regulation ability of gut microbiota in young rats compared with old rats.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Rehabilitation, Jinniu District People's Hospital of Chengdu, Chengdu, China.,Department of Orthopedics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Bo Tan
- Department of Orthopedics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaojing Wu
- Department of Orthopedics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Feng Liao
- Department of Orthopedics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Fei Wang
- Department of Orthopedics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zuoyao Huang
- Department of Orthopaedics, Jinniu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
6
|
Wang X, Chen X, Lu L, Yu X. Alcoholism and Osteoimmunology. Curr Med Chem 2021; 28:1815-1828. [PMID: 32334496 DOI: 10.2174/1567201816666190514101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic consumption of alcohol has an adverse effect on the skeletal system, which may lead to osteoporosis, delayed fracture healing and osteonecrosis of the femoral head. Currently, the treatment is limited, therefore, there is an urgent need to determine the underline mechanism and develop a new treatment. It is well-known that normal bone remodeling relies on the balance between osteoclast-mediated bone resorption and - mediated bone formation. Various factors can destroy the balance, including the dysfunction of the immune system. In this review, we summarized the relevant research in the alcoholic osteopenia with a focus on the abnormal osteoimmunology signals. We provided a new theoretical basis for the prevention and treatment of the alcoholic bone. METHODS We searched PubMed for publications from 1 January 1980 to 1 February 2020 to identify relevant and recent literature, summarizing evaluation and the prospect of alcoholic osteopenia. Detailed search terms were 'alcohol', 'alcoholic osteoporosis', 'alcoholic osteopenia' 'immune', 'osteoimmunology', 'bone remodeling', 'osteoporosis treatment' and 'osteoporosis therapy'. RESULTS A total of 135 papers are included in the review. About 60 papers described the mechanisms of alcohol involved in bone remodeling. Some papers were focused on the pathogenesis of alcohol on bone through osteoimmune mechanisms. CONCLUSION There is a complex network of signals between alcohol and bone remodeling and intercellular communication of osteoimmune may be a potential mechanism for alcoholic bone. Studying the osteoimmune mechanism is critical for drug development specific to the alcoholic bone disorder.
Collapse
Affiliation(s)
- Xiuwen Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Martiniakova M, Sarocka A, Kovacova V, Kapusta E, Goc Z, Gren A, Formicki G, Omelka R. Antagonistic Impact of Acrylamide and Ethanol on Biochemical and Morphological Parameters Consistent with Bone Health in Mice. Animals (Basel) 2020; 10:ani10101835. [PMID: 33050161 PMCID: PMC7600557 DOI: 10.3390/ani10101835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Alcohol consumption, the drinking of beverages containing ethanol, represents a growing problem worldwide. Alcohol intake is often combined with an improper diet based on highly processed starch products that are rich in acrylamide. Both acrylamide and alcohol have a harmful impact on bone health. We previously demonstrated that adverse effects of ethanol on cortical bone structure were partly reduced by a relatively high dose of acrylamide in mice after one remodelling cycle. The present research was designated to reveal whether the antagonistic impact of both aforementioned toxins can also be achieved using a lower dose of acrylamide. According to our results, individual administrations of acrylamide and ethanol had adverse impacts on biochemical and morphological parameters consistent with bone health in mice. However, the most detrimental effects of ethanol were again alleviated by acrylamide at the dose used in this study. Abstract The aim of present study was to verify antagonistic effect of acrylamide (AA) and ethanol (Et) on bone quality parameters. Adult mice (n = 20) were segregated into four groups following 2 weeks administration of toxins: group E1, which received AA (20 mg/kg body weight daily); group E2, which received 15% Et (1.7 g 100% Et/kg body weight daily); group E12, which received simultaneously both toxins; and a control group. An insignificant impact of individual applications of AA, Et or their simultaneous supplementation on the total body weight of mice and the length and weight of their femoral bones was identified. In group E1, higher levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), a decreased level of glutathione (GSH) and elevated endocortical bone remodelling were determined. A significantly lower relative volume of cortical bone, bone mineral density (BMD), elevated endocortical bone remodelling and cortical porosity, higher levels of ALT, AST, lower values for total proteins (TP), GSH, alkaline phosphatase (ALP), calcium, and phosphorus were recorded in group E2. In the mice from group E12, the highest endocortical bone remodelling, decreased values for BMD, TP, GSH and ALP and increased levels of ALT and AST were found. Our findings confirmed the antagonistic impact of AA and Et at doses used in this study on biochemical and morphological parameters consistent with bone health in an animal model.
Collapse
Affiliation(s)
- Monika Martiniakova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
- Correspondence: (M.M.); (R.O.); Tel.: +421-376-408-718 (M.M.)
| | - Anna Sarocka
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
| | - Veronika Kovacova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
| | - Edyta Kapusta
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Zofia Goc
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Agnieszka Gren
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Grzegorz Formicki
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Radoslav Omelka
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
- Correspondence: (M.M.); (R.O.); Tel.: +421-376-408-718 (M.M.)
| |
Collapse
|
8
|
Frazão DR, Maia CDSF, Chemelo VDS, Monteiro D, Ferreira RDO, Bittencourt LO, Balbinot GDS, Collares FM, Rösing CK, Martins MD, Lima RR. Ethanol binge drinking exposure affects alveolar bone quality and aggravates bone loss in experimentally-induced periodontitis. PLoS One 2020; 15:e0236161. [PMID: 32730269 PMCID: PMC7392256 DOI: 10.1371/journal.pone.0236161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background Periodontitis is a multifactorial inflammatory disease of tooth supporting tissues caused by oral biofilms, influenced by environmental and genetic factors, among others. Ethanol consumption has been considered a factor that enhances alveolar bone loss, especially in high doses. The present study aims to investigate the changes promoted by ethanol binge drinking per se or associated with ligature-induced periodontal breakdown on alveolar bone loss. Materials and methods Thirty-two Wistar rats were randomly allocated into four groups: control (C), ethanol (3g/kg/day; 3 days On-4 days Off protocol by gavage for 28 days, EtOH), experimental periodontitis (EP) and experimental periodontitis plus ethanol administration (EP+EtOH). On day 14th, periodontitis was induced by ligatures that were placed around the lower first molars. On day 28th, the animals were euthanized and mandibles were submitted to stereomicroscopy for exposed root area analysis and micro-computed tomography (micro-CT) for the evaluation of alveolar bone loss and microstructural parameters. Results The results revealed that ligature-induced alveolar bone loss is aggravated by ethanol binge drinking compared to controls (1.06 ± 0.10 vs 0.77 ± 0.04; p<0.0001). In addition, binge drinking per se altered the alveolar bone quality and density demonstrating a reduction in trabecular thickness, trabecular number parameter and bone density percentual. Periodontal disorder plus ethanol binge drinking group also demonstrated reduction of the quality of bone measured by trabecular thickness. Conclusions In conclusion, intense and episodic ethanol intake decreased alveolar bone quality in all microstructural parameters analyzed which may be considered a modifying factor of periodontitis, intensifying the already installed disease.
Collapse
Affiliation(s)
- Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Inflammation and Behavior Pharmacology, Pharmacy Faculty, Institute of Health Science, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Victória dos Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Deiweson Monteiro
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Railson de Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Gabriela de Souza Balbinot
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cassiano Kuchenbecker Rösing
- Department of Periodontology, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
- * E-mail: ,
| |
Collapse
|
9
|
Sarocka A, Kovacova V, Omelka R, Grosskopf B, Kapusta E, Goc Z, Formicki G, Martiniakova M. Single and simultaneous effects of acrylamide and ethanol on bone microstructure of mice after one remodeling cycle. BMC Pharmacol Toxicol 2019; 20:38. [PMID: 31262364 PMCID: PMC6604442 DOI: 10.1186/s40360-019-0317-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
Background This study aimed to examine femoral bone microstructure of mice after single and simultaneous administration to acrylamide and ethanol since both substances are often consumed separately and/or together by humans. Interactive effects of these toxins were analysed after one remodeling cycle. Methods Twenty clinically healthy adult mice were randomly divided into four groups following 2 weeks administration of toxins: A group - mice were fed with acrylamide (40 mg/kg bw); E group - mice were ethanol-fed (15% ethanol); AE group - mice were simultaneously fed with both toxins, and a C group – control (without acrylamide and/or ethanol supplementation). Generally, 2D and 3D imaging methods were used to determine cortical and trabecular bone tissues microstructure. Biochemical analyses of plasma parameters were also realized using commercially available ELISA tests and spectrophotometrically. Results Single and simultaneous exposure to acrylamide and ethanol affected only cortical bone microstructure. No significant changes in trabecular bone morphometry were detected among all groups. In mice from the A group, increased endocortical remodeling associated with a higher level of serum calcium and vasoconstriction of primary osteon’s vascular canals (POVC) were identified. On the contrary, increased cortical porosity consistent with a decreased relative bone volume, bone mineral density (BMD) and lower levels of alkaline phosphatase (ALP), glutathione (GSH), calcium in plasma and also with vasodilation of POVC were observed in the E group. In the AE group, the highest density of secondary osteons associated with a lower BMD and decreased levels of ALP, GSH were documented. The parameters of POVC and Haversian canals approximated to the C group. In addition, single and simultaneous exposure to both toxins caused liver disease consistent with a higher values of alanine aminotransferase (ALT), aspartate aminotransferase (AST) in plasma of all experimental groups. Conclusions Single administration to acrylamide and ethanol had negative effects on cortical bone structure of mice after one remodeling cycle. However, we identified possible antagonistic impact of these toxins on the structure of the cortical bone.
Collapse
Affiliation(s)
- Anna Sarocka
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Birgit Grosskopf
- Institute of Zoology and Anthropology, Georg-August University, 37 073, Göttingen, Germany.
| | - Edyta Kapusta
- Department of Animal Physiology and Toxicology, Pedagogical University of Cracow, 30 084, Cracow, Poland
| | - Zofia Goc
- Department of Animal Physiology and Toxicology, Pedagogical University of Cracow, 30 084, Cracow, Poland
| | - Grzegorz Formicki
- Department of Animal Physiology and Toxicology, Pedagogical University of Cracow, 30 084, Cracow, Poland
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia
| |
Collapse
|