1
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
2
|
Wanarska M, Pawlak-Szukalska A, Rosińska A, Kozłowska-Tylingo K. Heterologous Production, Purification and Characterization of Two Cold-Active β-d-Galactosidases with Transglycosylation Activity from the Psychrotolerant Arctic Bacterium Arthrobacter sp. S3* Isolated from Spitsbergen Island Soil. Int J Mol Sci 2024; 25:13354. [PMID: 39769117 PMCID: PMC11677235 DOI: 10.3390/ijms252413354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cold-adapted microorganisms possess cold-active enzymes with potential applications in different industries and research areas. In this study, two genes encoding β-d-galactosidases belonging to Glycoside Hydrolase families 2 and 42 from the psychrotolerant Arctic bacterium Arthrobacter sp. S3* were cloned, expressed in Escherichia coli and Komagataella phaffii, purified and characterized. The GH2 β-d-galactosidase is a tetramer with a molecular weight of 450 kDa, while the GH42 β-d-galactosidase is a 233 kDa trimer. The Bgal2 was optimally active at pH 7.5 and 22 °C and maintained 57% of maximum activity at 10 °C, whereas the Bgal42 was optimally active at pH 7.0 and 40 °C and exhibited 44% of maximum activity at 10 °C. Both enzymes hydrolyzed lactose and showed transglycosylation activity. We also found that 2 U/mL of the Bgal2 hydrolyzed 85% of lactose in milk within 10 h at 10 °C. The enzyme synthesized galactooligosaccharides, heterooligosaccharides, alkyl galactopyranosides and glycosylated salicin. The Bgal42 synthesized galactooligosaccharides and 20 U/mL of the enzyme hydrolyzed 72% of milk lactose within 24 h at 10 °C. The properties of Arthrobacter sp. S3* Bgal2 make it a candidate for lactose hydrolysis in the dairy industry and a promising tool for the glycosylation of various acceptors in the biomedical sector.
Collapse
Affiliation(s)
- Marta Wanarska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.P.-S.); (A.R.)
| | - Anna Pawlak-Szukalska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.P.-S.); (A.R.)
| | - Aleksandra Rosińska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.P.-S.); (A.R.)
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
3
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Ferro LE, Crowley LN, Bittinger K, Friedman ES, Decker JE, Russel K, Katz S, Kim JK, Trabulsi J. Effects of prebiotics, probiotics, and synbiotics on the infant gut microbiota and other health outcomes: A systematic review. Crit Rev Food Sci Nutr 2022; 63:5620-5642. [PMID: 37667870 PMCID: PMC10480560 DOI: 10.1080/10408398.2021.2022595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The primary aim of this review was to systematically evaluate the literature regarding the effect of pre-, pro-, or synbiotic supplementation in infant formula on the gastrointestinal microbiota. The Cochrane methodology for systematic reviews of randomized controlled trials (RCTs) was employed. Five databases were searched and 32 RCTs (2010-2021) were identified for inclusion: 20 prebiotic, 6 probiotic, and 6 synbiotic. The methods utilized to evaluate gastrointestinal microbiota varied across studies and included colony plating, fluorescence in situ hybridization, quantitative real-time polymerase chain reaction, or tagged sequencing of the 16S rRNA gene. Fecal Bifidobacterium levels increased with supplementation of prebiotics and synbiotics but not with probiotics alone. Probiotic and synbiotic supplementation generally increased fecal levels of the bacterial strain supplemented in the formula. Across all pre-, pro-, and synbiotic-supplemented formulas, results were inconsistent regarding fecal Clostridium levels. Fecal pH was lower with some prebiotic and synbiotic supplementation; however, no difference was seen with probiotics. Softer stools were often reported in infants supplemented with pre- and synbiotics, yet results were inconsistent for probiotic-supplemented formula. Limited evidence demonstrates that pre- and synbiotic supplementation increases fecal Bifidobacterium levels. Future studies utilizing comprehensive methodologies and additional studies in probiotics and synbiotics are warranted.
Collapse
Affiliation(s)
- Lynn E. Ferro
- Department of Behavioral Health and Nutrition, University of Delaware, STAR Tower, 100 Discovery Blvd., Newark, DE 19713, USA
| | - Liana N. Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, STAR Tower, 100 Discovery Blvd., Newark, DE 19713, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica E. Decker
- Department of Behavioral Health and Nutrition, University of Delaware, STAR Tower, 100 Discovery Blvd., Newark, DE 19713, USA
| | - Kathryn Russel
- Metropolitan Area Neighborhood Nutrition Alliance, 420 N 20 Street, Philadelphia, PA 19130, USA
| | - Sarah Katz
- Reference and Instructional Services Department, University of Delaware, 181 S. College Avenue, Newark, DE 19717, USA
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, STAR Tower, 100 Discovery Blvd., Newark, DE 19713, USA
| | - Jillian Trabulsi
- Department of Behavioral Health and Nutrition, University of Delaware, STAR Tower, 100 Discovery Blvd., Newark, DE 19713, USA
| |
Collapse
|
5
|
Imdad A, Rehman F, Davis E, Ranjit D, Surin GSS, Attia SL, Lawler S, Smith AA, Bhutta ZA. Effects of neonatal nutrition interventions on neonatal mortality and child health and development outcomes: A systematic review. CAMPBELL SYSTEMATIC REVIEWS 2021; 17:e1141. [PMID: 37133295 PMCID: PMC8356300 DOI: 10.1002/cl2.1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background The last two decades have seen a significant decrease in mortality for children <5 years of age in low and middle-income countries (LMICs); however, neonatal (age, 0-28 days) mortality has not decreased at the same rate. We assessed three neonatal nutritional interventions that have the potential of reducing morbidity and mortality during infancy in LMICs. Objectives To determine the efficacy and effectiveness of synthetic vitamin A, dextrose oral gel, and probiotic supplementation during the neonatal period. Search Methods We conducted electronic searches for relevant studies on the following databases: PubMed, CINAHL, LILACS, SCOPUS, and CENTRAL, Cochrane Central Register for Controlled Trials, up to November 27, 2019. Selection Criteria We aimed to include randomized and quasi-experimental studies. The target population was neonates in LMICs. The interventions included synthetic vitamin A supplementation, oral dextrose gel supplementation, and probiotic supplementation during the neonatal period. We included studies from the community and hospital settings irrespective of the gestational age or birth weight of the neonate. Data Collection and Analysis Two authors screened the titles and extracted the data from selected studies. The risk of bias (ROB) in the included studies was assessed according to the Cochrane Handbook of Systematic Reviews. The primary outcome was all-cause mortality. The secondary outcomes were neonatal sepsis, necrotizing enterocolitis (NEC), prevention and treatment of neonatal hypoglycaemia, adverse events, and neurodevelopmental outcomes. Data were meta-analyzed by random effect models to obtain relative risk (RR) and 95% confidence interval (CI) for dichotomous outcomes and mean difference with 95% CI for continuous outcomes. The overall rating of evidence was determined by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Main Results Sixteen randomized studies (total participants 169,366) assessed the effect of vitamin A supplementation during the neonatal period. All studies were conducted in low- and middle-income (LMIC) countries. Thirteen studies were conducted in the community setting and three studies were conducted in the hospital setting, specifically in neonatal intensive care units. Studies were conducted in 10 different countries including India (four studies), Guinea-Bissau (three studies), Bangladesh (two studies), and one study each in China, Ghana, Indonesia, Nepal, Pakistan, Tanzania, and Zimbabwe. The overall ROB was low in most of the included studies for neonatal vitamin A supplementation. The pooled results from the community based randomized studies showed that there was no significant difference in all-cause mortality in the vitamin A (intervention) group compared to controls at 1 month (RR, 0.99; 95% CI, 0.90-1.08; six studies with 126,548 participants, statistical heterogeneity I 2 0%, funnel plot symmetrical, grade rating high), 6 months (RR, 0.98; 95% CI, 0.89-1.07; 12 studies with 154,940 participants, statistical heterogeneity I 2 43%, funnel plot symmetrical, GRADE quality high) and 12 months of age (RR, 1.04; 95% CI, 0.94-1.14; eight studies with 118,376 participants, statistical heterogeneity I 2 46%, funnel plot symmetrical, GRADE quality high). Neonatal vitamin A supplementation increased the incidence of bulging fontanelle by 53% compared to control (RR, 1.53; 95% CI, 1.12-2.09; six studies with 100,256 participants, statistical heterogeneity I 2 65%, funnel plot symmetrical, GRADE quality high). We did not identify any experimental study that addressed the use of dextrose gel for the prevention and/or treatment of neonatal hypoglycaemia in LMIC. Thirty-three studies assessed the effect of probiotic supplementation during the neonatal period (total participants 11,595; probiotics: 5854 and controls: 5741). All of the included studies were conducted in LMIC and were randomized. Most of the studies were done in the hospital setting and included participants who were preterm (born < 37 weeks gestation) and/or low birth weight (<2500 g birth weight). Studies were conducted in 13 different countries with 10 studies conducted in India, six studies in Turkey, three studies each in China and Iran, two each in Mexico and South Africa, and one each in Bangladesh, Brazil, Colombia, Indonesia, Nepal, Pakistan, and Thailand. Three studies were at high ROB due to lack of appropriate randomization sequence or allocation concealment. Combined data from 25 studies showed that probiotic supplementation reduced all-cause mortality by 20% compared to controls (RR, 0.80; 95% CI, 0.66-0.96; total number of participants 10,998, number needed to treat 100, statistical heterogeneity I 2 0%, funnel plot symmetrical, GRADE quality high). Twenty-nine studies reported the effect of probiotics on the incidence of NEC, and the combined results showed a relative reduction of 54% in the intervention group compared to controls (RR, 0.46; 95% CI, 0.35-0.59; total number of participants 5574, number needed to treat 17, statistical heterogeneity I 2 24%, funnel plot symmetrical, GRADE quality high). Twenty-one studies assessed the effect of probiotic supplementation during the neonatal period on neonatal sepsis, and the combined results showed a relative reduction of 22% in the intervention group compared to controls (RR, 0.78; 95% CI, 0.70-0.86; total number of participants 9105, number needed to treat 14, statistical heterogeneity I 2 23%, funnel plot symmetrical, GRADE quality high). Authors' Conclusions Vitamin A supplementation during the neonatal period does not reduce all-cause neonatal or infant mortality in LMICs in the community setting. However, neonatal vitamin A supplementation increases the risk of Bulging Fontanelle. No experimental or quasi-experimental studies were available from LMICs to assess the effect of dextrose gel supplementation for the prevention or treatment of neonatal hypoglycaemia. Probiotic supplementation during the neonatal period seems to reduce all-cause mortality, NEC, and sepsis in babies born with low birth weight and/or preterm in the hospital setting. There was clinical heterogeneity in the use of probiotics, and we could not recommend any single strain of probiotics for wider use based on these results. There was a lack of studies on probiotic supplementation in the community setting. More research is needed to assess the effect of probiotics administered to neonates in-home/community setting in LMICs.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and NutritionSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Faseeha Rehman
- Department of MedicineRaritan Bay Medical CenterPerth AmboyNew YorkUSA
| | - Evans Davis
- Roswell Park Comprehensive Cancer Center, Department of Cancer Prevention and ControlUniversity of BuffaloBuffaloNew YorkUSA
| | - Deepika Ranjit
- College of MedicineSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | | | - Suzanna L. Attia
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Sarah Lawler
- Health Science LibrarySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Abigail A. Smith
- Health Science LibraraySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Zulfiqar A. Bhutta
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| |
Collapse
|
6
|
Ratsika A, Codagnone MC, O’Mahony S, Stanton C, Cryan JF. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients 2021; 13:423. [PMID: 33525617 PMCID: PMC7912058 DOI: 10.3390/nu13020423] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
Microbes colonize the human body during the first moments of life and coexist with the host throughout the lifespan. Intestinal microbiota and their metabolites aid in the programming of important bodily systems such as the immune and the central nervous system during critical temporal windows of development, with possible structural and functional implications throughout the lifespan. These critical developmental windows perinatally (during the first 1000 days) are susceptible timepoints for insults that can endure long lasting effects on the microbiota-gut-brain axis. Environmental and parental factors like host genetics, mental health, nutrition, delivery and feeding mode, exposure to antibiotics, immune activation and microbiota composition antenatally, are all factors that are able to modulate the microbiota composition of mother and infant and may thus regulate important bodily functions. Among all these factors, early life nutrition plays a pivotal role in perinatal programming and in the modulation of offspring microbiota from birth throughout lifespan. This review aims to present current data on the impact of early life nutrition and microbiota priming of important bodily systems and all the factors influencing the microbial coexistence with the host during early life development.
Collapse
Affiliation(s)
- Anna Ratsika
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Martin C. Codagnone
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Siobhain O’Mahony
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy P61 C996, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
7
|
Wu Y, Zhang X, Han D, Ye H, Tao S, Pi Y, Zhao J, Chen L, Wang J. Short Administration of Combined Prebiotics Improved Microbial Colonization, Gut Barrier, and Growth Performance of Neonatal Piglets. ACS OMEGA 2020; 5:20506-20516. [PMID: 32832803 PMCID: PMC7439367 DOI: 10.1021/acsomega.0c02667] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
This study was conducted to investigate the effects of short administration with the combination (GMF) of galactooligosaccharides (GOS), milk fat globule membrane (MFGM), and fructooligosaccharides (FOS) on microbiota, intestinal barriers, and growth performance of neonatal piglets. Sixteen newborn piglets were divided into two groups: GMF group and CON group; GMF solution (5 mL) and saline (5 mL) were, respectively, administered to piglets in the GMF group and CON group once a day during the first week after birth. The results showed that GMF administration improved the growth performance of neonatal piglets on day 8 and day 21, coupled with the enriched genus Lactobacillus on day 8 and the increased genera norank_f__Muribaculaceae, Christensenellaceae_R-7_group, Enterococcus, and Romboutsia on day 21. Additionally, GMF administration increased luminal acetate and propionate levels, upregulated the gene expressions of intestinal tight junctions (Occludin, Claudins, and ZO-1), mucins (Mucin-1, Mucin-2, Mucin-4, and Mucin-20), and cytokines (TNF-α, IL-1β, and IL-22) while decreased the plasma diamine oxidase (DAO) level on day 21. The correlation analysis showed a positive relationship between the colonized beneficial microbiota and the modified intestinal barrier genes. In conclusion, the first week administration of GMF facilitated the colonization of beneficial bacteria, promoted intestinal development by enhancing microbiota-associated intestinal barrier functions, and improved the growth performance of the piglets during the whole neonatal period. Our findings provide guidelines for combined prebiotics application in modulating the microbial colonization and intestinal development of the neonates.
Collapse
Affiliation(s)
- Yujun Wu
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Xiangyu Zhang
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Hao Ye
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Shiyu Tao
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Yu Pi
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| | - Junying Zhao
- National
Engineering Center of Dairy for Early Life Health, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Lijun Chen
- National
Engineering Center of Dairy for Early Life Health, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Junjun Wang
- State
Key Laboratory of Animal Nutrition, College of Animal Science and
Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Rutkiewicz M, Wanarska M, Bujacz A. Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB. Int J Mol Sci 2020; 21:E5354. [PMID: 32731412 PMCID: PMC7432029 DOI: 10.3390/ijms21155354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
β-Galactosidase from Arthrobacter sp. 32cB (ArthβDG) is a cold-adapted enzyme able to catalyze hydrolysis of β-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants of ArthβDG: D207A and E517Q were designed to determine the significance of specific residues and to enable formation of complexes with lactulose and sucrose and to shed light onto the structural basis of the transglycosylation reaction. The catalytic assays proved loss of function mutation E517 into glutamine and a significant drop of activity for mutation of D207 into alanine. Solving crystal structures of two new mutants, and new complex structures of previously presented mutant E441Q enables description of introduced changes within active site of enzyme and determining the importance of mutated residues for active site size and character. Furthermore, usage of mutants with diminished and abolished enzymatic activity enabled solving six complex structures with galactose, lactulose or sucrose bounds. As a result, not only the galactose binding sites were mapped on the enzyme's surface but also the mode of lactulose, product of transglycosylation reaction, and binding within the enzyme's active site were determined and the glucopyranose binding site in the distal of active site was discovered. The latter two especially show structural details of transglycosylation, providing valuable information that may be used for engineering of ArthβDG or other analogous galactosidases belonging to GH2 family.
Collapse
Affiliation(s)
- Maria Rutkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
- Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| |
Collapse
|
9
|
Rutkiewicz M, Bujacz A, Wanarska M, Wierzbicka-Wos A, Cieslinski H. Active Site Architecture and Reaction Mechanism Determination of Cold Adapted β-d-galactosidase from Arthrobacter sp. 32cB. Int J Mol Sci 2019; 20:E4301. [PMID: 31484304 PMCID: PMC6747455 DOI: 10.3390/ijms20174301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
ArthβDG is a dimeric, cold-adapted β-d-galactosidase that exhibits high hydrolytic and transglycosylation activity. A series of crystal structures of its wild form, as well as its ArthβDG_E441Q mutein complexes with ligands were obtained in order to describe the mode of its action. The ArthβDG_E441Q mutein is an inactive form of the enzyme designed to enable observation of enzyme interaction with its substrate. The resulting three-dimensional structures of complexes: ArthβDG_E441Q/LACs and ArthβDG/IPTG (ligand bound in shallow mode) and structures of complexes ArthβDG_E441Q/LACd, ArthβDG/ONPG (ligands bound in deep mode), and galactose ArthβDG/GAL and their analysis enabled structural characterization of the hydrolysis reaction mechanism. Furthermore, comparative analysis with mesophilic analogs revealed the most striking differences in catalysis mechanisms. The key role in substrate transfer from shallow to deep binding mode involves rotation of the F581 side chain. It is worth noting that the 10-aa loop restricting access to the active site in mesophilic GH2 βDGs, in ArthβDG is moved outward. This facilitates access of substrate to active site. Such a permanent exposure of the entrance to the active site may be a key factor for improved turnover rate of the cold adapted enzyme and thus a structural feature related to its cold adaptation.
Collapse
Affiliation(s)
- Maria Rutkiewicz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Anna Bujacz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Anna Wierzbicka-Wos
- Department of Microbiology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Hubert Cieslinski
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
10
|
Łukasik J, Salminen S, Szajewska H. Rapid review shows that probiotics and fermented infant formulas do not cause d-lactic acidosis in healthy children. Acta Paediatr 2018; 107:1322-1326. [PMID: 29603358 DOI: 10.1111/apa.14338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/06/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
AIM Extensive ongoing research on probiotics and infant formulas raises a number of safety questions. One concern is the potential influence of d-lactic acid-containing preparations on the health of infants and children. The aim of this review was to summarise the available knowledge on the ingestion of d-lactic acid-producing bacteria, acidified infant formulas and fermented infant formulas as a potential cause of paediatric d-lactic acidosis. METHODS A Medline database search was performed in July 2017, with no restrictions on the language, article type or publication date. The 1715 search results were screened for clinical trials, review articles, case series and case reports of relevance to the topic. RESULTS We identified five randomised controlled trials from 2005 to 2017 covering 544 healthy infants and some case reports and experimental studies. No clinically relevant adverse effects of d-lactic acid-producing probiotics and fermented infant formulas were described in healthy children. However, a harmless, subclinical accumulation of d-lactate was theoretically possible. The only known cases of paediatric d-lactic acidosis occurred in patients with short bowel syndrome or, historically, in infants fed with acidified formulas. CONCLUSION Our main finding was that probiotics and fermented formulas did not cause d-lactic acidosis in healthy children.
Collapse
Affiliation(s)
- J Łukasik
- Department of Paediatrics; The Medical University of Warsaw; Warsaw Poland
| | - S Salminen
- Functional Foods Forum; University of Turku; Turku Finland
| | - H Szajewska
- Department of Paediatrics; The Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
11
|
Abstract
Early nutrition may have long-lasting metabolic impacts in adulthood. Even though breast milk is the gold standard, most infants are at least partly formula-fed. Despite obvious improvements, infant formulas remain perfectible to reduce the gap between breastfed and formula-fed infants. Improvements such as reducing the protein content, modulating the lipid matrix and adding prebiotics, probiotics and synbiotics, are discussed regarding metabolic health. Numerous questions remain to be answered on how impacting the infant formula composition may modulate the host metabolism and exert long-term benefits. Interactions between early nutrition (composition of human milk and infant formula) and the gut microbiota profile, as well as mechanisms connecting gut microbiota to metabolic health, are highlighted. Gut microbiota stands as a key actor in the nutritional programming but additional well-designed longitudinal human studies are needed.
Collapse
|
12
|
In Situ Random Microseeding and Streak Seeding Used for Growth of Crystals of Cold-Adapted β-d-Galactosidases: Crystal Structure of βDG from Arthrobacter sp. 32cB. CRYSTALS 2018. [DOI: 10.3390/cryst8010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Manzano S, De Andrés J, Castro I, Rodríguez J, Jiménez E, Espinosa-Martos I. Safety and tolerance of three probiotic strains in healthy infants: a multi-centre randomized, double-blind, placebo-controlled trial. Benef Microbes 2017; 8:569-578. [DOI: 10.3920/bm2017.0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Some strains of species belonging to the genera Bifidobacterium and Lactobacillus are used in order to maintain health. Although these organisms have a long record of safe use, it is important to assess their safety and tolerance in potentially vulnerable populations, such as infants. The objective of this study was to evaluate the safety and tolerance of three probiotic strains (Bifidobacterium longum subsp. infantis R0033, Bifidobacterium bifidum R0071 and Lactobacillus helveticus R0052) in healthy infants aged 3 to 12 months. A multi-centre randomized, double-blind, placebo-controlled intervention study with 221 healthy full-term infants was conducted. Infants received either a placebo or one of the 3 probiotic strains (3×109 cfu) daily during an 8 week intervention period. Growth (weight, height and head circumference), adverse events (AEs)/serious adverse events (SAEs), concentrations of D-lactic acid in urine samples, characteristics of the stools and use of medication were collected for safety evaluation. All 4 groups were homogeneous with respect to age, gender, feeding type, ethnicity, height, weight and head circumference at the start of the study. The results showed that changes in growth (weight, height and head circumference) were equivalent in all 4 groups. No SAEs were reported. Total number of AEs recorded was equivalent in all groups. Thus, the use of B. infantis R0033, L. helveticus R0052 and B. bifidum R0071 in infancy is safe, and well tolerated.
Collapse
Affiliation(s)
- S. Manzano
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
- Probisearch S.L.U., C/ Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | - J. De Andrés
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
| | - I. Castro
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
| | - J.M. Rodríguez
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
- Probisearch S.L.U., C/ Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | - E. Jiménez
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
- Probisearch S.L.U., C/ Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| | - I. Espinosa-Martos
- Dpto. Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Av. Puerta de hierro s/n, 28040 Madrid, Spain
- Probisearch S.L.U., C/ Santiago Grisolía, 2, 28760 Tres Cantos, Spain
| |
Collapse
|