1
|
Wang H, Jin H, Wang J, Wang X, Li X, Yan J, Yang Y. Dehalogenimonas Strain W from Estuarine Sediments Dechlorinates 1,2-Dichloroethane under Elevated Salinity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:779-790. [PMID: 39723812 DOI: 10.1021/acs.est.4c08999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Organohalide-respiring bacteria (OHRB) have been found in various environments and play an indispensable role in the biogeochemical cycling and detoxification of halogenated organic compounds (HOCs). Currently, few ORHB have been reported to perform reductive dechlorination under high salinity conditions, indicating a knowledge gap on the diversity of OHRB and the survival strategy of OHRB in saline environments (e.g., estuarine, marine). This study reports the characterization of an enrichment culture dominated by a new Dehalogenimonas population strain W derived from estuarine sediments, which demonstrates the capability to dechlorinate 1,2-dichloroethane (1,2-DCA) to ethene under elevated salinity (≥5.1% NaCl, w/v). Metagenomic and proteomic analyses revealed that the distinctive high-salinity dechlorination of strain W is primarily attributed to a putative reductive dehalogenase (RDase) DdeA, which shares >91.4% amino acid identity with the dihaloeliminating RDase DcpA from other Dehalogenimonas strains. Additionally, ectoine biosynthesis enzymes (EctABC) contribute to the strain's salt tolerance. These findings underscore the potential of OHRB, particularly Dehalogenimonas, to detoxify HOCs in high-salinity environments, such as estuarine and marine ecosystems, by employing compatible solutes as an adaptive mechanism.
Collapse
Affiliation(s)
- Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Xin Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
2
|
Wang H, Zhang L, Cui H, Ma X, Li Z, Liang B, Wang AJ. Mechanisms linking triclocarban biotransformation to functional response and antimicrobial resistome evolution in wastewater treatment systems. WATER RESEARCH 2024; 260:121909. [PMID: 38878310 DOI: 10.1016/j.watres.2024.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Evaluating the role of antimicrobials biotransformation in the regulation of metabolic functions and antimicrobial resistance evolution in wastewater biotreatment systems is crucial to ensuring water security. However, the associated mechanisms remain poorly understood. Here, we investigate triclocarban (TCC, one of the typical antimicrobials) biotransformation mechanisms and the dynamic evolution of systemic function disturbance and antimicrobial resistance risk in a complex anaerobic hydrolytic acidification (HA)-anoxic (ANO)/oxic (O) process. We mined key functional genes involved in the TCC upstream (reductive dechlorination and amide bonds hydrolysis) and downstream (chloroanilines catabolism) biotransformation pathways by metagenomic sequencing. Acute and chronic stress of TCC inhibit the production of volatile fatty acids (VFAs), NH4+ assimilation, and nitrification. The biotransformation of TCC via a single pathway cannot effectively relieve the inhibition of metabolic functions (e.g., carbon and nitrogen transformation and cycling) and enrichment of antimicrobial resistance genes (ARGs). Importantly, the coexistence of TCC reductive dechlorination and hydrolysis pathways and subsequent ring-opening catabolism play a critical role for stabilization of systemic metabolic functions and partial control of antimicrobial resistance risk. This study provides new insights into the mechanisms linking TCC biotransformation to the dynamic evolution of systemic functions and risks, and highlights critical regulatory information for enhanced control of TCC risks in complex biotreatment systems.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
3
|
Cui Y, Li X, Yan J, Lv Y, Jin H, Wang J, Chen G, Kara-Murdoch F, Yang Y, Löffler FE. Dehalogenimonas etheniformans sp. nov., a formate-oxidizing, organohalide-respiring bacterium isolated from grape pomace. Int J Syst Evol Microbiol 2023; 73. [PMID: 37185088 DOI: 10.1099/ijsem.0.005881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
A strictly anaerobic, organohalide-respiring bacterium, designated strain GPT, was characterized using a polyphasic approach. GPT is Gram-stain-negative, non-spore-forming and non-motile. Cells are irregular cocci ranging between 0.6 and 0.9 µm in diameter. GPT couples growth with the reductive dechlorination of 1,2-dichloroethane, vinyl chloride and all polychlorinated ethenes, except tetrachloroethene, yielding ethene and inorganic chloride as dechlorination end products. H2 and formate serve as electron donors for organohalide respiration in the presence of acetate as carbon source. Major cellular fatty acids include C16 : 0, C18 : 1ω9c, C16 : 1, C14 : 0 and C18 : 0. On the basis of 16S rRNA gene phylogeny, GPT is most closely related to Dehalogenimonas formicexedens NSZ-14T and Dehalogenimonas alkenigignens IP3-3T with 99.8 and 97.4 % sequence identities, respectively. Genome-wide pairwise comparisons based on average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization do not support the inclusion of GPT in previously described species of the genus Dehalogenimonas with validly published names. On the basis of phylogenetic, physiological and phenotypic traits, GPT represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas etheniformans sp. nov. is proposed. The type strain is GPT (= JCM 39172T = CGMCC 1.17861T).
Collapse
Affiliation(s)
- Yiru Cui
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Yan Lv
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Fadime Kara-Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Present address: Battelle Memorial Institute, Columbus, OH 43201, USA
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
4
|
Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, " Candidatus Dehalogenimonas etheniformans". Appl Environ Microbiol 2022; 88:e0044322. [PMID: 35674428 DOI: 10.1128/aem.00443-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dehalococcoides mccartyi strains harboring vinyl chloride (VC) reductive dehalogenase (RDase) genes are keystone bacteria for VC detoxification in groundwater aquifers, and bioremediation monitoring regimens focus on D. mccartyi biomarkers. We isolated a novel anaerobic bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of respiratory dechlorination of VC to ethene. This bacterium couples formate and hydrogen (H2) oxidation to the reduction of trichloro-ethene (TCE), all dichloroethene (DCE) isomers, and VC with acetate as the carbon source. Cultures that received formate and H2 consumed the two electron donors concomitantly at similar rates. A 16S rRNA gene-targeted quantitative PCR (qPCR) assay measured growth yields of (1.2 ± 0.2) × 108 and (1.9 ± 0.2) × 108 cells per μmol of VC dechlorinated in cultures with H2 or formate as electron donor, respectively. About 1.5-fold higher cell numbers were measured with qPCR targeting cerA, a single-copy gene encoding a putative VC RDase. A VC dechlorination rate of 215 ± 40 μmol L-1 day-1 was measured at 30°C, with about 25% of this activity occurring at 15°C. Increasing NaCl concentrations progressively impacted VC dechlorination rates, and dechlorination ceased at 15 g NaCl L-1. During growth with TCE, all DCE isomers were intermediates. Tetrachloroethene was not dechlorinated and inhibited dechlorination of other chlorinated ethenes. Carbon monoxide formed and accumulated as a metabolic by-product in dechlorinating cultures and impacted reductive dechlorination activity. The isolation of a new Dehalogenimonas species able to effectively dechlorinate toxic chlorinated ethenes to benign ethene expands our understanding of the reductive dechlorination process, with implications for bioremediation and environmental monitoring. IMPORTANCE Chlorinated ethenes are risk drivers at many contaminated sites, and current bioremediation efforts focus on organohalide-respiring Dehalococcoides mccartyi strains to achieve detoxification. We isolated and characterized the first non-Dehalococcoides bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of metabolic reductive dechlorination of TCE, all DCE isomers, and VC to environmentally benign ethene. In addition to hydrogen, the new isolate utilizes formate as electron donor for reductive dechlorination, providing opportunities for more effective electron donor delivery to the contaminated subsurface. The discovery that a broader microbial diversity can achieve detoxification of toxic chlorinated ethenes in anoxic aquifers illustrates the potential of naturally occurring microbes for biotechnological applications.
Collapse
|
5
|
Trueba-Santiso A, Wasmund K, Soder-Walz JM, Marco-Urrea E, Adrian L. Genome Sequence, Proteome Profile, and Identification of a Multiprotein Reductive Dehalogenase Complex in Dehalogenimonas alkenigignens Strain BRE15M. J Proteome Res 2020; 20:613-623. [PMID: 32975419 PMCID: PMC7786376 DOI: 10.1021/acs.jproteome.0c00569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Bacteria
of the genus Dehalogenimonas respire
with vicinally halogenated alkanes via dihaloelimination.
We aimed to describe involved proteins and their supermolecular organization.
Metagenomic sequencing of a Dehalogenimonas-containing culture resulted in a 1.65 Mbp draft genome of Dehalogenimonas alkenigignens strain BRE15M. It contained
31 full-length reductive dehalogenase homologous genes (rdhA), but only eight had cognate rdhB gene coding for
membrane-anchoring proteins. Shotgun proteomics of cells grown with
1,2-dichloropropane as an electron acceptor identified 1152 proteins
representing more than 60% of the total proteome. Ten RdhA proteins
were detected, including a DcpA ortholog, which was the strongest
expressed RdhA. Blue native gel electrophoresis
(BNE) demonstrating maximum activity was localized in a protein complex
of 146–242 kDa. Protein mass spectrometry revealed the presence
of DcpA, its membrane-anchoring protein DcpB, two hydrogen uptake
hydrogenase subunits (HupL and HupS), an iron–sulfur protein
(HupX), and subunits of a redox protein with a molybdopterin-binding
motif (OmeA and OmeB) in the complex. BNE after protein solubilization
with different detergent concentrations revealed no evidence for an
interaction between the putative respiratory electron input module
(HupLS) and the OmeA/OmeB/HupX module. All detected RdhAs comigrated
with the organohalide respiration complex. Based on genomic and proteomic
analysis, we propose quinone-independent respiration in Dehalogenimonas.
Collapse
Affiliation(s)
- Alba Trueba-Santiso
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra 08193, Spain
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1010, Austria
| | - Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra 08193, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra 08193, Spain
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Berlin 10623, Germany
| |
Collapse
|
6
|
Molenda O, Puentes Jácome LA, Cao X, Nesbø CL, Tang S, Morson N, Patron J, Lomheim L, Wishart DS, Edwards EA. Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:663-678. [PMID: 32159535 DOI: 10.1039/c9em00605b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organohalide respiring bacteria (OHRB) express reductive dehalogenases for energy conservation and growth. Some of these enzymes catalyze the reductive dehalogenation of chlorinated and brominated pollutants in anaerobic subsurface environments, providing a valuable ecosystem service. Dehalococcoides mccartyi strains have been most extensively studied owing to their ability to dechlorinate all chlorinated ethenes - most notably carcinogenic vinyl chloride - to ethene. The genomes of OHRB, particularly obligate OHRB, often harbour multiple putative reductive dehalogenase genes (rdhA), most of which have yet to be characterized. We recently sequenced and closed the genomes of eight new strains, increasing the number of available D. mccartyi genomes in NCBI from 16 to 24. From all available OHRB genomes, we classified predicted translations of reductive dehalogenase genes using a previously established 90% amino acid pairwise identity cut-off to identify Ortholog Groups (OGs). Interestingly, the majority of D. mccartyi dehalogenase gene sequences, once classified into OGs, exhibited a remarkable degree of synteny (gene order) in all genomes sequenced to date. This organization was not apparent without the classification. A high degree of synteny indicates that differences arose from rdhA gene loss rather than recombination. Phylogenetic analysis suggests that most rdhA genes have a long evolutionary history in the Dehalococcoidia with origin prior to speciation of Dehalococcoides and Dehalogenimonas. We also looked for evidence of synteny in the genomes of other species of OHRB. Unfortunately, there are too few closed Dehalogenimonas genomes to compare at this time. There is some partial evidence for synteny in the Dehalobacter restrictus genomes, but here too more closed genomes are needed for confirmation. Interestingly, we found that the rdhA genes that encode enzymes that catalyze dehalogenation of industrial pollutants are the only rdhA genes with strong evidence of recent lateral transfer - at least in the genomes examined herein. Given the utility of the RdhA sequence classification to comparative analyses, we are building a public web server () for the community to use, which allows users to add and classify new sequences, and download the entire curated database of reductive dehalogenases.
Collapse
Affiliation(s)
- Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Türkowsky D, Jehmlich N, Diekert G, Adrian L, von Bergen M, Goris T. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol Ecol 2019; 94:4830072. [PMID: 29390082 DOI: 10.1093/femsec/fiy013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Organohalide respiration (OHR) is a crucial process in the global halogen cycle and of interest for bioremediation. However, investigations on OHR are hampered by the restricted genetic accessibility and the poor growth yields of many organohalide-respiring bacteria (OHRB). Therefore, genomics, transcriptomics and proteomics are often used to investigate OHRB. In general, these gene expression studies are more useful when the data of the different 'omics' approaches are integrated and compared among a wide range of cultivation conditions and ideally involve several closely related OHRB. Despite the availability of a couple of proteomic and transcriptomic datasets dealing with OHRB, such approaches are currently not covered in reviews. Therefore, we here present an integrative and comparative overview of omics studies performed with the OHRB Sulfurospirillum multivorans, Dehalococcoides mccartyi, Desulfitobacterium spp. and Dehalobacter restrictus. Genes, transcripts, proteins and the regulatory and biochemical processes involved in OHR are discussed, and a comprehensive view on the unusual metabolism of D. mccartyi, which is one of the few bacteria possibly using a quinone-independent respiratory chain, is provided. Several 'omics'-derived theories on OHRB, e.g. the organohalide-respiratory chain, hydrogen metabolism, corrinoid biosynthesis or one-carbon metabolism are critically discussed on the basis of this integrative approach.
Collapse
Affiliation(s)
- Dominique Türkowsky
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
8
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
9
|
Schubert T, Adrian L, Sawers RG, Diekert G. Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol Ecol 2018; 94:4923014. [DOI: 10.1093/femsec/fiy035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Torsten Schubert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
- Department of Geobiotechnology, Technische Universität Berlin, Ackerstraße 74, D-13355 Berlin, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
10
|
Yang Y, Higgins SA, Yan J, Şimşir B, Chourey K, Iyer R, Hettich RL, Baldwin B, Ogles DM, Löffler FE. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. ISME JOURNAL 2017; 11:2767-2780. [PMID: 28809851 DOI: 10.1038/ismej.2017.127] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Organohalide-respiring bacteria have key roles in the natural chlorine cycle; however, most of the current knowledge is based on cultures from contaminated environments. We demonstrate that grape pomace compost without prior exposure to chlorinated solvents harbors a Dehalogenimonas (Dhgm) species capable of using chlorinated ethenes, including the human carcinogen and common groundwater pollutant vinyl chloride (VC) as electron acceptors. Grape pomace microcosms and derived solid-free enrichment cultures were able to dechlorinate trichloroethene (TCE) to less chlorinated daughter products including ethene. 16S rRNA gene amplicon and qPCR analyses revealed a predominance of Dhgm sequences, but Dehalococcoides mccartyi (Dhc) biomarker genes were not detected. The enumeration of Dhgm 16S rRNA genes demonstrated VC-dependent growth, and 6.55±0.64 × 108 cells were measured per μmole of chloride released. Metagenome sequencing enabled the assembly of a Dhgm draft genome, and 52 putative reductive dehalogenase (RDase) genes were identified. Proteomic workflows identified a putative VC RDase with 49 and 56.1% amino acid similarity to the known VC RDases VcrA and BvcA, respectively. A survey of 1,173 groundwater samples collected from 111 chlorinated solvent-contaminated sites in the United States and Australia revealed that Dhgm 16S rRNA genes were frequently detected and outnumbered Dhc in 65% of the samples. Dhgm are likely greater contributors to reductive dechlorination of chlorinated solvents in contaminated aquifers than is currently recognized, and non-polluted environments represent sources of organohalide-respiring bacteria with novel RDase genes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Steven A Higgins
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Burcu Şimşir
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Robert L Hettich
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | | | | | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
11
|
Key TA, Bowman KS, Lee I, Chun J, Albuquerque L, da Costa MS, Rainey FA, Moe WM. Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater. Int J Syst Evol Microbiol 2017; 67:1366-1373. [PMID: 28126048 DOI: 10.1099/ijsem.0.001819] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, Gram-stain-negative, non-spore-forming bacterium designated NSZ-14T, isolated from contaminated groundwater in Louisiana (USA), was characterized using a polyphasic approach. Strain NSZ-14T reductively dehalogenated a variety of polychlorinated aliphatic alkanes, producing ethene from 1,2-dichloroethane, propene from 1,2-dichloropropane, a mixture of cis- and trans-1,2-dichloroethene from 1,1,2,2-tetrachloroethane, vinyl chloride from 1,1,2-trichloroethane and allyl chloride (3-chloro-1-propene) from 1,2,3-trichloropropane. Formate or hydrogen could both serve as electron donors. Dechlorination occurred between pH 5.5 and 7.5 and over a temperature range of 20-37 °C. Major cellular fatty acids included C18 : 1ω9c, C14 : 0 and C16 : 0. 16S rRNA gene sequence-based phylogenetic analysis indicated that the strain clusters within the class Dehalococcoidia of the phylum Chloroflexi, most closely related to but distinct from type strains of the species Dehalogenimonas alkenigignens (97.63 % similarity) and Dehalogenimonas lykanthroporepellens (95.05 %). A complete genome sequence determined for strain NSZ-14T revealed a DNA G+C content of 53.96 mol%, which was corroborated by HPLC (54.1±0.2 mol% G+C). Genome-wide comparisons based on average nucleotide identity by orthology and estimated DNA-DNA hybridization values combined with phenotypic and chemotaxonomic traits and phylogenetic analysis indicate that strain NSZ-14T represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas formicexedens sp. nov. is proposed. The type strain is NSZ-14T (=HAMBI 3672T=JCM 19277T=VKM B-3058T). An emended description of Dehalogenimonas alkenigignens is also provided.
Collapse
Affiliation(s)
- Trent A Key
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kimberly S Bowman
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Imchang Lee
- School of Biological Sciences & Institute of Molecular Biology & Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jongsik Chun
- School of Biological Sciences & Institute of Molecular Biology & Genetics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | - Milton S da Costa
- Center for Neurosciences and Cell Biology, 3004-504 Coimbra, Portugal
| | - Fred A Rainey
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - William M Moe
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|