1
|
Bhadrecha P, Singh S, Dwibedi V. 'A plant's major strength in rhizosphere': the plant growth promoting rhizobacteria. Arch Microbiol 2023; 205:165. [PMID: 37012531 DOI: 10.1007/s00203-023-03502-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Human activities, industrialization and civilization have deteriorated the environment which eventually has led to alarming effects on plants and animals by heightened amounts of chemical pollutants and heavy metals in the environment, which create abiotic stress. Environmental conditions like drought, salinity, diminished macro-and micro-nutrients also contribute in abiotic stress, resulting in decrement of survival and growth of plants. Presence of pathogenic and competitive microorganisms, as well as pests lead to biotic stress and a plant alone can not defend itself. Thankfully, nature has rendered plant's rhizosphere with plant growth promoting rhizobacteria which maintain an allelopathic relationship with host plant to defend the plant and let it flourish in abiotic as well as biotic stress situations. This review discusses the mechanisms behind increase in plant growth via various direct and indirect traits expressed by associated microorganisms in the rhizosphere, along with their current scenario and promising future for sustainable agriculture. It also gives details of ten such bacterial species, viz. Acetobacter, Agrobacterium, Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter and Frankia, whose association with the host plants is famed for enhancing plant's growth and survival.
Collapse
Affiliation(s)
- Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Gautam Budh Nagar, Uttar Pradesh, 203201, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
- Thapar Institute of Engineering and Technology, Department of Biotechnology, 147004, PATIALA, India.
| |
Collapse
|
2
|
Mushtaq H, Ganai BA, Jehangir A. Exploring soil bacterial diversity in different micro-vegetational habitats of Dachigam National Park in North-western Himalaya. Sci Rep 2023; 13:3090. [PMID: 36813837 PMCID: PMC9947166 DOI: 10.1038/s41598-023-30187-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Dachigam National Park (DNP), in Zabarwan mountains of north-western Himalaya constitutes a region of high biodiversity with greater endemism. DNP is known for its unique micro-climate together with distinct vegetational zones providing home to variety of threatened and endemic plant, animal, and bird species. However, studies on soil microbial diversity in fragile ecosystems of north-western Himalaya in general and DNP in particular are lacking. This was thus a maiden attempt to study variations in soil bacterial diversity of DNP with respect to changing soil physico-chemical properties, vegetation, and altitude. Soil parameters depicted significant variations among different sites with highest values for temperature, OC, OM and TN being 22.2 ± 0.75 °C, 6.53 ± 0.32%, 11.25 ± 0.54%, 0.545 ± 0.04% from site-2 (low altitudinal grassland site) in summer and lowest of 5.1 ± 0.65 °C, 1.24 ± 0.26%, 2.14 ± 0.45% and 0.132 ± 0.04% at site-9 (high altitudinal mixed pine site) in winter. Bacterial CFU showed significant correlations with soil physico-chemical attributes. This study led to the isolation and identification of 92 morphologically varied bacteria with the highest (15) from site-2 and lowest (04) from site-9 which post BLAST analysis (via 16S rRNA analysis) depicted presence of only 57 distinct bacterial species under taxonomic phylum, Firmicutes and Proteobacteria. Nine species were widely spread (i.e., isolated from > 3 sites), however, most bacteria (37) were restricted to a particular site. Diversity indices ranged between 1.380 to 2.631 (Shannon-Weiner's index); 0.747 to 0.923 (Simpson's index) with highest values for site-2 and lowest for site-9. Index of similarity was highest (47.1%) between riverine sites (site-3 and site-4) whereas two mixed pine sites (site-9 and site-10) showed no similarity.
Collapse
Affiliation(s)
- Hina Mushtaq
- grid.412997.00000 0001 2294 5433Terrestrial Ecology Laboratory, Department of Environmental Science, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006 India
| | - Bashir Ahmad Ganai
- grid.412997.00000 0001 2294 5433Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006 India
| | - Arshid Jehangir
- Terrestrial Ecology Laboratory, Department of Environmental Science, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
3
|
Temperature- and Nutrients-Induced Phenotypic Changes of Antarctic Green Snow Bacteria Probed by High-Throughput FTIR Spectroscopy. BIOLOGY 2022; 11:biology11060890. [PMID: 35741411 PMCID: PMC9220083 DOI: 10.3390/biology11060890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Green snow microorganisms play an important role in biogeochemical cycle and carbon sink processes and they can be a source of biotechnologically interesting cell factories. A wide temperature tolerance is a unique property of bacteria isolated from cold environments, which has received great attention in the last years. The present paper examines the growth and chemical profile flexibility for green snow bacteria exposed to different temperature and nutrient fluctuations. By applying high-throughput chemical phenotyping with FTIR spectroscopy we discovered chemical changes possessed by green snow bacteria when grown at high/low temperature and rich/minimal media. Abstract Temperature fluctuations and nutrient composition are the main parameters influencing green snow microbiome. In this study we investigated the influence of temperature and nutrient conditions on the growth and cellular chemical profile of bacteria isolated from green snow. Chemical profiling of the green snow bacteria was done by high-throughput FTIR spectroscopy combined with multivariate data analysis. We showed that temperature and nutrients fluctuations strongly affect growth ability and chemical profile of the green snow bacteria. The size of colonies for green snow bacteria grown at higher (25 °C) and lower (4 °C and 10 °C) than optimal temperature (18 °C) was smaller. All isolates grew on rich medium, and only 19 isolates were able to grow on synthetic minimal media. Lipid and mixed spectral regions showed to be phylogeny related. FTIR fingerprinting indicates that lipids are often affected by the temperature fluctuations. Growth on different media resulted in the change of the whole chemical profile, where lipids showed to be more affected than proteins and polysaccharides. Correlation analysis showed that nutrient composition is clearly strongly influencing chemical changes in the cells, followed by temperature.
Collapse
|
4
|
Seo DW, Yum SJ, Lee HR, Kim SM, Jeong HG. Microbiota Analysis and Microbiological Hazard Assessment in Chinese Chive ( Allium tuberosum Rottler) Depending on Retail Types. J Microbiol Biotechnol 2022; 32:195-204. [PMID: 34949749 PMCID: PMC9628847 DOI: 10.4014/jmb.2112.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26°C, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.
Collapse
Affiliation(s)
- Dong Woo Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Su-jin Yum
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Heoun Reoul Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Seung Min Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hee Gon Jeong
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea,Corresponding author Phone: +82-42-821-6726 E-mail:
| |
Collapse
|
5
|
An Updated review on production of food derived bioactive peptides; focus on the psychrotrophic bacterial proteases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Borker SS, Thakur A, Kumar S, Kumari S, Kumar R, Kumar S. Comparative genomics and physiological investigation supported safety, cold adaptation, efficient hydrolytic and plant growth-promoting potential of psychrotrophic Glutamicibacter arilaitensis LJH19, isolated from night-soil compost. BMC Genomics 2021; 22:307. [PMID: 33910515 PMCID: PMC8082909 DOI: 10.1186/s12864-021-07632-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Night-soil compost (NSC) has traditionally been conserving water and a source of organic manure in northwestern Himalaya. Lately, this traditional method is declining due to modernization, its unhygienic conditions, and social apprehensions. Reduction in the age-old traditional practice has led to excessive chemical fertilizers and water shortage in the eco-sensitive region. In the current study, a bacterium has been analyzed for its safety, cold-adaptation, efficient degradation, and plant growth-promoting (PGP) attributes for its possible application as a safe bioinoculant in psychrotrophic bacterial consortia for improved night-soil composting. RESULTS Glutamicibacter arilaitensis LJH19, a psychrotrophic bacterium, was isolated from the NSC of Lahaul valley in northwestern Himalaya. The strain exhibited amylase (186.76 ± 19.28 U/mg), cellulase (21.85 ± 0.7 U/mg), and xylanase (11.31 ± 0.51 U/mg) activities at 10 °C. Possessing efficient hydrolytic activities at low-temperature garners the capability of efficient composting to LJH19. Additionally, the strain possessed multiple PGP traits such as indole acetic acid production (166.11 ± 5.7 μg/ml), siderophore production (85.72 ± 1.06% psu), and phosphate solubilization (44.76 ± 1.5 μg/ml). Enhanced germination index and germination rate of pea seeds under the LJH19 inoculation further supported the bacterium's PGP potential. Whole-genome sequencing (3,602,821 bps) and genome mining endorsed the cold adaptation, degradation of polysaccharides, and PGP traits of LJH19. Biosynthetic gene clusters for type III polyketide synthase (PKS), terpene, and siderophore supplemented the endorsement of LJH19 as a potential PGP bacterium. Comparative genomics within the genus revealed 217 unique genes specific to hydrolytic and PGP activity. CONCLUSION The physiological and genomic evidence promotes LJH19 as a potentially safe bio-inoculant to formulate psychrotrophic bacterial consortia for accelerated degradation and improved night-soil compost.
Collapse
Affiliation(s)
- Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sanjeet Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| | - Sareeka Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| |
Collapse
|
8
|
Abdel-Azeem AM, Abu-Elsaoud AM, Abo Nahas HH, Abdel-Azeem MA, Balbool BA, Mousa MK, Ali NH, Darwish AMG. Biodiversity and Industrial Applications of Genus Chaetomium. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Industrially Important Fungal Enzymes: Productions and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Dar FM, Dar PM. Fungal Xylanases for Different Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Darwish AMG, Abo Nahas HH, Korra YH, Osman AA, El-Kholy WM, Reyes-Córdova M, Saied EM, Abdel-Azeem AM. Fungal Lipases: Insights into Molecular Structures and Biotechnological Applications in Medicine and Dairy Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Yadav AN, Kaur T, Devi R, Kour D, Yadav A, Dikilitas M, Usmani Z, Yadav N, Abdel-Azeem AM, Ahluwalia AS. Biodiversity and Biotechnological Applications of Industrially Important Fungi: Current Research and Future Prospects. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Abdel-Azeem AM, Abo Nahas HH, Abdel-Azeem MA, Tariq FJ, Yadav AN. Biodiversity and Ecological Perspective of Industrially Important Fungi An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Hesham AEL, Kaur T, Devi R, Kour D, Prasad S, Yadav N, Singh C, Singh J, Yadav AN. Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-981-15-6949-4_22] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Fadiji AE, Babalola OO. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities With Multifunctional Prospects. Front Bioeng Biotechnol 2020; 8:467. [PMID: 32500068 PMCID: PMC7242734 DOI: 10.3389/fbioe.2020.00467] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Endophytes are abundant in plants and studies are continuously emanating on their ability to protect plants from pathogens that cause diseases especially in the field of agriculture. The advantage that endophytes have over other biocontrol agents is the ability to colonize plant's internal tissues. Despite this attributes, a deep understanding of the mechanism employed by endophytes in protecting the plant from diseases is still required for both effectiveness and commercialization. Also, there are increasing cases of antibiotics resistance among most causative agents of diseases in human beings, which calls for an alternative drug discovery using natural sources. Endophytes present themselves as a storehouse of many bioactive metabolites such as phenolic acids, alkaloids, quinones, steroids, saponins, tannins, and terpenoids which makes them a promising candidate for anticancer, antimalarial, antituberculosis, antiviral, antidiabetic, anti-inflammatory, antiarthritis, and immunosuppressive properties among many others, even though the primary function of bioactive compounds from endophytes is to make the host plants resistant to both abiotic and biotic stresses. Endophytes still present themselves as a peculiar source of possible drugs. This study elucidates the mechanisms employed by endophytes in protecting the plant from diseases and different bioactivities of importance to humans with a focus on endophytic bacteria and fungi.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
16
|
Kumar S, Sharma S, Thakur S, Mishra T, Negi P, Mishra S, Hesham AEL, Rastegari AA, Yadav N, Yadav AN. Bioprospecting of Microbes for Biohydrogen Production: Current Status and Future Challenges. BIOPROCESSING FOR BIOMOLECULES PRODUCTION 2019:443-471. [DOI: 10.1002/9781119434436.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
| | | | | | | | | | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture; Assiut University; Assiut Egypt
| | - Ali A. Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch; Islamic Azad University; Isfahan Iran
| | - Neelam Yadav
- Gopi Nath P.G. College; Veer Bahadur Singh Purvanchal University; India
| | | |
Collapse
|
17
|
Guo X, Xie C, Wang L, Li Q, Wang Y. Biodegradation of persistent environmental pollutants by Arthrobacter sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8429-8443. [PMID: 30706270 DOI: 10.1007/s11356-019-04358-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/23/2019] [Indexed: 05/17/2023]
Abstract
Persistent environmental pollutants are a growing problem around the world. The effective control of the pollutants is of great significance for human health. Some microbes, especially Arthrobacter, can degrade pollutants into nontoxic substances in various ways. Here, we review the biological properties of Arthrobacter adapting to a variety of environmental stresses, including starvation, hypertonic and hypotonic condition, oxidative stress, heavy metal stress, and low-temperature stress. Furthermore, we categorized the Arthrobacter species that can degrade triazines, organophosphorus, alkaloids, benzene, and its derivatives. Metabolic pathways behind the various biodegradation processes are further discussed. This review will be a helpful reference for comprehensive utilization of Arthrobacter species to tackle environmental pollutants.
Collapse
Affiliation(s)
- Xiaohong Guo
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Chengyun Xie
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lijuan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Ii KM, Kono N, Paulino-Lima IG, Tomita M, Rothschild LJ, Arakawa K. Complete Genome Sequence of Arthrobacter sp. Strain MN05-02, a UV-Resistant Bacterium from a Manganese Deposit in the Sonoran Desert. J Genomics 2019; 7:18-25. [PMID: 30820258 PMCID: PMC6389495 DOI: 10.7150/jgen.32194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022] Open
Abstract
Arthrobacter sp. strain MN05-02 is a UV-resistant bacterium isolated from a manganese deposit in the Sonoran Desert, Arizona, USA. The LD10 of this strain is 123 Jm-2, which is twice that of Escherichia coli, and therefore can be a useful resource for comparative study of UV resistance and the role of manganese on this phenotype. Its complete genome is comprised of a chromosome of 3,488,433 bp and a plasmid of 154,991 bp. The chromosome contains 3,430 putative genes, including 3,366 protein coding genes, 52 tRNA and 12 rRNA genes. Carotenoid biosynthesis operon structure coded within the genome mirrors the characteristic orange-red pigment this bacterium produces, which presumably partly contribute to its UV resistance.
Collapse
Affiliation(s)
- Konosuke Mark Ii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Faculty of Environment and Information Studies, Keio University, Yamagata, 997-0052, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, Yamagata, 997-0052, Japan
| | - Ivan Glaucio Paulino-Lima
- Blue Marble Space Institute of Science at NASA Ames Research Center, Mountain View, CA, USA, 94035-0001
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Faculty of Environment and Information Studies, Keio University, Yamagata, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, Yamagata, 997-0052, Japan
| | | | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Faculty of Environment and Information Studies, Keio University, Yamagata, 997-0052, Japan.,Graduate School of Media and Governance, Keio University, Yamagata, 997-0052, Japan
| |
Collapse
|
19
|
Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019. [DOI: 10.1007/978-981-13-6536-2_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK. Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-14846-1_1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Fungal Enzymes for the Textile Industry. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Whole-Genome Sequences of Two Arthrobacter sp. Strains, 4041 and 4042, Potentially Usable in Agriculture and Environmental Depollution. Microbiol Resour Announc 2018; 7:MRA01054-18. [PMID: 30533628 PMCID: PMC6256606 DOI: 10.1128/mra.01054-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/20/2018] [Indexed: 11/20/2022] Open
Abstract
We report here the draft genome sequences of Arthrobacter sp. strains 4041 and 4042, both of which possibly belong to the diverse Arthrobacter agilis species and are potentially usable as plant biostimulants for agriculture and as depolluting bacteria for the environment. We report here the draft genome sequences of Arthrobacter sp. strains 4041 and 4042, both of which possibly belong to the diverse Arthrobacter agilis species and are potentially usable as plant biostimulants for agriculture and as depolluting bacteria for the environment.
Collapse
|
25
|
Aanderud ZT, Saurey S, Ball BA, Wall DH, Barrett JE, Muscarella ME, Griffin NA, Virginia RA, Barberán A, Adams BJ. Stoichiometric Shifts in Soil C:N:P Promote Bacterial Taxa Dominance, Maintain Biodiversity, and Deconstruct Community Assemblages. Front Microbiol 2018; 9:1401. [PMID: 30018601 PMCID: PMC6037766 DOI: 10.3389/fmicb.2018.01401] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/07/2018] [Indexed: 11/13/2022] Open
Abstract
Imbalances in C:N:P supply ratios may cause bacterial resource limitations and constrain biogeochemical processes, but the importance of shifts in soil stoichiometry are complicated by the nearly limitless interactions between an immensely rich species pool and a multiple chemical resource forms. To more clearly identify the impact of soil C:N:P on bacteria, we evaluated the cumulative effects of single and coupled long-term nutrient additions (i.e., C as mannitol, N as equal concentrations NH4+ and NO3-, and P as Na3PO4) and water on communities in an Antarctic polar desert, Taylor Valley. Untreated soils possessed relatively low bacterial diversity, simplified organic C sources due to the absence of plants, limited inorganic N, and excess soil P potentially attenuating links between C:N:P. After 6 years of adding resources, an alleviation of C and N colimitation allowed one rare Micrococcaceae, an Arthrobacter species, to dominate, comprising 47% of the total community abundance and elevating soil respiration by 136% relative to untreated soils. The addition of N alone reduced C:N ratios, elevated bacterial richness and diversity, and allowed rare taxa relying on ammonium and nitrite for metabolism to become more abundant [e.g., nitrite oxidizing Nitrospira species (Nitrosomonadaceae), denitrifiers utilizing nitrite (Gemmatimonadaceae) and members of Rhodobacteraceae with a high affinity for ammonium]. Based on community co-occurrence networks, lower C:P ratios in soils following P and CP additions created more diffuse and less connected communities by disrupting 73% of species interactions and selecting for taxa potentially exploiting abundant P. Unlike amended nutrients, water additions alone elicited no lasting impact on communities. Our results suggest that as soils become nutrient rich a wide array of outcomes are possible from species dominance and the deconstruction of species interconnectedness to the maintenance of biodiversity.
Collapse
Affiliation(s)
- Zachary T. Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Sabrina Saurey
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Becky A. Ball
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States
| | - Diana H. Wall
- Department of Biology, School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, United States
| | - John E. Barrett
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA, United States
| | - Mario E. Muscarella
- Department of Plant Biology, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Natasha A. Griffin
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Ross A. Virginia
- Environmental Studies Program, Dartmouth College, Hanover, NH, United States
| | - Albert Barberán
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Byron J. Adams
- Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Department of Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
26
|
Cid FP, Maruyama F, Murase K, Graether SP, Larama G, Bravo LA, Jorquera MA. Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere. Extremophiles 2018; 22:537-552. [PMID: 29492666 DOI: 10.1007/s00792-018-1015-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/18/2018] [Indexed: 11/28/2022]
Abstract
Genome analyses are being used to characterize plant growth-promoting (PGP) bacteria living in different plant compartiments. In this context, we have recently isolated bacteria from the phyllosphere of an Antarctic plant (Deschampsia antarctica) showing ice recrystallization inhibition (IRI), an activity related to the presence of antifreeze proteins (AFPs). In this study, the draft genomes of six phyllospheric bacteria showing IRI activity were sequenced and annotated according to their functional gene categories. Genome sizes ranged from 5.6 to 6.3 Mbp, and based on sequence analysis of the 16S rRNA genes, five strains were identified as Pseudomonas and one as Janthinobacterium. Interestingly, most strains showed genes associated with PGP traits, such as nutrient uptake (ammonia assimilation, nitrogen fixing, phosphatases, and organic acid production), bioactive metabolites (indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase), and antimicrobial compounds (hydrogen cyanide and pyoverdine). In relation with IRI activity, a search of putative AFPs using current bioinformatic tools was also carried out. Despite that genes associated with reported AFPs were not found in these genomes, genes connected to ice-nucleation proteins (InaA) were found in all Pseudomonas strains, but not in the Janthinobacterium strain.
Collapse
Affiliation(s)
- Fernanda P Cid
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Applied Microbial Ecology Laboratory, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Giovanni Larama
- Department of Mathematical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Leon A Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de la Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Milko A Jorquera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
- Applied Microbial Ecology Laboratory, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
27
|
Psychrotrophic Microbiomes: Molecular Diversity and Beneficial Role in Plant Growth Promotion and Soil Health. MICROORGANISMS FOR SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7146-1_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Solyanikova IP, Suzina NE, Egozarian NS, Polivtseva VN, Prisyazhnaya NV, El-Registan GI, Mulyukin AL, Golovleva LA. The response of soil Arthrobacter agilis lush13 to changing conditions: Transition between vegetative and dormant state. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:745-751. [PMID: 28976238 DOI: 10.1080/03601234.2017.1356665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work was aimed at studying the response of soil non-spore-forming actinobacterial strain Arthrobacter agilis Lush 13 to changing natural conditions, such as nutrient availability and the presence of degradable and recalcitrant aliphatic and aromatic substrates. The A. agilis strain Lush13 was able to degrade octane, nonane, hexadecane, benzoate, phenol, and 2,3-, 2,4-, 2,5-, 2,6-dichlorophenols, but not grew on 3,4-dichlorophenol, 2,3,4-, 2,4,5-, 2,4,6-trichlorophenol (TCP), pentachlorophenol (PCP), 2-chlorobenzoate, 3-chlorobenzoate, 3,5-dichlorobenzoate, 2,4-dichlorobenzoate. Under growth-arresting conditions due to nitrogen- or multiple starvation or recalcitrant (non-utilizable) carbon source, the studied strain preserved viability for prolonged periods (4-24 months) due to transition to dormancy in the form of conglomerated small and ultrasmall cyst-like dormant cells (CLC). Dormant cells were shown to germinate rapidly (30 min or later) after removal of starvation stress, and this process was followed by breakdown of conglomerates with the eliberation and further division of small multiple actively growing daughter cells. Results of this study shed some light to adaptive capabilities of soil arthrobacters in pure and polluted environments.
Collapse
Affiliation(s)
- Inna P Solyanikova
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino, Moscow Region , Russia
| | - Nataliya E Suzina
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino, Moscow Region , Russia
| | - Nataliya S Egozarian
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino, Moscow Region , Russia
- b M.V. Lomonosov Moscow State University , Faculty of Biotechnology , Russia
| | - Valentina N Polivtseva
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino, Moscow Region , Russia
| | - Nataliya V Prisyazhnaya
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino, Moscow Region , Russia
| | - Galina I El-Registan
- c S.N. Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences , Moscow , Russia
| | - Andrey L Mulyukin
- c S.N. Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences , Moscow , Russia
| | - Ludmila A Golovleva
- a G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino, Moscow Region , Russia
| |
Collapse
|
29
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|