1
|
Alias A, Amin KAM, Heng LS, Nor SMM, Omar WBW, Ibrahim YS, Heděnec P. Microplastic contamination alters microbial community in commercially important bivalves, Geloina expansa, Anadara cornea, and Meretrix meretrix from tropical waters. MARINE POLLUTION BULLETIN 2025; 215:117931. [PMID: 40187200 DOI: 10.1016/j.marpolbul.2025.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Microplastics pose serious risks for aquatic organisms such as fishes, shrimps and bivalves. Bivalves are particularly vulnerable due to their filter-feeding strategy and sedentary life. While the microplastic bioaccumulation in bivalves has been well documented, the effects of microplastics accumulation on bivalve's gut microbiome in tropical sea waters remains poorly understood. To fill this knowledge gap, a 10-day feeding experiment with 13 mg L-1 polyethylene terephthalate particles was conducted using three commercially important bivalve species: Anadara cornea, Geloina expansa, and Meretrix meretrix taken from two contrasting locations (brackish water in protected Setiu Wetlands compared to open water in Kertih River) to investigate the effect of microplastic pollution on diversity and composition of gut prokaryotes using 16S rRNA amplicon sequencing. The results showed that alpha diversity of gut prokaryotes differed among species after microplastic exposure. For example, microplastic exposure increased operational taxonomic units (OTUs) richness of gut prokaryotes in G. expansa compared to A. cornea and M. meretrix during 10-day treatment. Community structure of prokaryotic community in bivalves gut showed strong divergence between Setiu Wetlands and Kertih River. Significant effects of microplastic exposure on relative abundance of prokaryotic phyla were also observed. Gut microbiome of G. expansa showed increase of relative abundance of Archaea and Firmicutes after microplastic exposure. The results suggest that microplastic treatment promotes dominance of certain bacterial species, likely those with plastic-metabolizing capabilities, potentially boosting bivalve resilience to microplastic contamination.
Collapse
Affiliation(s)
- Amirah Alias
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khairul Azmi Muhamad Amin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Loy See Heng
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Siti Mariam Mohamad Nor
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wan Bayani Wan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
2
|
Andersen LK, Thompson NF, Abernathy JW, Ahmed RO, Ali A, Al-Tobasei R, Beck BH, Calla B, Delomas TA, Dunham RA, Elsik CG, Fuller SA, García JC, Gavery MR, Hollenbeck CM, Johnson KM, Kunselman E, Legacki EL, Liu S, Liu Z, Martin B, Matt JL, May SA, Older CE, Overturf K, Palti Y, Peatman EJ, Peterson BC, Phelps MP, Plough LV, Polinski MP, Proestou DA, Purcell CM, Quiniou SMA, Raymo G, Rexroad CE, Riley KL, Roberts SB, Roy LA, Salem M, Simpson K, Waldbieser GC, Wang H, Waters CD, Reading BJ. Advancing genetic improvement in the omics era: status and priorities for United States aquaculture. BMC Genomics 2025; 26:155. [PMID: 39962419 PMCID: PMC11834649 DOI: 10.1186/s12864-025-11247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The innovations of the "Omics Era" have ushered in significant advancements in genetic improvement of agriculturally important animal species through transforming genetics, genomics and breeding strategies. These advancements were often coordinated, in part, by support provided over 30 years through the 1993-2023 National Research Support Project 8 (NRSP8, National Animal Genome Research Program, NAGRP) and affiliate projects focused on enabling genomic discoveries in livestock, poultry, and aquaculture species. These significant and parallel advances demand strategic planning of future research priorities. This paper, as an output from the May 2023 Aquaculture Genomics, Genetics, and Breeding Workshop, provides an updated status of genomic resources for United States aquaculture species, highlighting major achievements and emerging priorities. MAIN TEXT Finfish and shellfish genome and omics resources enhance our understanding of genetic architecture and heritability of performance and production traits. The 2023 Workshop identified present aims for aquaculture genomics/omics research to build on this progress: (1) advancing reference genome assembly quality; (2) integrating multi-omics data to enhance analysis of production and performance traits; (3) developing resources for the collection and integration of phenomics data; (4) creating pathways for applying and integrating genomics information across animal industries; and (5) providing training, extension, and outreach to support the application of genome to phenome. Research focuses should emphasize phenomics data collection, artificial intelligence, identifying causative relationships between genotypes and phenotypes, establishing pathways to apply genomic information and tools across aquaculture industries, and an expansion of training programs for the next-generation workforce to facilitate integration of genomic sciences into aquaculture operations to enhance productivity, competitiveness, and sustainability. CONCLUSION This collective vision of applying genomics to aquaculture breeding with focus on the highlighted priorities is intended to facilitate the continued advancement of the United States aquaculture genomics, genetics and breeding research community and industries. Critical challenges ahead include the practical application of genomic tools and analytical frameworks beyond academic and research communities that require collaborative partnerships between academia, government, and industry. The scope of this review encompasses the use of omics tools and applications in the study of aquatic animals cultivated for human consumption in aquaculture settings throughout their life-cycle.
Collapse
Affiliation(s)
| | | | | | - Ridwan O Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Bernarda Calla
- USDA-ARS Pacific Shellfish Research Unit, Newport, OR, USA
| | - Thomas A Delomas
- USDA-ARS National Cold Water Marine Aquaculture Center, Kingston, RI, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | | | - S Adam Fuller
- USDA-ARS Harry K Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Julio C García
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Mackenzie R Gavery
- Environmental and Fishery Sciences Division, NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Christopher M Hollenbeck
- Texas A&M AgriLife Research, College Station, TX, USA
- Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kevin M Johnson
- California Sea Grant, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Erin L Legacki
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Sixin Liu
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Zhanjiang Liu
- Department of Biology, Tennessee Technological University, Cookeville, TN, USA
| | - Brittany Martin
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Joseph L Matt
- Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Samuel A May
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Caitlin E Older
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, MS, USA
| | - Ken Overturf
- USDA-ARS Small Grains and Potato Germplasm Research, Hagerman, ID, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | | | - Brian C Peterson
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | | | - Louis V Plough
- USDA-ARS Pacific Shellfish Research Unit, Newport, OR, USA
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Mark P Polinski
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Dina A Proestou
- USDA-ARS National Cold Water Marine Aquaculture Center, Kingston, RI, USA
| | | | | | - Guglielmo Raymo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Kenneth L Riley
- Office of Aquaculture, NOAA Fisheries, Silver Spring, MD, USA
| | | | - Luke A Roy
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Alabama Fish Farming Center, Greensboro, AL, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Kelly Simpson
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | | | - Charles D Waters
- NOAA Alaska Fisheries Science Center Auke Bay Laboratories, Juneau, AK, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Auguste M, Leonessi M, Doni L, Oliveri C, Jemec Kokalj A, Drobne D, Vezzulli L, Canesi L. Polyester Microfibers Exposure Modulates Mytilus galloprovincialis Hemolymph Microbiome. Int J Mol Sci 2024; 25:8049. [PMID: 39125616 PMCID: PMC11312190 DOI: 10.3390/ijms25158049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Microplastic (MP) contamination in the aquatic environment is a cause of concern worldwide since MP can be taken up by different organisms, altering different biological functions. In particular, evidence is accumulating that MP can affect the relationship between the host and its associated microbial communities (the microbiome), with potentially negative health consequences. Synthetic microfibers (MFs) represent one of the main MPs in the marine environment, which can be accumulated by filter-feeding invertebrates, such as bivalves, with consequent negative effects and transfer through the food chain. In the mussel Mytilus galloprovincialis, polyethylene terephthalate (PET) MFs, with a size distribution resembling that of an MF released from textile washing, have been previously shown to induce multiple stress responses. In this work, in the same experimental conditions, the effects of exposure to PET-MF (96 h, 10, and 100 μg/L) on mussel hemolymph microbiome were evaluated by 16S rRNA gene amplification and sequencing. The results show that PET-MF affects the composition of bacterial communities at the phylum, family and genus level, with stronger effects at the lowest concentration tested. The relationship between MF-induced changes in hemolymph microbial communities and responses observed at the whole organism level are discussed.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Martina Leonessi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Lapo Doni
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.J.K.); (D.D.)
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.J.K.); (D.D.)
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
4
|
Paillard C, Gueguen Y, Wegner KM, Bass D, Pallavicini A, Vezzulli L, Arzul I. Recent advances in bivalve-microbiota interactions for disease prevention in aquaculture. Curr Opin Biotechnol 2022; 73:225-232. [PMID: 34571318 DOI: 10.1016/j.copbio.2021.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
In bivalves, no clear-cut functional role of microbiota has yet been identified, although many publications suggest that they could be involved in nutrition or immunity of their host. In the context of climate change, integrative approaches at the crossroads of disciplines have been developed to explore the environment-host-pathogen-microbiota system. Here, we attempt to synthesize work on (1) the current methodologies to analyse bivalve microbiota, (2) the comparison of microbiota between species, between host compartments and their surrounding habitat, (3) how the bivalve microbiota are governed by environmental factors and host genetics and (4) how host-associated microorganisms act as a buffer against pathogens and/or promote recovery, and could thereby play a role in the prevention of disease or mortalities.
Collapse
Affiliation(s)
| | - Yannick Gueguen
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France.
| | - K Mathias Wegner
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Coastal Ecology, Waddensea Station Sylt, D-25992 List, Germany
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, DT4 8UB Dorset, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, SW7 5BD London, UK
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34126 Trieste, Italy; National Institute of Oceanography and Applied Geophysics, via Piccard 54, 34151 Trieste, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Isabelle Arzul
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France.
| |
Collapse
|