1
|
Park J, Kohn E, Schenk S, Davis KM, Clark JS, Parfrey LW. An experimental test of the influence of microbial manipulation on sugar kelp ( Saccharina latissima) supports the core influences host function hypothesis. Appl Environ Microbiol 2025; 91:e0030125. [PMID: 40439420 DOI: 10.1128/aem.00301-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/09/2025] [Indexed: 06/19/2025] Open
Abstract
Kelp are valued for a wide range of commercial products and their role in kelp forest ecosystems, making kelp cultivation a rapidly expanding economic sector. Microbes associated with kelp and other macroalgae play a critical role in processes such as nutrient exchange, chemical signaling, and defense against pathogens. Thus, manipulating the microbiome to enhance macroalgal growth and resilience is a promising yet underexplored approach for sustainable kelp cultivation. The core microbiome hypothesis suggests that the bacteria that are consistently found on a host (the core microbes) are likely to have a disproportionate impact on host biology, making them an attractive target for microbiome manipulation. In this study, we surveyed wild Saccharina latissima and their surrounding environment to identify core bacterial taxa, compared them to cultivated kelp, and experimentally tested how cultured bacterial isolates affect kelp development. We found that core bacteria are nearly absent in cultivated juvenile sporophytes in nurseries, but eventually colonize them after outplanting to ocean farm sites. Bacterial inoculants had both positive and negative effects on kelp development. Notably, the strength of association of a bacterial genus with kelp in the wild positively correlated with its impact on gametophyte settlement and sporophyte development in kelp co-culture experiments, aligning with predictions from the core microbiome influences host function hypothesis. These findings affirm the feasibility of using microbial manipulations to improve current kelp aquaculture practices and provide a framework for developing these techniques. IMPORTANCE Microorganisms consistently associated with hosts are widely thought to be more likely to impact host biology and health. However, this intuitive concept has not been experimentally evaluated. This study formalizes this concept as the Core Microbiome Influences Host Function hypothesis and experimentally tests this hypothesis in sugar kelp (Saccharina). The distribution of bacteria on wild kelp and core microbes was first identified by compiling a broad dataset of the kelp microbiome sampled across space and time. Bacterial cultures were isolated from the surface of sugar kelp and individually grown in laboratory co-culture with sugar kelp spores to assess the ability of bacterial isolates to influence kelp growth and development. In support of the core influences host function hypothesis, isolates belonging to bacterial genera that are more strongly associated with wild sugar kelp are more likely to influence development in laboratory experiments.
Collapse
Affiliation(s)
- Jungsoo Park
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Kohn
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siobhan Schenk
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine M Davis
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Laura Wegener Parfrey
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Brunet M, Le Duff N, Barbeyron T, Thomas F. Year-Round Quantification, Structure and Dynamics of Epibacterial Communities From Diverse Macroalgae Reveal a Persistent Core Microbiota and Strong Host Specificities. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70077. [PMID: 40077904 PMCID: PMC11903338 DOI: 10.1111/1758-2229.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Macroalgae-bacteria interactions play pivotal ecological roles in coastal ecosystems. Previous characterisation of surface microbiota from various macroalgae evidenced fluctuations based on host tissues, physicochemical and environmental parameters. However, the dynamics and degree of similarity of epibacterial communities colonising phylogenetically distant algae from the same habitat are still elusive. We conducted a year-long monthly epimicrobiota sampling on five algal species inhabiting an English Channel rocky shore: Laminaria digitata, Ascophyllum nodosum, Fucus serratus (brown algae), Palmaria palmata (red alga) and Ulva sp. (green alga). To go beyond relative compositional data and estimate absolute variations in taxa abundance, we combined qPCR measurements of 16S rRNA gene copies with amplicon metabarcoding. A core microbiome composed of 10 genera was consistently found year-round on all algae. Notably, the abundant genus Granulosicoccus stood out for being the only one present in all samples and displayed an important microdiversity. Algal host emerged as the primary driver of epibacterial community composition, before seasonality, and bacterial taxa specifically associated with one or several algae were identified. Moreover, the impact of seasons on the epimicrobiota varied depending on algal tissues. Overall, this study provides an extensive characterisation of the microbiota of intertidal macroalgae and enhances our understanding of algal-bacteria holobionts.
Collapse
Affiliation(s)
- Maéva Brunet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M)Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M)Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M)Station Biologique de Roscoff (SBR)RoscoffFrance
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M)Station Biologique de Roscoff (SBR)RoscoffFrance
| |
Collapse
|
3
|
Mudlaff CM, Weinberger F, Düsedau L, Ghotbi M, Künzel S, Bonthond G. Seasonal Cycles in a Seaweed Holobiont: A Multiyear Time Series Reveals Repetitive Microbial Shifts and Core Taxa. Environ Microbiol 2025; 27:e70062. [PMID: 40015318 PMCID: PMC11867712 DOI: 10.1111/1462-2920.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Seasonality is an important natural feature that drives cyclic environmental changes. Seaweed holobionts, inhabiting shallow waters such as rocky shores and mud flats, are subject to seasonal changes in particular, but little is known about the influence of seasonality on their microbial communities. In this study, we conducted a three-year time series, sampling at two-month intervals, to assess the seasonality of microbial epibiota in the seaweed holobiont Gracilaria vermiculophylla. Our results reveal pronounced seasonal shifts that are both taxonomic and functional, oscillating between late winter and early summer across consecutive years. While epibiota varied taxonomically between populations, they were functionally similar, indicating that seasonal variability drives functional changes, while spatial variability is more redundant. We also identified seasonal core microbiota that consistently (re)associated with the host at specific times, alongside a permanent core that is present year-round, independent of season or geography. These findings highlight the dynamic yet resilient nature of seaweed holobionts and demonstrate that their epibiota undergo predictable changes. Therewith, this research offers important insights into the temporal dynamics of seaweed-associated microbiota and demonstrates that the relationship between seaweed host and its epibiota is not static but naturally subject to an ongoing seasonal succession process.
Collapse
Affiliation(s)
- Chantal Marie Mudlaff
- Department of Marine EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Faculty of Mathematics and Natural SciencesChristian‐Albrechts‐Universität zu KielKielGermany
| | - Florian Weinberger
- Department of Marine EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Luisa Düsedau
- Department of Marine EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Section Benthic EcologyAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Marjan Ghotbi
- Department of Marine EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Faculty of Mathematics and Natural SciencesChristian‐Albrechts‐Universität zu KielKielGermany
| | - Sven Künzel
- Department of Evolutionary GeneticsMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Guido Bonthond
- Department of Marine EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany
| |
Collapse
|
4
|
Pearman WS, Morales SE, Vaux F, Gemmell NJ, Fraser CI. Host population crashes disrupt the diversity of associated marine microbiomes. Environ Microbiol 2024; 26:e16611. [PMID: 38519875 DOI: 10.1111/1462-2920.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
Host-associated microbial communities are shaped by myriad factors ranging from host conditions, environmental conditions and other microbes. Disentangling the ecological impact of each of these factors can be particularly difficult as many variables are correlated. Here, we leveraged earthquake-induced changes in host population structure to assess the influence of population crashes on marine microbial ecosystems. A large (7.8 magnitude) earthquake in New Zealand in 2016 led to widespread coastal uplift of up to ~6 m, sufficient to locally extirpate some intertidal southern bull kelp populations. These uplifted populations are slowly recovering, but remain at much lower densities than at nearby, less-uplifted sites. By comparing the microbial communities of the hosts from disturbed and relatively undisturbed populations using 16S rRNA gene amplicon sequencing, we observed that disturbed host populations supported higher functional, taxonomic and phylogenetic microbial beta diversity than non-disturbed host populations. Our findings shed light on microbiome ecological assembly processes, particularly highlighting that large-scale disturbances that affect host populations can dramatically influence microbiome structure. We suggest that disturbance-induced changes in host density limit the dispersal opportunities of microbes, with host community connectivity declining with the density of host populations.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- National Institute of Water and Atmospheric Research Ltd, Auckland, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Felix Vaux
- National Institute of Water and Atmospheric Research Ltd, Auckland, New Zealand
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Wietz M, Engel A, Ramondenc S, Niwano M, von Appen WJ, Priest T, von Jackowski A, Metfies K, Bienhold C, Boetius A. The Arctic summer microbiome across Fram Strait: Depth, longitude, and substrate concentrations structure microbial diversity in the euphotic zone. Environ Microbiol 2024; 26:e16568. [PMID: 38268397 DOI: 10.1111/1462-2920.16568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015-2019; 5-100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
Collapse
Affiliation(s)
- Matthias Wietz
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anja Engel
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Simon Ramondenc
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matomo Niwano
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wilken-Jon von Appen
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Taylor Priest
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anabel von Jackowski
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany
| | - Christina Bienhold
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Pfister CA, Cardini U, Mirasole A, Montilla LM, Veseli I, Gattuso JP, Teixido N. Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification. Sci Rep 2023; 13:19996. [PMID: 37968499 PMCID: PMC10651887 DOI: 10.1038/s41598-023-47126-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
Seagrasses are important primary producers in oceans worldwide. They live in shallow coastal waters that are experiencing carbon dioxide enrichment and ocean acidification. Posidonia oceanica, an endemic seagrass species that dominates the Mediterranean Sea, achieves high abundances in seawater with relatively low concentrations of dissolved inorganic nitrogen. Here we tested whether microbial metabolisms associated with P. oceanica and surrounding seawater enhance seagrass access to nitrogen. Using stable isotope enrichments of intact seagrass with amino acids, we showed that ammonification by free-living and seagrass-associated microbes produce ammonium that is likely used by seagrass and surrounding particulate organic matter. Metagenomic analysis of the epiphytic biofilm on the blades and rhizomes support the ubiquity of microbial ammonification genes in this system. Further, we leveraged the presence of natural carbon dioxide vents and show that the presence of P. oceanica enhanced the uptake of nitrogen by water column particulate organic matter, increasing carbon fixation by a factor of 8.6-17.4 with the greatest effect at CO2 vent sites. However, microbial ammonification was reduced at lower pH, suggesting that future ocean climate change will compromise this microbial process. Thus, the seagrass holobiont enhances water column productivity, even in the context of ocean acidification.
Collapse
Affiliation(s)
- Catherine A Pfister
- The Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
| | - Ulisse Cardini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Alice Mirasole
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Luis M Montilla
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Iva Veseli
- Biophysical Sciences Program, The University of Chicago, Chicago, IL, USA
| | - Jean-Pierre Gattuso
- CNRS, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
- Institute for Sustainable Development and International Relations, Sciences Po, 27 Rue Saint Guillaume, 75007, Paris, France
| | - Nuria Teixido
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- CNRS, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| |
Collapse
|