1
|
Torbica AM, Filipčev B, Vujasinović V, Miljić U, Radivojević G, Miljić M, Radosavljević M. Biotechnological Tools for the Production of Low-FODMAP Wholegrain Wheat and Rye Cookies and Crackers. Foods 2025; 14:582. [PMID: 40002026 PMCID: PMC11854839 DOI: 10.3390/foods14040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fermentable oligosaccharides, di- and monosaccharides, and polyols defined as FODMAPs readily trigger the symptoms of irritable bowel syndrome (IBS), which affects up to 23% of the population, through several mechanisms. A low-FODMAP diet is a short-term solution due to significant nutrient deficiencies, especially in dietary fibre (DF). IBS patients must avoid cereals, especially wholegrain cereals such as wheat and rye, which are an important natural source of DF and therefore FODMAPs (part of soluble DF). This study is the first of its kind to employ biotechnological tools for the creation of wholegrain low-FODMAP cookies and crackers based on wholegrain wheat and rye flours with high FODMAP contents. Endogenous enzymes activated via prolonged dough resting and exogenously activated enzymes originating from chicory extract, wheat malt, and baker's yeast were employed. The prolonged dough resting time and the addition of wheat malt reduced the FODMAP content in the wholegrain wheat and rye cookies by 46% and 99.5%, respectively. The best result was achieved in the wholegrain wheat crackers, with a FODMAP content reduction of 59.3% based on the combination of a prolonged dough resting time and the addition of wheat malt and baker's yeast. In the wholegrain rye crackers, a prolonged resting time alone was sufficient to achieve an 83.6% reduction in the total oligosaccharide content.
Collapse
Affiliation(s)
- Aleksandra M. Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Vesna Vujasinović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Uroš Miljić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (U.M.); (M.R.)
| | - Goran Radivojević
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Milorad Miljić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (B.F.); (M.M.)
| | - Miloš Radosavljević
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia; (U.M.); (M.R.)
| |
Collapse
|
2
|
Faubel N, Blanco-Morales V, Sentandreu V, Barberá R, Garcia-Llatas G. Modulation of microbiota composition and markers of gut health after in vitro dynamic colonic fermentation of plant sterol-enriched wholemeal rye bread. Food Res Int 2025; 201:115570. [PMID: 39849717 DOI: 10.1016/j.foodres.2024.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
A human oral phase followed by a dynamic gastrointestinal digestion and colonic fermentation (simgi®) has been applied to wholemeal rye bread (WRB) and PS-enriched WRB (PS-WRB). The aim of this study was to evaluate the impact of these solid and high-fiber food matrices on the metabolism of PS, modulation of the microbiota and production of short-chain fatty acids (SCFA) and ammonium ion after a simulated chronic intake (5 days). In both breads, campesterol, campestanol, stigmasterol, β-sitosterol, sitostanol, Δ5-avenasterol, Δ5,24-stigmastadienol, Δ7-stigmastenol, and Δ7-avenasterol were identified, of which only β-sitosterol was metabolized to sitostenone after PS-WRB treatment. The presence of fiber in both breads exerted a prebiotic effect after fermentation by the increase in Firmicutes (Lactobacillus genus, maximum abundance of 89-99 %) and Actinobacteria (Bifidobacterium genus, maximum abundance of 30-31 %), reflected in an increase of SCFA content. The reduction of proteolytic activity confirmed by the decrease in ammonium ion contents is related to a reduction in the Proteobacteria phylum. Thus, PS-WRB could be considered as a healthy staple food choice since, besides the known hypocholesterolemic effect of PS, rye bread fiber preserves the beneficial microbiota and exerts a positive impact on markers of gut health.
Collapse
Affiliation(s)
- Nerea Faubel
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Virginia Blanco-Morales
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Vicente Sentandreu
- Statistics and Omics Data Analysis, Central Service for Experimental Research (SCSIE), University of Valencia, Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain.
| |
Collapse
|
3
|
de Graaf MC, Timmers E, Bonekamp B, van Rooy G, Witteman BJ, Shewry PR, Lovegrove A, America AH, Gilissen LJ, Keszthelyi D, Brouns FJ, Jonkers DMAE. Two randomized crossover multicenter studies investigating gastrointestinal symptoms after bread consumption in individuals with noncoeliac wheat sensitivity: do wheat species and fermentation type matter? Am J Clin Nutr 2024; 119:896-907. [PMID: 38373694 DOI: 10.1016/j.ajcnut.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Many individuals reduce their bread intake because they believe wheat causes their gastrointestinal (GI) symptoms. Different wheat species and processing methods may affect these responses. OBJECTIVES We investigated the effects of 6 different bread types (prepared from 3 wheat species and 2 fermentation conditions) on GI symptoms in individuals with self-reported noncoeliac wheat sensitivity (NCWS). METHODS Two parallel, randomized, double-blind, crossover, multicenter studies were conducted. NCWS individuals, in whom coeliac disease and wheat allergy were ruled out, received 5 slices of yeast fermented (YF) (study A, n = 20) or sourdough fermented (SF) (study B, n = 20) bread made of bread wheat, spelt, or emmer in a randomized order on 3 separate test days. Each test day was preceded by a run-in period of 3 d of a symptom-free diet and separated by a wash-out period of ≥7 d. GI symptoms were evaluated by change in symptom score (test day minus average of the 3-d run-in period) on a 0-100 mm visual analogue scale (ΔVAS), comparing medians using the Friedman test. Responders were defined as an increase in ΔVAS of ≥15 mm for overall GI symptoms, abdominal discomfort, abdominal pain, bloating, and/or flatulence. RESULTS GI symptoms did not differ significantly between breads of different grains [YF bread wheat median ΔVAS 10.4 mm (IQR 0.0-17.8 mm), spelt 4.9 mm (-7.6 to 9.4 mm), emmer 11.0 mm (0.0-21.3 mm), P = 0.267; SF bread wheat 10.5 mm (-3.1 to 31.5 mm), spelt 11.3 mm (0.0-15.3 mm), emmer 4.0 mm (-2.9 to 9.3 mm), P = 0.144]. The number of responders was also comparable for both YF (6 to wheat, 5 to spelt, and 7 to emmer, P = 0.761) and SF breads (9 to wheat, 7 to spelt, and 8 to emmer, P = 0.761). CONCLUSIONS The majority of NCWS individuals experienced some GI symptoms for ≥1 of the breads, but on a group level, no differences were found between different grains for either YF or SF breads. CLINICAL TRIAL REGISTRY clinicaltrials.gov, NCT04084470 (https://classic. CLINICALTRIALS gov/ct2/show/NCT04084470).
Collapse
Affiliation(s)
- Marlijne Cg de Graaf
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Emma Timmers
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Bo Bonekamp
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Gonny van Rooy
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Ben Jm Witteman
- Division Gastroenterology-Hepatology, Gelderse Vallei Hospital, Ede, The Netherlands; Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | - Antoine Hp America
- Business Unit Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Luud Jwj Gilissen
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Daniel Keszthelyi
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Fred Jph Brouns
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Daisy M A E Jonkers
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.
| |
Collapse
|
4
|
Gong L, Liu F, Liu J, Wang J. Dietary fiber (oligosaccharide and non-starch polysaccharide) in preventing and treating functional gastrointestinal disorders - Challenges and controversies: A review. Int J Biol Macromol 2024; 258:128835. [PMID: 38128805 DOI: 10.1016/j.ijbiomac.2023.128835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Functional gastrointestinal disorders (FGIDs) are a group of chronic or recurrent gastrointestinal functional diseases, including functional dyspepsia, irritable bowel syndrome, and functional constipation. A lack of safe and reliable treatments for abdominal pain-related FGIDs has prompted interest in new therapies. Evidence has shown that supplementation with dietary fiber may help treat FGIDs. Dietary fibers (DFs) have been demonstrated to have regulatory effects on the gut microbiota, microbiota metabolites, and gastrointestinal movement and have important implications for preventing and treating FGIDs. However, the adverse effects of some DFs, such as fermentable oligosaccharides, on FGIDs are unclear. This review provides an overview of the DFs physiological properties and functional characteristics that influence their use in management of FGIDs, with emphasis on structural modification technology to improve their therapeutic activities. The review highlights that the use of appropriate or novel fibers is a potential therapeutic approach for FGIDs.
Collapse
Affiliation(s)
- Lingxiao Gong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
5
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
6
|
Liu B, Ye D, Yang H, Song J, Sun X, He Z, Mao Y, Hao G. Assessing the relationship between gut microbiota and irritable bowel syndrome: a two-sample Mendelian randomization analysis. BMC Gastroenterol 2023; 23:150. [PMID: 37173627 PMCID: PMC10182631 DOI: 10.1186/s12876-023-02791-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Growing evidence has suggested that gut microbiota is closely related to the risk of irritable bowel syndrome (IBS), but whether there is a causal effect remains unknown. We adopted a Mendelian randomization (MR) approach to evaluate the potential causal relationships between gut microbiota and the risk of IBS. METHODS Genetic instrumental variables for gut microbiota were identified from a genome-wide association study (GWAS) of 18,340 participants. Summary statistics of IBS were drawn from a GWAS including 53,400 cases and 433,201 controls. We used the inverse-variance weighted (IVW) method as the primary analysis. To test the robustness of our results, we further performed the weighted-median method, MR-Egger regression, and MR pleiotropy residual sum and outlier test. Finally, reverse MR analysis was performed to evaluate the possibility of reverse causation. RESULTS We identified suggestive associations between three bacterial traits and the risk of IBS (odds ratio (OR): 1.08; 95% confidence interval (CI): 1.02, 1.15; p = 0.011 for phylum Actinobacteria; OR: 0.95; 95% CI: 0.91, 1.00; p = 0.030 for genus Eisenbergiella and OR: 1.10; 95% CI: 1.03, 1.18; p = 0.005 for genus Flavonifractor). The results of sensitivity analyses for these bacterial traits were consistent. We did not find statistically significant associations between IBS and these three bacterial traits in the reverse MR analysis. CONCLUSIONS Our systematic analyses provide evidence to support a potential causal relationship between several gut microbiota taxa and the risk of IBS. More studies are required to show how the gut microbiota affects the development of IBS.
Collapse
Affiliation(s)
- Bin Liu
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hong Yang
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Song
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaohui Sun
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China.
| |
Collapse
|
7
|
Wang Y, Jian C, Salonen A, Dong M, Yang Z. Designing healthier bread through the lens of the gut microbiota. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Koistinen VM, Hedberg M, Shi L, Johansson A, Savolainen O, Lehtonen M, Aura A, Hanhineva K, Landberg R. Metabolite Pattern Derived from Lactiplantibacillus plantarum-Fermented Rye Foods and In Vitro Gut Fermentation Synergistically Inhibits Bacterial Growth. Mol Nutr Food Res 2022; 66:e2101096. [PMID: 35960594 PMCID: PMC9787878 DOI: 10.1002/mnfr.202101096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/30/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Fermentation improves many food characteristics using microbes, such as lactic acid bacteria (LAB). Recent studies suggest fermentation may also enhance the health properties, but mechanistic evidence is lacking. The study aims to identify a metabolite pattern reproducibly produced during sourdough and in vitro colonic fermentation of various whole-grain rye products and how it affects the growth of bacterial species of potential importance to health and disease. METHODS AND RESULTS The study uses Lactiplantibacillus plantarum DSMZ 13890 strain, previously shown to favor rye as its substrate. Using LC-MS metabolomics, the study finds seven microbial metabolites commonly produced during the fermentations, including dihydroferulic acid, dihydrocaffeic acid, and five amino acid metabolites, and stronger inhibition is achieved when exposing the bacteria to a mixture of the metabolites in vitro compared to individual compound exposures. CONCLUSION The study suggests that metabolites produced by LAB may synergistically modulate the local microbial ecology, such as in the gut. This could provide new hypotheses on how fermented foods influence human health via diet-microbiota interactions.
Collapse
Affiliation(s)
- Ville M. Koistinen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Food Chemistry and Food Development Unit, Department of BiochemistryUniversity of TurkuTurkuTurku20014Finland,Afekta Technologies Ltd.Kuopio70210Finland
| | - Maria Hedberg
- Department of Odontology/Oral MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Lin Shi
- Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden,College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'an710119China
| | - Anders Johansson
- Department of Odontology/Oral MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Otto Savolainen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Marko Lehtonen
- School of PharmacyUniversity of Eastern FinlandKuopio70211Finland
| | - Anna‐Marja Aura
- VTT Technical Research Centre of Finland Ltd.Espoo02044Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Food Chemistry and Food Development Unit, Department of BiochemistryUniversity of TurkuTurkuTurku20014Finland,Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| |
Collapse
|
9
|
The Effects of High Fiber Rye, Compared to Refined Wheat, on Gut Microbiota Composition, Plasma Short Chain Fatty Acids, and Implications for Weight Loss and Metabolic Risk Factors (the RyeWeight Study). Nutrients 2022; 14:nu14081669. [PMID: 35458231 PMCID: PMC9032876 DOI: 10.3390/nu14081669] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Consumption of whole grain and cereal fiber have been inversely associated with body weight and obesity measures in observational studies but data from large, long-term randomized interventions are scarce. Among the cereals, rye has the highest fiber content and high rye consumption has been linked to increased production of gut fermentation products, as well as reduced risks of obesity and metabolic disease. The effects on body weight and metabolic risk factors may partly be mediated through gut microbiota and/or their fermentation products. We used data from a randomized controlled weight loss trial where participants were randomized to a hypocaloric diet rich in either high fiber rye foods or refined wheat foods for 12 weeks to investigate the effects of the intervention on gut microbiota composition and plasma short chain fatty acids, as well as the potential association with weight loss and metabolic risk markers. Rye, compared to wheat, induced some changes in gut microbiota composition, including increased abundance of the butyrate producing Agathobacter and reduced abundance of [Ruminococcus] torques group, which may be related to reductions in low grade inflammation caused by the intervention. Plasma butyrate increased in the rye group. In conclusion, intervention with high fiber rye foods induced some changes in gut microbiota composition and plasma short chain fatty acid concentration, which were associated with improvements in metabolic risk markers as a result of the intervention.
Collapse
|
10
|
Calderon G, Patel C, Camilleri M, James-Stevenson T, Bohm M, Siwiec R, Rogers N, Wo J, Lockett C, Gupta A, Xu H, Shin A. Associations of Habitual Dietary Intake With Fecal Short-Chain Fatty Acids and Bowel Functions in Irritable Bowel Syndrome. J Clin Gastroenterol 2022; 56:234-242. [PMID: 33780215 PMCID: PMC8435047 DOI: 10.1097/mcg.0000000000001521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/29/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND GOALS Diet may contribute to symptoms of irritable bowel syndrome (IBS) and luminal production of putative IBS biomarkers including short-chain fatty acids (SCFAs). Study aims were to to assess relationships of habitual fiber or starch intake with fecal SCFAs in patients with IBS and healthy volunteers (HVs). STUDY In 18 HVs and 30 patients with IBS (13 constipation-predominant [IBS-C] and 17 diarrhea-predominant [IBS-D]), habitual diet using a food frequency questionnaire; bowel functions using a validated bowel diary; and fecal SCFAs by HPLC-mass spectrometry were assessed. Associations of fiber and starch with SCFAs were analyzed using Spearman (rs) and Pearson (R) correlations. Relationships between other dietary endpoints, SCFAs, and bowel functions were explored. RESULTS Habitual fiber or starch intakes were not significantly correlated with SCFAs or bowel functions in all participants or HVs nor with SCFAs in IBS. Starch was negatively correlated (R=-0.53; P=0.04) with complete evacuation in IBS-D. Fiber (rs=0.65; P=0.02) and starch (rs=0.56; P=0.05) were correlated with ease of passage in IBS-C. Stool form, frequency, and ease of passage were positively correlated with total SCFAs (all P<0.05), acetate (all P<0.01), propionate (all P<0.05), and butyrate (form P=0.01; ease of passage P=0.05) among all participants, but not in IBS. Complete evacuation was negatively correlated with propionate (R=-0.34; P=0.04) in all participants. Total (P=0.04) and individual SCFAs (all P<0.05) were positively correlated with stool form in HVs. CONCLUSIONS Habitual fiber and starch intake does not influence fecal SCFAs but may influence bowel functions in IBS. Fecal SCFAs correlate with bowel functions among all participants including HVs.
Collapse
Affiliation(s)
- Gerardo Calderon
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Chirag Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Toyia James-Stevenson
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Matthew Bohm
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Robert Siwiec
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Nicholas Rogers
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - John Wo
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Carolyn Lockett
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Anita Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Huiping Xu
- Department of Biostatistics; Indiana University School of Medicine, Indianapolis, IN
| | - Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| |
Collapse
|
11
|
Németh R, Tömösközi S. Rye: Current state and future trends in research and applications. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
After wheat, rye is the second most important raw material for bread and bakery products, and it is one of the most excellent sources of dietary fibres and bioactive compounds. Besides, rye is utilised in more and more other food products as well, such as breakfast cereals, porridges, pasta, snack products, etc. Interestingly, its production is decreasing worldwide, probably because of the expansion of other cereals (e.g. triticale), but also the effect of climate change can also play a role therein. However, there is no doubt that scientific research aimed at studying the possible health benefits and the potential of rye in the development of novel food products has intensified over the past decade.
The aim of our paper is to make a comprehensive review of the latest results on the compositional and technological properties of rye that fundamentally influence its utilisation for food purposes. Furthermore, this review aims to identify the current development directions and trends of rye products.
Collapse
Affiliation(s)
- R. Németh
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| | - S. Tömösközi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| |
Collapse
|
12
|
Jalanka J, Lam C, Bennett A, Hartikainen A, Crispie F, Finnegan LA, Cotter PD, Spiller R. Colonic Gene Expression and Fecal Microbiota in Diarrhea-predominant Irritable Bowel Syndrome: Increased Toll-like Receptor 4 but Minimal Inflammation and no Response to Mesalazine. J Neurogastroenterol Motil 2021; 27:279-291. [PMID: 33795545 PMCID: PMC8026366 DOI: 10.5056/jnm20205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Diarrhea-predominant irritable bowel syndrome (IBS-D) has been previously associated with evidence of immune activation and altered microbiota. Our aim is to assess the effect of the anti-inflammatory agent, mesalazine, on inflammatory gene expression and microbiota composition in IBS-D. Methods We studied a subset of patients (n = 43) from a previously published 12-week radomized placebo-controlled trial of mesalazine. Mucosal biopsies were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction for a range of markers of inflammation, altered permeability, and sensory receptors including Toll-like receptors (TLRs) at randomization after treatment. All biopsy data were compared to 21 healthy controls. Patient’s stool microbiota composition was analysed through 16S ribosomal RNA sequencing. Results We found no evidence of increased immune activation compared to healthy controls. However, we did find increased expression of receptors in both sensory pathways and innate immune response including TLR4. Higher TLR4 expression was associated with greater urgency. TLR4 expression correlated strongly with the expression of the receptors bradykinin receptor B2, chemerin chemokine-like receptor 1, and transient receptor potential cation channel, subfamily A, member 1 as well as TLR4’s downstream adaptor myeloid differentiation factor 88. Mesalazine had minimal effect on either gene expression or microbiota composition. Conclusions Biopsies from a well-characterized IBS-D cohort showed no substantial inflammation. Mesalazine has little effect on gene expression and its previous reported effect on fecal microbiota associated with much greater inflammation found in inflammatory bowel diseases is likely secondary to reduced inflammation. Increased expression of TLR4 and correlated receptors in IBS may mediate a general increase in sensitivity to external stimuli, particularly those that signal via the TLR system.
Collapse
Affiliation(s)
- Jonna Jalanka
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Nottingham Digestive Diseases Center and NIHR Nottingham Biomedical Research Center at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, Notts, UK
| | - Ching Lam
- Nottingham Digestive Diseases Center and NIHR Nottingham Biomedical Research Center at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, Notts, UK
| | - Andrew Bennett
- Nottingham Digestive Diseases Center and NIHR Nottingham Biomedical Research Center at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, Notts, UK.,FRAME Alternatives Laboratory, School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, Notts, UK
| | - Anna Hartikainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Fiona Crispie
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Laura A Finnegan
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Robin Spiller
- Nottingham Digestive Diseases Center and NIHR Nottingham Biomedical Research Center at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, Notts, UK
| |
Collapse
|
13
|
Seal CJ, Courtin CM, Venema K, de Vries J. Health benefits of whole grain: effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Compr Rev Food Sci Food Saf 2021; 20:2742-2768. [PMID: 33682356 DOI: 10.1111/1541-4337.12728] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Grains are important sources of carbohydrates in global dietary patterns. The majority of these carbohydrates, especially in refined-grain products, are digestible. Most carbohydrate digestion takes place in the small intestine where monosaccharides (predominantly glucose) are absorbed, delivering energy to the body. However, a considerable part of the carbohydrates, especially in whole grains, is indigestible dietary fibers. These impact gut motility and transit and are useful substrates for the gut microbiota affecting its composition and quality. For the most part, the profile of digestible and indigestible carbohydrates and their complexity determine the nutritional quality of carbohydrates. Whole grains are more complex than refined grains and are promoted as part of a healthy and sustainable diet mainly because the contribution of indigestible carbohydrates, and their co-passenger nutrients, is significantly higher. Higher consumption of whole grain is recommended because it is associated with lower incidence of, and mortality from, CVD, type 2 diabetes, and some cancers. This may be due in part to effects on the gut microbiota. Although processing of cereals during milling and food manufacturing is necessary to make them edible, it also offers the opportunity to still further improve the nutritional quality of whole-grain flours and foods made from them. Changing the composition and availability of grain carbohydrates and phytochemicals during processing may positively affect the gut microbiota and improve health.
Collapse
Affiliation(s)
- Chris J Seal
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University-Campus Venlo, St Jansweg 20, 5928 RC, Venlo, The Netherlands
| | - Jan de Vries
- Nutrition Solutions, Reuvekamp 26, 7213CE, Gorssel, The Netherlands
| |
Collapse
|
14
|
Dahl WJ, Auger J, Alyousif Z, Miller JL, Tompkins TA. Adults with Prader-Willi syndrome exhibit a unique microbiota profile. BMC Res Notes 2021; 14:51. [PMID: 33549146 PMCID: PMC7866703 DOI: 10.1186/s13104-021-05470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Adults with Prader–Willi syndrome (PWS) require less energy intake to maintain body weight than the general adult population. This, combined with their altered gastrointestinal transit time, may impact microbiota composition. The aim of the study was to determine if the fecal microbiota composition of adults with PWS differed from non-affected adults. Using usual diet/non-interventional samples, fecal microbiota composition was analyzed using 16S rRNA gene amplicon sequencing and data from adults with PWS were merged with four other adult cohorts that differed by geographical location and age. QIIME 2™ sample-classifier, machine learning algorithms were used to cross-train the samples and predict from which dataset the taxonomic profiles belong. Taxa that most distinguished between all datasets were extracted and a visual inspection of the R library PiratePlots was performed to select the taxa that differed in abundance specific to PWS. Results Fecal microbiota composition of adults with PWS showed low Blautia and enhanced RF39 (phyla Tenericutes), Ruminococcaceae, Alistipes, Erysipelotrichacaea, Parabacteriodes and Odoribacter. Higher abundance of Tenericutes, in particular, may be a signature characteristic of the PWS microbiota although its relationship, if any, to metabolic health is not yet known.
Collapse
Affiliation(s)
- Wendy J Dahl
- Department of Food Science and Human Nutrition, University of Florida, 359 Newell Drive, Gainesville, FL, 32611, USA.
| | - Jérémie Auger
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Zainab Alyousif
- Department of Food Science and Human Nutrition, University of Florida, 359 Newell Drive, Gainesville, FL, 32611, USA
| | - Jennifer L Miller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount, Montreal, QC, H4P 2R2, Canada
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review summarizes recent progress in the diagnosis and management of irritable bowel syndrome, with a focus on dietary and microbiota aspects. RECENT FINDINGS From a pathophysiological point of view, IBS is a multifactorial condition with both peripheral (transit) as central (visceral hypersensitivity, anxiety, depression) contribution in a cumulative fashion to the symptom pattern and severity. More recently, the focus has shifted to diet and microbiota. The number of dietary options that can be used for IBS and the understanding of determinants of their efficacy is rapidly increasing. Several studies have confirmed the efficacy of the low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet. Sucrose-isomaltase deficiency has emerged as pathogenetic mechanisms in a subset of patients, who do not respond to low FODMAP diet but may respond to starch and sucrose elimination. Herbal remedies, probiotics and secretagogues have been the topic of additional treatment trials. The efficacy of fecal microbiota transplantation in IBS is variable across studies, but donor selection is emerging as a critical factor. SUMMARY Irritable bowel syndrome has evolved into a disorder of interaction between dietary factors and gut microbiota, with impact on bowel symptoms as well as extra-intestinal, central, symptoms. Dietary adjustments and treatments targeting the gut microbiota are areas of active research and clinical progress.
Collapse
|
16
|
Jian C, Luukkonen P, Sädevirta S, Yki-Järvinen H, Salonen A. Impact of short-term overfeeding of saturated or unsaturated fat or sugars on the gut microbiota in relation to liver fat in obese and overweight adults. Clin Nutr 2020; 40:207-216. [PMID: 32536582 DOI: 10.1016/j.clnu.2020.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUNDS & AIMS Intestinal microbiota may be causally involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). We aimed to study the effect of short-term overfeeding on human gut microbiota in relation to baseline and overfeeding-induced liver steatosis. We also asked whether the baseline microbiota composition is associated to the overfeeding-induced increase in liver fat. METHODS In a randomized trial, 38 overweight and obese subjects were assigned to consume an excess of 1000 kcal/day of diets rich in either saturated fat, unsaturated fat, or simple sugars for 3 weeks. Fasting blood samples and 1H-MR spectroscopy were used for extensive clinical phenotyping as previously reported (PMID: 29844096). Fecal samples were collected for the analysis of the gut microbiota using 16S rRNA amplicon sequencing, imputed metagenomics and qPCR. Microbiota results were correlated with dietary intakes and clinical measurements before and during overfeeding. RESULTS The overall community structure of the microbiota remained highly stable and personalized during overfeeding based on between-sample Bray-Curtis dissimilarity, but the relative abundances of individual taxa were altered in a diet-specific manner: overfeeding saturated fat increased Proteobacteria, while unsaturated fat increased butyrate producers. Sugar overfeeding increased Lactococcus and Escherichia coli. Imputed functions of the gut microbiota were not affected by overfeeding. Several taxa affected by overfeeding significantly correlated with the changes in host metabolic markers. The baseline levels of proteobacterial family Desulfovibrionaceae, and especially genus Bilophila, were significantly associated to overfeeding-induced liver fat increase independently of the diet arm. In general, limited overlap was observed between the overfeeding-induced microbiota changes and the liver fat-associated microbiota features at baseline. CONCLUSIONS Our work indicates that the human gut microbiota is resilient to short-term overfeeding on community level, but specific taxa are altered on diet composition-dependent manner. Generalizable microbiota signatures directly associated with liver steatosis could not be identified. Instead, the carriage of Bilophila was identified as a potential novel risk factor for diet-induced liver steatosis in humans. Clinical trial registry number: NCT02133144 listed on NIH website: ClinicalTrials.gov.
Collapse
Affiliation(s)
- Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Panu Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Sanja Sädevirta
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|