1
|
Xu X, Mo K, Cui C, Lan Y, Ling L, Xu J, Li L, Huang X. Microencapsulated essential oils alleviate diarrhea in weaned piglets by modulating the intestinal microbial barrier as well as not inducing antibiotic resistance: a field research. Front Vet Sci 2024; 11:1396051. [PMID: 38799727 PMCID: PMC11117338 DOI: 10.3389/fvets.2024.1396051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Microencapsulated essential oils (MEO)have been used as antibiotic alternatives that can be applied to alleviate diarrhea in weaning piglet. We examined a large group of weaned piglets and incorporated essential oil containing thymol (2%), carvacrol (5%) and cinnamaldehyde (3%) in the feed of weaned piglets on an intensive production farm. The piglets were divided into four groups; Control (no additions) and chlortetracycline (Chl), essential oil (EO) and microencapsulated essential oil (MEO) were fed ad libitum over a 28-day trial period. We found MEO significantly reduced the incidence of diarrhea in the piglets that was also accompanied by increased average daily weight gains from days 14-28 (p < 0.05). MEO enhanced the antioxidant capacity in the piglets and serum total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-px) levels were significantly increased (p < 0.05). MEO also significantly reduced expression of genes related to ileal inflammation (IL-6, TNF-α and TGF-β1) (p < 0.05) and significantly (p < 0.05) increased in sIgA antibody levels. MEO influenced the composition of the intestinal microbiome and reduced Bacteroidota (p < 0.05) and thus altered the Firmicutes/Bacteroidota ratio. However, none of the treatments produced significant changes in the most common tetracycline resistance genes (p > 0.05). Metagenomic analysis indicated that MEO impacted DNA expression, virulence factors, antioxidant activity and antimicrobial activity. Metabolomic analysis of the intestinal content also indicated that MEO impacted tyrosine metabolism and primary bile acid biosynthesis suggesting improved intestinal health and nutrient absorption. This study paves the way for further research into the development and optimization of MEO-based interventions aimed at improving piglet health and performance while also providing a reference for reducing reliance on antibiotics in animal agriculture.
Collapse
Affiliation(s)
- Xianbin Xu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaibin Mo
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Can Cui
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanhua Lan
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lifang Ling
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinxia Xu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianhui Huang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Ramis G, Murciano F, Orengo J, González-Guijarro B, Cuellar-Flores A, Serrano D, Muñoz Luna A, Sánchez-Uribe P, Martínez-Alarcón L. Is Oral Vaccination against Escherichia coli Influenced by Zinc Oxide? Animals (Basel) 2023; 13:1754. [PMID: 37889667 PMCID: PMC10252008 DOI: 10.3390/ani13111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Although zinc oxide has been banned at therapeutic doses in the EU, its use is still legal in most countries with industrial pig farming. This compound has been shown to be very effective in preventing E. coli-related diseases. However, another strategy used to control this pathogen is vaccination, administered parenterally or orally. Oral vaccines contain live strains, with F4 and F18 binding factors. Since zinc oxide prevents E. coli adhesion, it is hypothesised that its presence at therapeutic doses (2500 ppm) may alter the immune response and the protection of intestinal integrity derived from the vaccination of animals. METHODS A group of piglets were orally vaccinated at weaning and divided into two subgroups; one group was fed a feed containing 2500 ppm zinc oxide (V + ZnO) for the first 15 days post-vaccination (dpv) and the other was not (V). Faeces were sampled from the animals at 6, 8, 11, 13, and 15 dpv. Unvaccinated animals without ZnO in their feed (Neg) were sampled simultaneously and, on day 15 post-vaccination, were also compared with a group of unvaccinated animals with ZnO in their feed (ZnO). RESULTS Differences were found in E. coli excretion, with less quantification in the V + ZnO group, and a significant increase in secretory IgA in the V group at 8 dpv, which later equalised with that of the V + ZnO group. There was also some difference in IFNα, IFNγ, IL1α, ILβ, and TNFα gene expression when comparing both vaccinated groups (p < 0.05). However, there was no difference in gene expression for the tight junction (TJ) proteins responsible for intestinal integrity. CONCLUSIONS Although some differences in the excretion of the vaccine strain were found when comparing both vaccinated groups, there are no remarkable differences in immune stimulation or soluble IgA production when comparing animals orally vaccinated against E. coli in combination with the presence or absence of ZnO in their feed. We can conclude that the immune response produced is very similar in both groups.
Collapse
Affiliation(s)
- Guillermo Ramis
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
- Instituto Murciano de Investigación en Biomédicina (IMIB), 30120 Murcia, Spain
| | - Francisco Murciano
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
| | - Juan Orengo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
| | - Belén González-Guijarro
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
| | - Amanda Cuellar-Flores
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
| | - Daniel Serrano
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Muñoz Luna
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
- Instituto Murciano de Investigación en Biomédicina (IMIB), 30120 Murcia, Spain
| | | | - Laura Martínez-Alarcón
- Instituto Murciano de Investigación en Biomédicina (IMIB), 30120 Murcia, Spain
- Unidad para Docencia, Investigación y Calidad (UDICA), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| |
Collapse
|
3
|
Papadopoulos GA, Poutahidis T, Chalvatzi S, Kroustallas F, Karavanis E, Fortomaris P. Effects of a tributyrin and monolaurin blend compared to high ZnO levels on growth performance, faecal microbial counts, intestinal histomorphometry and immunohistochemistry in weaned piglets: A field study in two pig herds. Res Vet Sci 2022; 144:54-65. [DOI: 10.1016/j.rvsc.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/08/2021] [Accepted: 01/12/2022] [Indexed: 01/20/2023]
|
4
|
Quan G, Xia P, Lian S, Wu Y, Zhu G. Zinc uptake system ZnuACB is essential for maintaining pathogenic phenotype of F4ac + enterotoxigenic E. coli (ETEC) under a zinc restricted environment. Vet Res 2020; 51:127. [PMID: 33028391 PMCID: PMC7539401 DOI: 10.1186/s13567-020-00854-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
Zinc is the second trace element of living organisms after iron. Given its crucial importance, mammalian hosts restrict the bioavailability of Zinc ions (Zn2+) to bacterial pathogens. As a countermeasure, pathogens utilize high affinity Zn2+ transporters, such as ZnuACB to compete with the host for zinc. It is essential for bacteria to maintain zinc homeostasis and thus maintain their physiology and pathogenesis. In an attempt to uncover the zinc transporter in F4+ enterotoxigenic E. coli (ETEC) C83902, we analyzed two RNA-seq data sets of bacteria samples when different zinc treatments (restriction or abundance) were applied. Considering data revealing that the high affinity zinc uptake system ZnuACB acts as the main transporter in ETEC C83902 to resist zinc deficiency, we deleted znuACB genes to study the role of them in ETEC C83902. The deletion of znuACB genes results in growth perturbation and a sharp decrease in the ability of biofilm formation and adhesion of bacteria in vitro. Taking the data together, this study demonstrates that the ZnuACB system is required for ETEC C83902 to acquire zinc, which highly contributes to ETEC pathogenicity as well.
Collapse
Affiliation(s)
- Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|