1
|
Sathiyanarayanan A, Yashwanth BS, Pinto N, Thakuria D, Chaudhari A, Gireesh Babu P, Goswami M. Establishment and characterization of a new fibroblast-like cell line from the skin of a vertebrate model, zebrafish (Danio rerio). Mol Biol Rep 2023; 50:19-29. [PMID: 36289143 DOI: 10.1007/s11033-022-08009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The available fully sequenced genome and genetic similarities compared to humans make zebrafish a prominent in vitro vertebrate model for drug discovery & screening, toxicology, and radiation biology. Zebrafish also possess well developed immune systems which is ideal for studying infectious diseases. Fish skin confers immunity by serving as a physical barrier against the invading pathogens in the aquatic habitat. Therefore in vitro models from the skin tissue of zebrafish help to study the physiology, functional genes in vitro, wound healing, and pathogenicity of microbes. Hence the study aimed to develop and characterize a skin cell line from the wild-type zebrafish Danio rerio. METHODS AND RESULTS A novel cell line designated as DRS (D. rerio skin) was established and characterized from the skin tissue of wild-type zebrafish, D. rerio, by the explant technique. The cells thrived well in the Leibovitz's -15 medium supplemented with 15% FBS and routinely passaged at regular intervals. The DRS cells mainly feature fibroblast-like morphology. The culture conditions of the cells were determined by incubating the cells at varying concentrations of FBS and temperature; the optimum was 15% FBS and 28 °C, respectively. Cells were cryopreserved and revived with 70-75% viability at different passage levels. Two extracellular products from bacterial species Aeromonas hydrophila and Edwardsiella tarda were tested and found toxic to the DRS cells. Mitochondrial genes, namely COI and 16S rRNA PCR amplification and partial sequencing authenticated the species of origin of cells. The modal diploid (2n) chromosome number of the cells was 50. The cell line DRS was found to be free from mycoplasma. The cells were transfected with pMaxGFP plasmid and tested positive for green fluorescence at 24-48 h post-transfection. CONCLUSION The findings from this study thus confirm the usefulness of the developed cell line in bacterial susceptibility and transgene expression studies.
Collapse
Affiliation(s)
- Arjunan Sathiyanarayanan
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - B S Yashwanth
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Nevil Pinto
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Industrial Area, Bhimtal, 263136, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - P Gireesh Babu
- ICAR-National Research Centre on Meat, Chengicherla, Boduppal Post, Hyderabad, 500092, India
| | - Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
2
|
Zorzi AR, Antonioli E, Godoy JAPD, Okamoto OK, Kondo AT, Kutner JM, Kaleka CC, Cohen M, Ferretti M. Report of a clinical and laboratory management of cell therapy for knee cartilage in the face of mycoplasma contamination. EINSTEIN-SAO PAULO 2022; 20:eRC6918. [PMID: 35730808 PMCID: PMC9239536 DOI: 10.31744/einstein_journal/2022rc6918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
To describe a case of autologous chondrocyte implantation after cell culture contamination by Mycoplasma pneumoniae and the measures taken to successfully complete cell therapy in a patient with focal chondral lesion. A 45-year-old male patient, complaining of chronic pain on the knee and no history of trauma. He had a chondral lesion in the trochlear region of the femur and clinical tests compatible with pain in the anterior compartment of the knee. Conservative treatment failed to alleviate symptoms. Surgical treatment was indicated, but due to the size of the lesion, membrane-assisted autologous chondrocyte implantation was the technique of choice. Cartilage biopsies were collected from the intercondylar region of the distal femur. After isolation, chondrocytes were expanded ex vivo in a trained laboratory, for three weeks, and seeded onto a commercially available collagen membrane prior to implantation in the knee. Two days before surgery, a cell culture sample tested positive for Mycoplasma pneumoniae. The source of contamination was found to be autologous blood serum, extracted from the patient´s peripheral vein, and used to supplement the cell culture medium. After treating the patient with antibiotics, all procedures were repeated and the new final cell product, free from contaminants, was successfully implanted. We discuss the strategies available to deal with this situation, and describe the results of this particular case, which led to modifications in the autologous chondrocyte implant protocol.
Collapse
|
3
|
gga-miR-142-3p negatively regulates Mycoplasma gallisepticum (HS strain)-induced inflammatory cytokine production via the NF-κB and MAPK signaling by targeting TAB2. Inflamm Res 2021; 70:1217-1231. [PMID: 34554275 DOI: 10.1007/s00011-021-01499-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Mycoplasma gallisepticum (MG), a notorious avian pathogen, leads to considerable economic losses in the poultry industry. MG infection is characterized by severe, uncontrollable inflammation and host DNA damage. Micro ribonucleic acids (miRNAs) have emerged as important regulators in microbial pathogenesis. However, the role of miRNAs in MG infection is poorly characterized. In this study, we validated the functional roles of gga-miR-142-3p. METHODS The relative expression of gga-miR-142-3p in the lungs of the MG-infected chicken embryos and the MG-infected chicken embryonic fibroblast cell line (DF-1) was determined by reverse transcription quantitative real-time PCR analysis. Bioinformatics database was used to analysis the target gene of gga-miR-142-3p. The luciferase reporter assay as well as gene expression analysis were conducted to validate the target gene. To further explore the biological functions of gga-miR-142-3p upon MG infection, the cell proliferation was quantified using Cell Counting Kit-8 (CCK-8). Meanwhile, cell cycle analysis and apoptosis were measured using a flow cytometer. RESULTS gga-miR-142-3p was significantly upregulated in both MG-infected chicken-embryo lungs and the DF-1 cells. gga-miR-142-3p over expression significantly downregulated the expression of pro-inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor alpha after MG infection. Meanwhile, gga-miR-142-3p enhanced the host defense against MG infection by facilitating cell proliferation, promoting cell progression and inhibiting cell apoptosis. Interestingly, TAB2 knockdown groups show similar results, whereas, TAB2 over-expression groups and gga-miR-142-3p inhibitor groups had thoroughly opposite results. The expression of p-p65 in nuclear factor kappa B (NF-κB) and p-p38 in the mitogen-activated protein kinase (MAPK) pathway was decreased when gga-miR-142-3p was over-expressed. CONCLUSION Upon MG infection, upregulation of gga-miR-142-3p alleviates inflammation by negatively regulating the signaling pathways of NF-κB and MAPKs by targeting TAB2 and facilitates cell proliferation by inhibiting cell apoptosis and promoting cell cycle progression to defend against MG infection.
Collapse
|
4
|
Soudi A, Yazdanian M, Ranjbar R, Tebyanian H, Yazdanian A, Tahmasebi E, Keshvad A, Seifalian A. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI JOURNAL 2021; 20:454-489. [PMID: 33746673 PMCID: PMC7975587 DOI: 10.17179/excli2021-3335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Recently, a growing attention has been observed toward potential advantages of stem cell (SC)-based therapies in regenerative treatments. Mesenchymal stem/stromal cells (MSCs) are now considered excellent candidates for tissue replacement therapies and tissue engineering. Autologous MSCs importantly contribute to the state-of-the-art clinical strategies for SC-based alveolar bone regeneration. The donor cells and immune cells play a prominent role in determining the clinical success of MSCs therapy. In line with the promising future that stem cell therapy has shown for tissue engineering applications, dental stem cells have also attracted the attention of the relevant researchers in recent years. The current literature review aims to survey the variety and extension of SC-application in tissue-regenerative dentistry. In this regard, the relevant English written literature was searched using keywords: "tissue engineering", "stem cells", "dental stem cells", and "dentistry strategies". According to the available database, SCs application has become increasingly widespread because of its accessibility, plasticity, and high proliferative ability. Among the growing recognized niches and tissues containing higher SCs, dental tissues are evidenced to be rich sources of MSCs. According to the literature, dental SCs are mostly present in the dental pulp, periodontal ligament, and dental follicle tissues. In this regard, the present review has described the recent findings on the potential of dental stem cells to be used in tissue regeneration.
Collapse
Affiliation(s)
- Armin Soudi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Keshvad
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Centre, London, UK
| |
Collapse
|
5
|
Yin ZF, Zhang YN, Liang SF, Zhao SS, Du J, Cheng BB. Mycoplasma contamination-mediated attenuation of plasmid DNA transfection efficiency is augmented via L-arginine deprivation in HEK-293 cells. J Zhejiang Univ Sci B 2020; 20:1021-1026. [PMID: 31749349 DOI: 10.1631/jzus.b1900380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mycoplasma infection is the most prevalent contamination in cell culture. Analysis of cell culture in laboratories from different countries shows that mycoplasma contamination ranges from 15% to 80% and, in some cases, even reaches 100% (Chernov et al., 2014). Whilst mycoplasma infection is not visible to the naked eye in cell culture, the consequences of mycoplasma contamination have been shown to induce a number of cellular changes, for example, increased resistance to chemotherapeutic drugs. Therefore, any results obtained from tissue culture studies, in the presence of mycoplasma contamination, potentially render the data invalid (Kim et al., 2015; Gedye et al., 2016). As such, mycoplasmas are not harmless bystanders and cannot be ignored in in vitro studies.
Collapse
Affiliation(s)
- Zi-Fei Yin
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ya-Ni Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shu-Fang Liang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Sha-Sha Zhao
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Juan Du
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Bin-Bin Cheng
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Ma XX, Cao X, Ma P, Chang QY, Li LJ, Zhou XK, Zhang DR, Li MS, Ma ZR. Comparative genomic analysis for nucleotide, codon, and amino acid usage patterns of mycoplasmas. J Basic Microbiol 2018. [PMID: 29537653 DOI: 10.1002/jobm.201700490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evolutionary factors in influencing the genetic characteristics of nucleotide, synonymous codon, and amino acid usage of 18 mycoplasma species were analyzed. The nucleotide usage at the 1st and 2nd codon position which determines amino acid composition of proteins has a significant correlation with the total nucleotide composition of gene population of these mycoplasma species, however, the nucleotide usage at the 3rd codon position which affects synonymous codon usage patterns has a slight correlation with either the total nucleotide composition or the nucleotide usage at the 1st and 2nd codon position. Other evolutionary factors join in the evolutionary process of mycoplasma apart from mutation pressure caused by nucleotide usage constraint based on the relationships between effective number of codons/codon adaptation index and nucleotide usage at the 3rd codon position. Although nucleotide usage of gene population in mycoplasma dominates in forming the overall codon usage trends, the relative abundance of codon with nucleotide context and amino acid usage pattern show that translation selection involved in translation accuracy and efficiency play an important role in synonymous codon usage patterns. In addition, synonymous codon usage patterns of gene population have a bigger power to represent genetic diversity among different species than amino acid usage. These results suggest that although the mycoplasmas reduce its genome size during the evolutionary process and shape the form, which is opposite to their hosts, of AT usages at high levels, this kind organism still depends on nucleotide usage at the 1st and 2nd codon positions to control syntheses of the requested proteins for surviving in their hosts and nucleotide usage at the 3rd codon position to develop genetic diversity of different mycoplasma species. This systemic analysis with 18 mycoplasma species may provide useful clues for further in vivo genetic studies on the related species.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Xin Cao
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Peng Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Qiu-Yan Chang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Lin-Jie Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Xiao-Kai Zhou
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - De-Rong Zhang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Ming-Sheng Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Zhong-Ren Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| |
Collapse
|