1
|
Varpe A, Sayed M, Mane NS. A Comprehensive Literature Review on Advancements and Challenges in 3D Bioprinting of Human Organs: Ear, Skin, and Bone. Ann Biomed Eng 2025; 53:14-33. [PMID: 38977527 DOI: 10.1007/s10439-024-03580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The field of 3D bioprinting is rapidly emerging within the realm of regenerative medicine, offering significant potential in dealing with the issue of organ shortages. Despite being in its early stages, it has the potential to replicate tissue structures accurately, providing new potential solutions for reconstructive surgery. This review explores the diverse applications of 3D bioprinting in regenerative medicine, pharmaceuticals, and the food industry, specifically focusing on ear, skin, and bone tissues due to their unique challenges and implications in the field. Significant progress has been made in cartilage and bone scaffold fabrication in ear reconstruction, yet challenges in functional maturation persist. Recent advancements highlight the potential for patient-specific ear substitutes, emphasizing the need for extensive clinical trials. In skin regeneration, 3D bioprinting addresses limitations in existing models, offering opportunities for improved wound healing and realistic skin models. While challenges exist, progress in biomaterials and in-situ bioprinting holds promise. In bone regeneration, 3D bioprinting presents personalized solutions for defects, but scaffold design refinement and addressing regulatory and ethical considerations are crucial. The transformative potential of 3D bioprinting in the field of medicine holds the promise of redefining therapeutic approaches and delivering personalized treatments and functional tissues. Interdisciplinary collaboration is essential for fully realizing the capabilities of 3D bioprinting. This review provides a detailed analysis of current methodologies, challenges, and prospects in 3D bioprinting for ear, skin, and bone tissue regeneration.
Collapse
Affiliation(s)
- Aishwarya Varpe
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India
| | - Marwana Sayed
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India
| | - Nikhil S Mane
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India.
| |
Collapse
|
2
|
Wang Z, Zheng B, Yu X, Shi Y, Zhou X, Gao B, He F, Tam MS, Wang H, Cheang LH, Zheng X, Wu T. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Int J Biol Macromol 2024; 277:134185. [PMID: 39074694 DOI: 10.1016/j.ijbiomac.2024.134185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.
Collapse
Affiliation(s)
- Zhaozhen Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China; Orthopedic and traumatology department, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyuan Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiaolu Yu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yiwan Shi
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xinting Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | | | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Lek Hang Cheang
- Department of Orthopedic Surgery, Centro Hospitalar Conde de Sao Januario, Macau.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Kim MJ, Lee JS. Assessing the Viability of Polycaprolactone Mesh in Bilateral Orbital Floor Reconstruction: Insights From Le Fort II Fracture Cases. J Craniofac Surg 2024:00001665-990000000-01874. [PMID: 39221928 DOI: 10.1097/scs.0000000000010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study aims to evaluate the effectiveness of pure polycaprolactone (PCL) mesh in reconstructing complex bilateral orbital floor fractures associated with Le Fort II fractures. PCL mesh is traditionally viewed as less suitable for severe fractures due to its perceived weakness. This study challenges that perception by demonstrating the utility of PCL mesh in high-severity cases. MATERIALS AND METHODS Two patients with Le Fort II fractures and bilateral orbital floor fractures underwent orbital reconstruction using a 3D-printed PCL mesh. The mesh was molded and inserted through subciliary or transconjunctival incisions. Orbital volumes were analyzed preoperatively and postoperatively using CT scans and a 3D Analysis program. RESULTS Both cases demonstrated significant correction of orbital volume differences postoperatively, leading to improved symmetry and successful reconstruction. For case 1, the preoperative orbital volume difference of 3.2 cc was reduced to 1.1 cc postoperatively. For case 2, the preoperative orbital volume difference of 1.18 cc was reduced to 0.4 cc postoperatively. The PCL mesh provided adequate structural support and facilitated effective tissue integration. Despite the radiolucency of the PCL mesh on CT scans, volumetric analysis confirmed stable and balanced orbital volumes. CONCLUSIONS Pure PCL mesh is a viable alternative for orbital floor reconstruction in severe craniofacial fractures, offering a balance of structural support and biocompatibility. To validate these findings, further research with larger samples and long-term follow-up is recommended.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Plastic and Reconstructive Surgery, Ajou University School of Medicine, Suwon, Korea
| | | |
Collapse
|
4
|
Migliorini F, Eschweiler J, Betsch M, Maffulli N, Tingart M, Hildebrand F, Lecouturier S, Rath B, Schenker H. Osteointegration of functionalised high-performance oxide ceramics: imaging from micro-computed tomography. J Orthop Surg Res 2024; 19:411. [PMID: 39026349 PMCID: PMC11256426 DOI: 10.1186/s13018-024-04918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/13/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND This study evaluated the osseointegration potential of functionalised high-performance oxide ceramics (HPOC) in isolation or coated with BMP-2 or RGD peptides in 36 New Zeeland female rabbits using micro-computed tomography (micro CT). The primary outcomes of interest were to assess the amount of ossification evaluating the improvement in the bone volume/ total volume (BV/TV) ratio and trabecular thickness at 6 and 12 weeks. The second outcome of interest was to investigate possible differences in osteointegration between the functionalised silanised HPOC in isolation or coated with Bone Morphogenetic Protein 2 (BMP-2) or RGD peptides. METHODS 36 adult female New Zealand white rabbits with a minimum weight of three kg were used. One-third of HPOCs were functionalised with silicon suboxide (SiOx), a third with BMP-2 (sHPOC-BMP2), and another third with RGD (sHPOC-RGD). All samples were scanned with a high-resolution micro CT (U-CTHR, MILabs B.V., Houten, The Netherlands) with a reconstructed voxel resolution of 10 µm. MicroCT scans were reconstructed in three planes and processed using Imalytics Preclinical version 2.1 (Gremse-IT GmbH, Aachen, Germany) software. The total volume (TV), bone volume (BV) and ratio BV/TV were calculated within the coating area. RESULTS BV/TV increased significantly from 6 to 12 weeks in all HPOCs: silanised (P = 0.01), BMP-2 (P < 0.0001), and RGD (P < 0.0001) groups. At 12 weeks, the BMP-2 groups demonstrated greater ossification in the RGD (P < 0.0001) and silanised (P = 0.008) groups. Trabecular thickness increased significantly from 6 to 12 weeks (P < 0.0001). At 12 weeks, BMP-2 promoted greater trabecular thickness compared to the silanised group (P = 0.07), although no difference was found with the RGD (P = 0.1) group. CONCLUSION Sinalised HPOC in isolation or functionalised with BMP-2 or RGD promotes in vivo osteointegration. The sinalised HOPC functionalised with BMP-2 demonstrated the greatest osseointegration.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Marcel Betsch
- Department of Orthopaedic and Trauma Surgery, University Hospital of Erlangen, 91054, Erlangen, Germany
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185, Rome, Italy.
- Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, ST4 7QB, Stoke On Trent, England.
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, E1 4DG, London, England.
| | | | - Frank Hildebrand
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Lecouturier
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Björn Rath
- Department of Orthopaedic Surgery, Klinikum Wels-Grieskirchen, 4600, Wels, Austria
| | - Hanno Schenker
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
5
|
Barcena AJR, Ravi P, Kundu S, Tappa K. Emerging Biomedical and Clinical Applications of 3D-Printed Poly(Lactic Acid)-Based Devices and Delivery Systems. Bioengineering (Basel) 2024; 11:705. [PMID: 39061787 PMCID: PMC11273440 DOI: 10.3390/bioengineering11070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(lactic acid) (PLA) is widely used in the field of medicine due to its biocompatibility, versatility, and cost-effectiveness. Three-dimensional (3D) printing or the systematic deposition of PLA in layers has enabled the fabrication of customized scaffolds for various biomedical and clinical applications. In tissue engineering and regenerative medicine, 3D-printed PLA has been mostly used to generate bone tissue scaffolds, typically in combination with different polymers and ceramics. PLA's versatility has also allowed the development of drug-eluting constructs for the controlled release of various agents, such as antibiotics, antivirals, anti-hypertensives, chemotherapeutics, hormones, and vitamins. Additionally, 3D-printed PLA has recently been used to develop diagnostic electrodes, prostheses, orthoses, surgical instruments, and radiotherapy devices. PLA has provided a cost-effective, accessible, and safer means of improving patient care through surgical and dosimetry guides, as well as enhancing medical education through training models and simulators. Overall, the widespread use of 3D-printed PLA in biomedical and clinical settings is expected to persistently stimulate biomedical innovation and revolutionize patient care and healthcare delivery.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Chang SY, Kang DH, Cho SK. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J 2024; 18:444-457. [PMID: 38146053 PMCID: PMC11222887 DOI: 10.31616/asj.2023.0407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023] Open
Abstract
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
Collapse
Affiliation(s)
- Sam Yeol Chang
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul,
Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Ho Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
- Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul,
Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY,
USA
| |
Collapse
|
7
|
Seo YH, Lee JM, Park SY, Kim MH, Kim SB, Oh TH. PVA Hydrogels Supplemented with PLA Mesh for Tissue Regeneration Scaffold. Gels 2024; 10:364. [PMID: 38920911 PMCID: PMC11202865 DOI: 10.3390/gels10060364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
This study examined the tensile strength and biocompatibility properties of polyvinyl alcohol (PVA) hydrogel tissue regeneration scaffolds with polylactic acid (PLA) mesh fabric added as reinforcement, with a focus on the impact of heat treatment temperature and the number of layers of the PLA mesh fabric. The hydrogel scaffolds were prepared using a freeze-thaw method to create PVA hydrogel, with the PLA mesh fabric placed inside the hydrogel. The swelling ratio of the PVA/PLA hydrogel scaffolds decreased with increasing layer number and heat treatment temperature of the PLA mesh. The gel strength was highest when five layers of PLA mesh fabric were added, heat-treated at 120 °C, and confirmed to be properly placed inside the hydrogel by SEM images. The MTT assay and DAPI staining using HaCaT cells demonstrated that the cell proliferation was uninterrupted throughout the experimental period, confirming the biocompatibility of the scaffold. Therefore, we confirmed the possibility of using PLA mesh fabric as a reinforcement for PVA hydrogel to improve the strength of scaffolds for tissue regeneration, and we confirmed the potential of PLA mesh fabric as a reinforcement for various biomaterials.
Collapse
Affiliation(s)
- Young-Ho Seo
- Department of Advanced Organic Materials Engineering, Graduate School, Yeungnam University, Gyeongsan 38541, Republic of Korea;
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; (S.-Y.P.); (M.-H.K.); (S.-B.K.)
| | - Jae-Man Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sun-Young Park
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; (S.-Y.P.); (M.-H.K.); (S.-B.K.)
| | - Myung-Hoo Kim
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; (S.-Y.P.); (M.-H.K.); (S.-B.K.)
- Department of Animal Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Seon-Beom Kim
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; (S.-Y.P.); (M.-H.K.); (S.-B.K.)
- Department of Food Science & Technology, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
8
|
Vallmajo-Martin Q, Millan C, Müller R, Weber FE, Ehrbar M, Ghayor C. Enhanced bone regeneration in rat calvarial defects through BMP2 release from engineered poly(ethylene glycol) hydrogels. Sci Rep 2024; 14:4916. [PMID: 38418564 PMCID: PMC10901800 DOI: 10.1038/s41598-024-55411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
The clinical standard therapy for large bone defects, typically addressed through autograft or allograft donor tissue, faces significant limitations. Tissue engineering offers a promising alternative strategy for the regeneration of substantial bone lesions. In this study, we harnessed poly(ethylene glycol) (PEG)-based hydrogels, optimizing critical parameters including stiffness, incorporation of arginine-glycine-aspartic acid (RGD) cell adhesion motifs, degradability, and the release of BMP2 to promote bone formation. In vitro we demonstrated that human bone marrow derived stromal cell (hBMSC) proliferation and spreading strongly correlates with hydrogel stiffness and adhesion to RGD peptide motifs. Moreover, the incorporation of the osteogenic growth factor BMP2 into the hydrogels enabled sustained release, effectively inducing bone regeneration in encapsulated progenitor cells. When used in vivo to treat calvarial defects in rats, we showed that hydrogels of low and intermediate stiffness optimally facilitated cell migration, proliferation, and differentiation promoting the efficient repair of bone defects. Our comprehensive in vitro and in vivo findings collectively suggest that the developed hydrogels hold significant promise for clinical translation for bone repair and regeneration by delivering sustained and controlled stimuli from active signaling molecules.
Collapse
Affiliation(s)
- Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
- School of Life Sciences and School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Station 15, 1015, Lausanne, Switzerland
| | - Christopher Millan
- Department of Urology, University Hospital Zürich, University of Zürich, Wagistrasse 21, 8952, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Leopold-Ruzicka-Weg 8093, 8049, Zurich, Switzerland
| | - Franz E Weber
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zürich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland.
| | - Chafik Ghayor
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zürich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
9
|
Alonso-Fernández I, Haugen HJ, López-Peña M, González-Cantalapiedra A, Muñoz F. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review. Acta Biomater 2023; 168:1-21. [PMID: 37454707 DOI: 10.1016/j.actbio.2023.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
3D-printed composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. The aim of the study was to systematically review the feasibility of using PLA/bioceramic composite scaffolds manufactured by 3D-printing technologies as bone grafting materials in preclinical in vivo studies. Electronic databases were searched using specific search terms, and thirteen manuscripts were selected after screening. The synthesis of the scaffolds was carried out using mainly extrusion-based techniques. Likewise, hydroxyapatite was the most used bioceramic for synthesizing composites with a PLA matrix. Among the selected studies, seven were conducted in rats and six in rabbits, but the high variability that exists regarding the experimental process made it difficult to compare them. Regarding the results, PLA/Bioceramic composite scaffolds have shown to be biocompatible and mechanically resistant. Preclinical studies elucidated the ability of the scaffolds to be used as bone grafts, allowing bone growing without adverse reactions. In conclusion, PLA/Bioceramics scaffolds have been demonstrated to be a promising alternative for treating bone defects. Nevertheless, more care should be taken when designing and performing in vivo trials, since the lack of standardization of the processes, which prevents the comparison of the results and reduces the quality of the information. STATEMENT OF SIGNIFICANCE: 3D-printed polylactic acid/bioceramic composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. Since preclinical in vivo studies with animal models represent a mandatory step for clinical translation, the present manuscript analyzed and discussed not only those aspects related to the selection of the bioceramic material, the synthesis of the implants and their characterization. But provides a new approach to understand how the design and perform of clinical trials, as well as the selection of the analysis methods, may affect the obtained results, by covering authors' knowledgebase from veterinary medicine to biomaterial science. Thus, this study aims to systematically review the feasibility of using polylactic acid/bioceramic scaffolds as grafting materials in preclinical trials.
Collapse
Affiliation(s)
- Iván Alonso-Fernández
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Fernando Muñoz
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| |
Collapse
|
10
|
Liu X, Gao J, Cui X, Nie S, Wu X, Zhang L, Tang P, Liu J, Li M. Functionalized 3D-Printed PLA Biomimetic Scaffold for Repairing Critical-Size Bone Defects. Bioengineering (Basel) 2023; 10:1019. [PMID: 37760121 PMCID: PMC10526104 DOI: 10.3390/bioengineering10091019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The treatment of critical-size bone defects remains a complicated clinical challenge. Recently, bone tissue engineering has emerged as a potential therapeutic approach for defect repair. This study examined the biocompatibility and repair efficacy of hydroxyapatite-mineralized bionic polylactic acid (PLA) scaffolds, which were prepared through a combination of 3D printing technology, plasma modification, collagen coating, and hydroxyapatite mineralization coating techniques. Physicochemical analysis, mechanical testing, and in vitro and animal experiments were conducted to elucidate the impact of structural design and microenvironment on osteogenesis. Results indicated that the PLA scaffold exhibited a porosity of 84.1% and a pore size of 350 μm, and its macrostructure was maintained following functionalization modification. The functionalized scaffold demonstrated favorable hydrophilicity and biocompatibility and promoted cell adhesion, proliferation, and the expression of osteogenic genes such as ALP, OPN, Col-1, OCN, and RUNX2. Moreover, the scaffold was able to effectively repair critical-size bone defects in the rabbit radius, suggesting a novel strategy for the treatment of critical-size bone defects.
Collapse
Affiliation(s)
- Xiao Liu
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.); (J.G.)
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianpeng Gao
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.); (J.G.)
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Xiang Cui
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Shaobo Nie
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Xiaoyong Wu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Peifu Tang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|
11
|
Lee SH, Kang MS, Jeon S, Jo HJ, Hong SW, Kim B, Han DW. 3D bioprinting of human mesenchymal stem cells-laden hydrogels incorporating MXene for spontaneous osteodifferentiation. Heliyon 2023; 9:e14490. [PMID: 36994406 PMCID: PMC10040522 DOI: 10.1016/j.heliyon.2023.e14490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Contemporary advances in three-dimensional (3D) bioprinting technologies have enabled the fabrication of tailored live 3D tissue mimetics. Furthermore, the development of advanced bioink materials has been highlighted to accurately reproduce the composition of a native extracellular matrix and mimic the intrinsic properties of laden cells. Recent research has shown that MXene is one of promising nanobiomaterials with osteogenic activity for bone grafts and scaffolds due to its unique atomic structure of three titanium layers between two carbon layers. In this study, the MXene-incorporated gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) (i.e., GelMA/HAMA-MXene) bioinks were prepared to explore if they have the potential to enable the spontaneous osteodifferentiation of human mesenchymal stem cells (hMSCs) when the hMSCs-laden GelMA/HAMA-MXene bioinks were 3D printed. The physicochemical and rheological characteristics of the GelMA/HAMA-MXene hydrogels were proven to be unprecedentedly favorable supportive matrices suited for the growth and survival of hMSCs. Furthermore, hMSCs were shown to spontaneously differentiate into osteoblasts within GelMA-HAMA/MXene composites to provide favorable microenvironments for osteogenesis. Therefore, our results suggest that the remarkable biofunctional advantages of the MXene-incorporated GelMA/HAMA bioink can be utilized in a wide range of strategies for the development of effective scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute / Innovation Research & Support Center for Dental Science, Seoul 8 National University Dental Hospital, Seoul, 03080, Republic of Korea
- Corresponding author.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
- Corresponding author. Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
12
|
Lee HY, Kim DS, Hwang GY, Lee JK, Lee HL, Jung JW, Hwang SY, Baek SW, Yoon SL, Ha Y, Kim KN, Han I, Han DK, Lee CK. Multi-modulation of immune-inflammatory response using bioactive molecule-integrated PLGA composite for spinal fusion. Mater Today Bio 2023; 19:100611. [PMID: 36969699 PMCID: PMC10034518 DOI: 10.1016/j.mtbio.2023.100611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Despite current developments in bone substitute technology for spinal fusion, there is a lack of adequate materials for bone regeneration in clinical applications. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is commercially available, but a severe inflammatory response is a known side effect. Bone graft substitutes that enhance osteogenesis without adverse effects are needed. We developed a bioactive molecule-laden PLGA composite with multi-modulation for bone fusion. This bioresorbable composite scaffold was considered for bone tissue engineering. Among the main components, magnesium hydroxide (MH) aids in reduction of acute inflammation affecting disruption of new bone formation. Decellularized bone extracellular matrix (bECM) and demineralized bone matrix (DBM) composites were used for osteoconductive and osteoinductive activities. A bioactive molecule, polydeoxyribonucleotide (PDRN, PN), derived from trout was used for angiogenesis during bone regeneration. A nano-emulsion method that included Span 80 was used to fabricate bioactive PLGA-MH-bECM/DBM-PDRN (PME2/PN) composite to obtain a highly effective and safe scaffold. The synergistic effect provided by PME2/PN improved not only osteogenic and angiogenic gene expression for bone fusion but also improved immunosuppression and polarization of macrophages that were important for bone tissue repair, using a rat model of posterolateral spinal fusion (PLF). It thus had sufficient biocompatibility and bioactivity for spinal fusion.
Collapse
Affiliation(s)
- Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gwang Yong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sae Yeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sol lip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Keung Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bungdang Medical Center, Gyeonggi-do, 13496, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
- Corresponding author.
| | - Chang Kyu Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
13
|
Kang MS, Jang J, Jo HJ, Kim WH, Kim B, Chun HJ, Lim D, Han DW. Advances and Innovations of 3D Bioprinting Skin. Biomolecules 2022; 13:55. [PMID: 36671440 PMCID: PMC9856167 DOI: 10.3390/biom13010055] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Three-dimensional (3D) bioprinted skin equivalents are highlighted as the new gold standard for alternative models to animal testing, as well as full-thickness wound healing. In this review, we focus on the advances and innovations of 3D bioprinting skin for skin regeneration, within the last five years. After a brief introduction to skin anatomy, 3D bioprinting methods and the remarkable features of recent studies are classified as advances in materials, structures, and functions. We will discuss several ways to improve the clinical potential of 3D bioprinted skin, with state-of-the-art printing technology and novel biomaterials. After the breakthrough in the bottleneck of the current studies, highly developed skin can be fabricated, comprising stratified epidermis, dermis, and hypodermis with blood vessels, nerves, muscles, and skin appendages. We hope that this review will be priming water for future research and clinical applications, that will guide us to break new ground for the next generation of skin regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jinju Jang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Won-Hyeon Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dohyung Lim
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Hong YR, Kim TH, Park KH, Kang J, Lee K, Park EK, Kwon TG, Lim JO, Oh CW. rhBMP-2-Conjugated Three-Dimensional-Printed Poly(L-lactide) Scaffold is an Effective Bone Substitute. Tissue Eng Regen Med 2022; 20:69-81. [PMID: 36512177 PMCID: PMC9852414 DOI: 10.1007/s13770-022-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bone growth factors, particularly bone morphogenic protein-2 (BMP-2), are required for effective treatment of significant bone loss. Despite the extensive development of bone substitutes, much remains to be desired for wider application in clinical settings. The currently available bone substitutes cannot sustain prolonged BMP-2 release and are inconvenient to use. In this study, we developed a ready-to-use bone substitute by sequential conjugation of BMP to a three-dimensional (3D) poly(L-lactide) (PLLA) scaffold using novel molecular adhesive materials that reduced the operation time and sustained prolonged BMP release. METHODS A 3D PLLA scaffold was printed and BMP-2 was conjugated with alginate-catechol and collagen. PLLA scaffolds were conjugated with different concentrations of BMP-2 and evaluated for bone regeneration in vitro and in vivo using a mouse calvarial model. The BMP-2 release kinetics were analyzed using ELISA. Histological analysis and micro-CT image analysis were performed to evaluate new bone formation. RESULTS The 3D structure of the PLLA scaffold had a pore size of 400 µm and grid thickness of 187-230 µm. BMP-2 was released in an initial burst, followed by a sustained release for 14 days. Released BMP-2 maintained osteoinductivity in vitro and in vivo. Micro-computed tomography and histological findings demonstrate that the PLLA scaffold conjugated with 2 µg/ml of BMP-2 induced optimal bone regeneration. CONCLUSION The 3D-printed PLLA scaffold conjugated with BMP-2 enhanced bone regeneration, demonstrating its potential as a novel bone substitute.
Collapse
Affiliation(s)
- Yu Ri Hong
- Joint Institute for Regenerative Medicine, Kyungpook National University, Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Republic of Korea
| | - Tae-Ho Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Republic of Korea
| | - Kyeong-Hyeon Park
- School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Jumi Kang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jeong Ok Lim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Republic of Korea.
- School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Chang-Wug Oh
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
15
|
Raja IS, Kang MS, Hong SW, Bae H, Kim B, Hwang YS, Cha JM, Han DW. State-of-the-art techniques for promoting tissue regeneration: Combination of three-dimensional bioprinting and carbon nanomaterials. Int J Bioprint 2022; 9:635. [PMID: 36844243 PMCID: PMC9947385 DOI: 10.18063/ijb.v9i1.635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022] Open
Abstract
181Biofabrication approaches, such as three-dimensional (3D) bioprinting of hydrogels, have recently garnered increasing attention, especially in the construction of 3D structures that mimic the complexity of tissues and organs with the capacity for cytocompatibility and post-printing cellular development. However, some printed gels show poor stability and maintain less shape fidelity if parameters such as polymer nature, viscosity, shear-thinning behavior, and crosslinking are affected. Therefore, researchers have incorporated various nanomaterials as bioactive fillers into polymeric hydrogels to address these limitations. Carbon-family nanomaterials (CFNs), hydroxyapatites, nanosilicates, and strontium carbonates have been incorporated into printed gels for application in various biomedical fields. In this review, following the compilation of research publications on CFNs-containing printable gels in various tissue engineering applications, we discuss the types of bioprinters, the prerequisites of bioink and biomaterial ink, as well as the progress and challenges of CFNs-containing printable gels in this field.
Collapse
Affiliation(s)
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, South Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, South Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, South Korea,Corresponding authors: Jae Min Cha () Dong-Wook Han ()
| | - Dong-Wook Han
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, South Korea,Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea,Corresponding authors: Jae Min Cha () Dong-Wook Han ()
| |
Collapse
|
16
|
Chimeric Virus-like Particles Co-Displaying Hemagglutinin Stem and the C-Terminal Fragment of DnaK Confer Heterologous Influenza Protection in Mice. Viruses 2022; 14:v14102109. [PMID: 36298664 PMCID: PMC9610613 DOI: 10.3390/v14102109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus hemagglutinin (HA) stem is currently regarded as an extremely promising immunogen for designing universal influenza vaccines. The appropriate antigen-presenting vaccine vector would be conducive to increasing the immunogenicity of the HA stem antigen. In this study, we generated chimeric virus-like particles (cVLPs) co-displaying the truncated C-terminal of DnaK from Escherichia coli and H1 stem or full-length H1 antigen using the baculovirus expression system. Transmission electronic micrography revealed the expression and presentation of H1 stem antigens on the surface of VLPs. Vaccinations of mice with the H1 stem cVLPs induced H1-specific immune responses and provided heterologous immune protection in vivo, which was more effective than vaccinations with VLPs displaying H1 stem alone in protecting mice against weight loss as well as increasing survival rates after lethal influenza viral challenge. The results indicate that the incorporation of the truncated C-terminal of DnaK as an adjuvant protein into the cVLPs significantly enhances the H1-specific immunity and immune protection. We have explicitly identified the VLP platform as an effective way of expressing HA stem antigen and revealed that chimeric VLP is an vaccine vector for developing HA stem-based universal influenza vaccines.
Collapse
|
17
|
Tagami T, Okamura M, Ogawa K, Ozeki T. Fabrication of Mucoadhesive Films Containing Pharmaceutical Ionic Liquid and Eudragit Polymer Using Pressure-Assisted Microsyringe-Type 3D Printer for Treating Oral Mucositis. Pharmaceutics 2022; 14:pharmaceutics14091930. [PMID: 36145678 PMCID: PMC9505851 DOI: 10.3390/pharmaceutics14091930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Oral mucositis in the oral cavity, caused by radiation therapy and chemotherapy, requires personalized care and therapy due to variations in the lesions of patients. In the present study, we fabricated a model of personalized oral film containing an ibuprofen/lidocaine ionic liquid (IL) for patients with oral mucositis using a pressure-assisted microsyringe-type 3D printer at room temperature. The film contained a Eudragit polymer (L100, EPO, or RSPO) to make the film solid, and the printer ink was composed of organo ink (organic solvent to dissolve both drugs and the Eudragit polymer). The viscosity of the printer ink was assessed to investigate its extrudability. The contact angle and the surface tension at the interface between each liquid printer ink and a solid polypropylene sheet were measured to determine the retention of the ink in 3D printing. The physical properties of IL-loaded Eudragit-based dry films were examined by X-ray diffraction and differential scanning calorimetry. Dissolution tests indicated that IL-loaded films containing a Eudragit polymer exhibited different drug release rates in phosphate buffer (pH 6.8; Eudragit L100 > IL alone > Eudragit EPO > Eudragit RSPO). These results provide useful information for the specific fabrication of IL-loaded polymer-based films using organo inks and pressure-assisted microsyringe-type 3D printers.
Collapse
Affiliation(s)
- Tatsuaki Tagami
- Correspondence: (T.T.); (T.O.); Tel.: +81-52-836-3463 (T.O.)
| | | | | | - Tetsuya Ozeki
- Correspondence: (T.T.); (T.O.); Tel.: +81-52-836-3463 (T.O.)
| |
Collapse
|