1
|
Burrow CJ, Young GC, Lu J. A 3D braincase of the early jawed vertebrate Palaeospondylus from Australia. Natl Sci Rev 2025; 12:nwae444. [PMID: 40191254 PMCID: PMC11970237 DOI: 10.1093/nsr/nwae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 04/09/2025] Open
Abstract
Palaeospondylus gunni Traquair, 1890, is represented by thousands of similarly preserved articulated fossils from the Achannaras quarry (∼390 Mya) in Caithness, Scotland. With radically different interpretations of its structure, it has been assigned to almost all major jawless and jawed vertebrate groups. Here we report a new and older species of Palaeospondylus from the Early Devonian of Australia (c. 400 Ma), investigated using high-resolution computed tomography. Its 3D-preserved braincase demonstrates a combination of primitive gnathostome features including an anteriorly positioned transverse cranial fissure of uncertain homology, a large dorsal fontanelle and a small hypophysial fossa. Contrary to recent interpretations of P. gunni, the new braincase shows that Palaeospondylus lacks both a postorbital process and an intracranial joint. Our new Australian species extends the history of Palaeospondylus back some 10 million years prior to its occurrence in Scotland. The newly identified neurocranial characters have been coded into a phylogenetic analysis that places Palaeospondylus as a sister group of the Chondrichthyes, but some neurocranial characters could indicate a phylogenetic position within the gnathostome stem group.
Collapse
Affiliation(s)
| | - Gavin C Young
- Department of Materials Physics, Australian National University, Canberra 2600, Australia
- Australian Museum Research Institute, Australian Museum, Sydney 2010, Australia
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ahlberg PE. Re-examining the strangest early vertebrate. Natl Sci Rev 2025; 12:nwaf021. [PMID: 40191257 PMCID: PMC11970242 DOI: 10.1093/nsr/nwaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 04/09/2025] Open
|
3
|
Brownstein CD, Near TJ. Colonization of the ocean floor by jawless vertebrates across three mass extinctions. BMC Ecol Evol 2024; 24:79. [PMID: 38867201 PMCID: PMC11170801 DOI: 10.1186/s12862-024-02253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The deep (> 200 m) ocean floor is often considered to be a refugium of biodiversity; many benthic marine animals appear to share ancient common ancestry with nearshore and terrestrial relatives. Whether this pattern holds for vertebrates is obscured by a poor understanding of the evolutionary history of the oldest marine vertebrate clades. Hagfishes are jawless vertebrates that are either the living sister to all vertebrates or form a clade with lampreys, the only other surviving jawless fishes. RESULTS We use the hagfish fossil record and molecular data for all recognized genera to construct a novel hypothesis for hagfish relationships and diversification. We find that crown hagfishes persisted through three mass extinctions after appearing in the Permian ~ 275 Ma, making them one of the oldest living vertebrate lineages. In contrast to most other deep marine vertebrates, we consistently infer a deep origin of continental slope occupation by hagfishes that dates to the Paleozoic. Yet, we show that hagfishes have experienced marked body size diversification over the last hundred million years, contrasting with a view of this clade as morphologically stagnant. CONCLUSION Our results establish hagfishes as ancient members of demersal continental slope faunas and suggest a prolonged accumulation of deep sea jawless vertebrate biodiversity.
Collapse
Affiliation(s)
- Chase Doran Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA.
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
- Yale Peabody Museum, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
4
|
Brownstein CD. Palaeospondylus and the early evolution of gnathostomes. Nature 2023; 620:E20-E22. [PMID: 37612401 DOI: 10.1038/s41586-023-06434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Chase Doran Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Stamford Museum and Nature Center, Stamford, CT, USA.
| |
Collapse
|
5
|
Fernández JM, Janvier P. Clues to the identity of the fossil fish Palaeospondylus. Nature 2022; 606:35-37. [PMID: 35614258 DOI: 10.1038/d41586-022-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
7
|
Johanson Z, Smith M, Sanchez S, Senden T, Trinajstic K, Pfaff C. Questioning hagfish affinities of the enigmatic Devonian vertebrate Palaeospondylus. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170214. [PMID: 28791148 PMCID: PMC5541543 DOI: 10.1098/rsos.170214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Palaeospondylus gunni Traquair, 1890 is an enigmatic Devonian vertebrate whose taxonomic affinities have been debated since it was first described. Most recently, Palaeospondylus has been identified as a stem-group hagfish (Myxinoidea). However, one character questioning this assignment is the presence of three semicircular canals in the otic region of the cartilaginous skull, a feature of jawed vertebrates. Additionally, new tomographic data reveal that the following characters of crown-group gnathostomes (chondrichthyans + osteichthyans) are present in Palaeospondylus: a longer telencephalic region of the braincase, separation of otic and occipital regions by the otico-occipital fissure, and vertebral centra. As well, a precerebral fontanelle and postorbital articulation of the palatoquadrate are characteristic of certain chondrichthyans. Similarities in the structure of the postorbital process to taxa such as Pucapampella, and possible presence of the ventral cranial fissure, both support a resolution of Pa. gunni as a stem chondrichthyan. The internally mineralized cartilaginous skeleton in Palaeospondylus may represent a stage in the loss of bone characteristic of the Chondrichthyes.
Collapse
Affiliation(s)
- Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Moya Smith
- Department of Earth Sciences, Natural History Museum, London, UK
- Tissue Engineering and Biophotonics, Dental Institute, King's College London, London, UK
| | - Sophie Sanchez
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- European Synchrotron Radiation Facility, Grenoble, France
| | - Tim Senden
- Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kate Trinajstic
- Environment and Agriculture, Curtin University, Kent Street, Bentley, Perth, Australia
| | - Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S. Reconstructing the ancestral vertebrate brain. Dev Growth Differ 2017; 59:163-174. [DOI: 10.1111/dgd.12347] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology; Hyogo College of Medicine; Nishinomiya 663-8501 Japan
- Evolutionary Morphology Laboratory; RIKEN; Kobe 650-0047 Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering; Ehime University; Matsuyama 790-8577 Japan
| | | | | |
Collapse
|
9
|
Cervantes-Diaz F, Contreras P, Marcellini S. Evolutionary origin of endochondral ossification: the transdifferentiation hypothesis. Dev Genes Evol 2017; 227:121-127. [PMID: 27909803 DOI: 10.1007/s00427-016-0567-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
The vertebrate endoskeleton results from the piecemeal assembly of bone and cartilage as well as additional types of calcified extracellular matrices produced by seemingly hybrid cell types of intermediate phenotypes between osteoblasts and chondrocytes. Hence, shedding light on the emergence and subsequent diversification of skeletal tissues represents a major challenge in vertebrate evolutionary developmental biology. A 150-year-old debate in the field was recently solved by lineage tracing experiments demonstrating that, during mouse endochondral bone development, a subset of chondrocytes evades apoptosis and transdifferentiates into osteoblasts at the chondro-osseous junction. Here, we interpret these new data from a broad phylogenetic perspective, integrating fossil, histological, cellular, and genetic evidence from a wide range of vertebrates. We propose a testable scenario according to which transdifferentiation played a fundamental role in the emergence of endochondral ossification, an osteichthyan-specific evolutionary novelty. The remarkable skeletal cell plasticity might be contingent on the similar architectures of the osteoblastic and chondrocytic gene regulatory networks, thereby providing a unifying mechanism underlying both complete transdifferentiation as well as partial cell type conversions observed in intermediate skeletal tissues such as the chondroid bone or globuli ossei.
Collapse
Affiliation(s)
- Fret Cervantes-Diaz
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Pedro Contreras
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile.
| |
Collapse
|
10
|
Sánchez-Villagra MR, Forasiepi AM. On the development of the chondrocranium and the histological anatomy of the head in perinatal stages of marsupial mammals. ZOOLOGICAL LETTERS 2017; 3:1. [PMID: 28203388 PMCID: PMC5303607 DOI: 10.1186/s40851-017-0062-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/07/2017] [Indexed: 05/06/2023]
Abstract
An overview of the literature on the chondrocranium of marsupial mammals reveals a relative conservatism in shape and structures. We document the histological cranial anatomy of individuals representing Monodelphis domestica, Dromiciops gliroides, Perameles sp. and Macropus eugenii. The marsupial chondrocranium is generally characterized by the great breadth of the lamina basalis, absence of pila metoptica and large otic capsules. Its most anterior portion (cupula nasi anterior) is robust, and anterior to it there are well-developed tactile sensory structures, functionally important in the neonate. Investigations of ossification centers at and around the nasal septum are needed to trace the presence of certain bones (e.g., mesethmoid, parasphenoid) across marsupial taxa. In many adult marsupials, the tympanic floor is formed by at least three bones: alisphenoid (alisphenoid tympanic process), ectotympanic and petrosal (rostral and caudal tympanic processes); the squamosal also contributes in some diprotodontians. The presence of an entotympanic in marsupials has not been convincingly demonstrated. The tubal element surrounding the auditory tube in most marsupials is fibrous connective tissue rather than cartilage; the latter is the case in most placentals recorded to date. However, we detected fibrocartilage in a late juvenile of Dromiciops, and a similar tissue has been reported for Tarsipes. Contradictory reports on the presence of the tegmen tympani can be found in the literature. We describe a small tegmen tympani in Macropus. Several heterochronic shifts in the timing of development of the chondocranium and associated structures (e.g., nerves, muscles) and in the ossification sequence have been interpreted as largely being influenced by functional requirements related to the altriciality of the newborn marsupial during early postnatal life. Comparative studies of chondocranial development of mammals can benefit from a solid phylogenetic framework, research on non-classical model organisms, and integration with imaging and sectional data derived from computer-tomography.
Collapse
Affiliation(s)
- Marcelo R. Sánchez-Villagra
- Paläontologisches Institut und Museum der Universität Zürich, Karl Schmid Strasse 4, Zürich, 8006 Switzerland
| | | |
Collapse
|
11
|
Kuratani S, Fukatsu T. Paleontological Studies Integrated into a New Evolutionary Zoology. Zoolog Sci 2017; 34:1-4. [PMID: 28148209 DOI: 10.2108/zs160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zoological Letters, an open access online journal launched in 2015 is entering its third year of publication, and now seeks to drive new insights in evolutionary and comparative zoology by the inclusion of paleontological studies into its scope.
Collapse
Affiliation(s)
- Shigeru Kuratani
- 1 Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Takema Fukatsu
- 2 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| |
Collapse
|