1
|
Xia C, Jin G, Khan F, Kim HW, Jang YH, Jung N, Kim Y, Chon TS. A Computational Analysis Based on Automatic Digitization of Movement Tracks Reveals the Altered Diurnal Behavior of the Western Flower Thrips, Frankliniella occidentalis, Suppressed in PKG Expression. INSECTS 2025; 16:320. [PMID: 40266787 PMCID: PMC11943175 DOI: 10.3390/insects16030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
The western flower thrips, Frankliniella occidentalis, a worldwide insect pest with its polyphagous feeding behavior and capacity to transmit viruses, follows a diurnal rhythmicity driven by expression of the circadian clock genes. However, it remained unclear how the clock signal triggers the thrips behaviors. This study posed a hypothesis that the clock signal modulates cGMP-dependent protein kinase (PKG) activity to mediate the diurnal behaviors. A PKG gene is encoded in F. occidentalis and exhibits high sequence homologies with those of honeybee and fruit fly. Interestingly, its expression followed a diel pattern with high expression during photophase in larvae and adults of F. occidentalis. It is noteworthy that PKG expression was clearly observed in the midgut during photophase but not in scotophase from our fluorescence in situ hybridization analysis. A prediction of protein-protein interaction suggested its functional association with clock genes. To test this functional link, RNA interference (RNAi) of the PKG gene expression was performed by feeding a gene-specific double-stranded RNA, which led to significant alteration of the two clock genes (Clock and Period) in their expression levels. The RNAi treatment caused adverse effects on early-life development and adult fecundity. To further analyze the role of PKG in affecting diurnal behavior, the adult females were continuously observed for a 24 h period with an automatic digitization device to obtain movement parameters and durations (%) in different micro-areas in the observation arena. Diel difference was observed with speed in RNAi-control females at 0.16 mm/s and 0.08 mm/s, in photo- and scotophase, respectively, whereas diel difference was not observed for the PKG-specific RNAi-treated females, which showed 0.07 mm/s and 0.06 mm/s, respectively. The diel difference was also observed in durations (%) in the control females, more strongly in the intermediate area in the observation arena. Speed and durations in the different micro-areas in mid-scotophase were significantly different from most photophase in the control females, while speed was significantly different mainly during late photophase when comparing effects of control and RNAi treatments in each light phase. Three sequential stages consisting of high activity followed by feeding and visiting of micro-areas were observed for the control females. For RNAi-treated females, the three phases were disturbed with irregular speed and visits to micro-areas. These results suggest that PKG is associated with implementing the diurnal behavior of F. occidentalis by interacting with expressions of the circadian clock genes.
Collapse
Affiliation(s)
- Chunlei Xia
- Research and Development, Ecology and Future Research Institute (EnFRI), Busan 46241, Republic of Korea; (C.X.); (H.-W.K.); (Y.-H.J.); (N.J.)
- Research Institute of Computer, Information and Communication, Pusan National University, Busan 46241, Republic of Korea
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (G.J.); (F.K.)
| | - Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (G.J.); (F.K.)
| | - Hye-Won Kim
- Research and Development, Ecology and Future Research Institute (EnFRI), Busan 46241, Republic of Korea; (C.X.); (H.-W.K.); (Y.-H.J.); (N.J.)
- Department of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yong-Hyeok Jang
- Research and Development, Ecology and Future Research Institute (EnFRI), Busan 46241, Republic of Korea; (C.X.); (H.-W.K.); (Y.-H.J.); (N.J.)
| | - Nam Jung
- Research and Development, Ecology and Future Research Institute (EnFRI), Busan 46241, Republic of Korea; (C.X.); (H.-W.K.); (Y.-H.J.); (N.J.)
- Research Institute of Computer, Information and Communication, Pusan National University, Busan 46241, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (G.J.); (F.K.)
| | - Tae-Soo Chon
- Research and Development, Ecology and Future Research Institute (EnFRI), Busan 46241, Republic of Korea; (C.X.); (H.-W.K.); (Y.-H.J.); (N.J.)
- Research Institute of Computer, Information and Communication, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Tobita H, Kiuchi T. Knockout of cryptochrome 1 disrupts circadian rhythm and photoperiodic diapause induction in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104153. [PMID: 38964485 DOI: 10.1016/j.ibmb.2024.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.
Collapse
Affiliation(s)
- Hisashi Tobita
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Sun T, Yang F, Zhang H, Yang Y, Lu Z, Zhai B, Xu H, Lu J, Lu Y, Wang Y, Guo J, Hu G. CRY1 is involved in the take-off behaviour of migratory Cnaphalocrocis medinalis individuals. BMC Biol 2024; 22:169. [PMID: 39135045 PMCID: PMC11320853 DOI: 10.1186/s12915-024-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Numerous insect species undertake long-distance migrations on an enormous scale, with great implications for ecosystems. Given that take-off is the point where it all starts, whether and how the external light and internal circadian rhythm are involved in regulating the take-off behaviour remains largely unknown. Herein, we explore this issue in a migratory pest, Cnaphalocrocis medinalis, via behavioural observations and RNAi experiments. RESULTS The results showed that C. medinalis moths took off under conditions where the light intensity gradually weakened to 0.1 lx during the afternoon or evening, and the take-off proportions under full spectrum or blue light were significantly higher than that under red and green light. The ultraviolet-A/blue light-sensitive type 1 cryptochrome gene (Cmedcry1) was significantly higher in take-off moths than that of non-take-off moths. In contrast, the expression of the light-insensitive CRY2 (Cmedcry2) and circadian genes (Cmedtim and Cmedper) showed no significant differences. After silencing Cmedcry1, the take-off proportion significantly decreased. Thus, Cmedcry1 is involved in the decrease in light intensity induced take-off behaviour in C. medinalis. CONCLUSIONS This study can help further explain the molecular mechanisms behind insect migration, especially light perception and signal transmission during take-off phases.
Collapse
Affiliation(s)
- Tianyi Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fan Yang
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan, 430345, China
| | - Haiyan Zhang
- Station of Plant Protection and Plant Inspection, Agricultural Technology Extension Centre of Jiangyan District, Taizhou, 225529, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Baoping Zhai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiahao Lu
- Songjiang Agriculture Technology Extension Centre, Shanghai, 201600, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yumeng Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, 550005, China.
| |
Collapse
|
4
|
Tomioka K, Takeuchi K, Matsuka M, Moriyama Y. Reciprocal Coupling of Circadian Clocks in the Compound Eye and Optic Lobe in the Cricket Gryllus bimaculatus. Zoolog Sci 2024; 41:407-415. [PMID: 39093287 DOI: 10.2108/zs230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/22/2024] [Indexed: 08/04/2024]
Abstract
The circadian system comprises multiple clocks, including central and peripheral clocks. The central clock generally governs peripheral clocks to synchronize circadian rhythms throughout the animal body. However, whether the peripheral clock influences the central clock is unclear. This issue can be addressed through a system comprising a peripheral clock (compound eye clock [CE clock]) and central clock (the optic lobe [OL] clock) in the cricket Gryllus bimaculatus. We previously found that the compound eye regulates the free-running period (τ) and the stability of locomotor rhythms driven by the OL clock, as measured by the daily deviation of τ at 30°C. However, the role of the CE clock in this regulation remains unexplored. In this study, we investigated the importance of the CE clock in this regulation using RNA interference (RNAi) of the period (per) gene localized to the compound eye (perCE-RNAi). The perCE-RNAi abolished the compound eye rhythms of the electroretinogram (ERG) amplitude and clock gene expression but the locomotor rhythm driven by the OL clock was maintained. The locomotor rhythm of the tested crickets showed a significantly longer τ and greater daily variation of τ than those of control crickets treated with dsDsRed2. The variation of τ was comparable with that of crickets with the optic nerve severed. The τ was considerably longer but was comparable with that of crickets with the optic nerve severed. These results suggest that the CE clock regulates the OL clock to maintain and stabilize τ.
Collapse
Affiliation(s)
- Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| | - Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
5
|
Kaniewska MM, Chvalová D, Dolezel D. Impact of photoperiod and functional clock on male diapause in cryptochrome and pdf mutants in the linden bug Pyrrhocoris apterus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:575-584. [PMID: 37302092 DOI: 10.1007/s00359-023-01647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Numerous insect species living in temperate regions survive adverse conditions, such as winter, in a state of developmental arrest. The most reliable cue for anticipating seasonal changes is the day-to-night ratio, the photoperiod. The molecular mechanism of the photoperiodic timer in insects is mostly unclear. Multiple pieces of evidence suggest the involvement of circadian clock genes, however, their role might be independent of their well-established role in the daily oscillation of the circadian clock. Furthermore, reproductive diapause is preferentially studied in females, whereas males are usually used for circadian clock research. Given the idiosyncrasies of male and female physiology, we decided to test male reproductive diapause in a strongly photoperiodic species, the linden bug Pyrrhocoris apterus. The data indicate that reproduction is not under circadian control, whereas the photoperiod strongly determines males' mating capacity. Clock mutants in pigment dispersing factor and cryptochrome-m genes are reproductive even in short photoperiod. Thus, we provide additional evidence of the participation of circadian clock genes in the photoperiodic time measurement in insects.
Collapse
Affiliation(s)
- Magdalena Maria Kaniewska
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Daniela Chvalová
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - David Dolezel
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
6
|
Takeuchi K, Tomioka K. OpsinLW2 serves as a circadian photoreceptor in the entrainment of circadian locomotor rhythm of a firebrat. JOURNAL OF INSECT PHYSIOLOGY 2024; 155:104636. [PMID: 38609008 DOI: 10.1016/j.jinsphys.2024.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Photic entrainment is an essential function of the circadian clock, which enables organisms to set the appropriate timing of daily behavioral and physiological events. Recent studies have shown that the mechanisms of the circadian clock and photic entrainment vary among insect species. This study aimed to elucidate the circadian photoreceptors necessary for photic entrainment in firebrats Thermobia domestica, one of the most primitive apterygote insects. A homology search of publicly available RNA sequence (RNA-seq) data from T. domestica exhibited a cryptochrome 2 (cry2) gene and three opsin genes, opsin long wavelength 1 (opLW1), opLW2, and opUV, as candidate circadian photoreceptors. We examined the possible involvement of these genes in photic entrainment of firebrat locomotor rhythms. Firebrats had the highest entrainability to the light-dark cycle of green light. Treatment with dsRNA of the candidate genes strongly downregulated the respective targeted genes, and in the case of opsin genes, other untargeted genes were occasionally downregulated to various degrees. Under constant light, most control firebrats became arrhythmic, whereas a fraction of those treated with double RNAi of the two opLWs remained rhythmic. Behavioral experiments revealed that the transient cycles necessary for re-entrainment to shifted light cycles were lengthened when opLW2 expression was reduced. These results suggest that opLW2 is involved in the photic entrainment of circadian rhythm in firebrats.
Collapse
Affiliation(s)
- Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
7
|
Levy K, Barnea A, Tauber E, Ayali A. Crickets in the spotlight: exploring the impact of light on circadian behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:267-279. [PMID: 38252321 PMCID: PMC10994875 DOI: 10.1007/s00359-023-01686-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, 4353701, Ra'anana, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 3103301, Haifa, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
8
|
Kemmler CL, Smolikova J, Moran HR, Mannion BJ, Knapp D, Lim F, Czarkwiani A, Hermosilla Aguayo V, Rapp V, Fitch OE, Bötschi S, Selleri L, Farley E, Braasch I, Yun M, Visel A, Osterwalder M, Mosimann C, Kozmik Z, Burger A. Conserved enhancer logic controls the notochord expression of vertebrate Brachyury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.536761. [PMID: 37131681 PMCID: PMC10153258 DOI: 10.1101/2023.04.20.536761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cell type-specific expression of key transcription factors is central to development. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three Brachyury-controlling notochord enhancers T3, C, and I in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, deletion of all three enhancers in mouse abolishes Brachyury/T expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. Sequence and functional conservation of Brachyury-driving notochord enhancers with the brachyury/tbxtb loci from diverse lineages of fishes dates their origin to the last common ancestor of jawed vertebrates. Our data define the enhancers for Brachyury/T/TBXTB notochord expression as ancient mechanism in axis development.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jana Smolikova
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Hannah R. Moran
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon J. Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Dunja Knapp
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Fabian Lim
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Anna Czarkwiani
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Vincent Rapp
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Olivia E. Fitch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Seraina Bötschi
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Emma Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Maximina Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Berne University Hospital, Berne, Switzerland
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Takeuchi K, Matsuka M, Shinohara T, Hamada M, Tomiyama Y, Tomioka K. Fbxl4 Regulates the Photic Entrainment of Circadian Locomotor Rhythms in the Cricket Gryllus bimaculatus. Zoolog Sci 2023; 40:53-63. [PMID: 36744710 DOI: 10.2108/zs220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/12/2022] [Indexed: 01/18/2023]
Abstract
Photic entrainment is an essential property of the circadian clock that sets the appropriate timing of daily behavioral and physiological events. However, the molecular mechanisms underlying the entrainment remain largely unknown. In the cricket Gryllus bimaculatus, the immediate early gene c-fosB plays an important role in photic entrainment, followed by a mechanism involving cryptochromes (crys). However, the association between c-fosB expression and crys remains unclear. In the present study, using RNA-sequencing analysis, we found that five Fbxl family genes (Fbxl4, Fbxl5, Fbxl16, Fbxl-like1, and Fbxl-like2) encoding F-box and leucine-rich repeat proteins are likely involved in the mechanism following light-dependent c-fosB induction. RNA interference (RNAi) of c-fosA/B significantly downregulated Fbxls expression, whereas RNAi of the Fbxl genes exerted no effect on c-fosB expression. The Fbxl genes showed rhythmic expression under light-dark cycles (LDs) with higher expression levels in early day (Fbxl16), whole day (Fbxl-like1), or day-to-early night (Fbxl4, Fbxl5, and Fbxl-like2), whereas their expression was reduced in the dark. We then examined the effect of their RNAi on the photic entrainment of the locomotor rhythm and found that RNAi of Fbxl4 either disrupted or significantly delayed the re-entrainment of the locomotor rhythm to shifted LDs. These results suggest that light-induced c-fosB expression stimulates Fbxl4 expression to reset the circadian clock.
Collapse
Affiliation(s)
- Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tsugumichi Shinohara
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama 701-4303, Japan
| | - Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
10
|
Chen SP, Wang DF, Ma WF, Lin XL, Yang G. Knockout of cryptochrome 1 disturbs the locomotor circadian rhythm and development of Plutella xylostella. INSECT SCIENCE 2022. [PMID: 36380712 DOI: 10.1111/1744-7917.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Cryptochrome 1 (CRY1) functions as a light-responsive photoreceptor, which is crucial for circadian rhythms. The identity and function of CRY1 in Plutella xylostella remain unknown. In this study, cry1 was cloned and identified in P. xylostella. Then, a cry1-knockout strain (Cry1-KO) of P. xylostella with a 2-bp deletion was established from the strain Geneva 88 (G88) using the CRISPR/Cas9 technology. No daily temporal oscillation of cry1 was observed in G88 and Cry1-KO, and cry1 mean daily transcription of Cry1-KO was lower than that of G88. Both G88 and Cry1-KO demonstrated rhythmic locomotion under the light/dark condition with Cry1-KO being more active than G88 in the daytime, whereas Cry1-KO completely lost rhythmicity under constant darkness. The developmental period of pre-adult of Cry1-KO was longer than that of G88; the lifespan of the Cry1-KO male adult was shorter than that of G88; the fecundity of Cry1-KO was lower than that of G88; and Cry1-KO showed lower intrinsic rate of increase (r), net reproduction rate (R0 ), finite increase rate (λ), and longer mean generation time (T) than G88. Our results indicate that cry1 is involved in the regulation of locomotor circadian rhythm and development in P. xylostella, providing a potential target gene for controlling the pest and a basis for further investigation on circadian rhythms in lepidopterans.
Collapse
Affiliation(s)
- Shao-Ping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Dan-Feng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wei-Feng Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiao-Lu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
11
|
Levy K, Fishman B, Barnea A, Ayali A, Tauber E. Transcriptional Response of Circadian Clock Genes to an ‘Artificial Light at Night’ Pulse in the Cricket Gryllus bimaculatus. Int J Mol Sci 2022; 23:ijms231911358. [PMID: 36232659 PMCID: PMC9570371 DOI: 10.3390/ijms231911358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light–dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light–dark-regime-raised crickets were exposed for 30 min to a light pulse of 2–40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket’s circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Raanana 4353701, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel
- Correspondence: (A.A.); (E.T.)
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
- Correspondence: (A.A.); (E.T.)
| |
Collapse
|
12
|
Moriyama Y, Takeuchi K, Shinohara T, Miyagawa K, Matsuka M, Yoshii T, Tomioka K. Timeless Plays an Important Role in Compound Eye-Dependent Photic Entrainment of the Circadian Rhythm in the Cricket Gryllus bimaculatus. Zoolog Sci 2022; 39. [PMID: 35960036 DOI: 10.2108/zs220011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022]
Abstract
The light cycle is the most powerful Zeitgeber entraining the circadian clock in most organisms. Insects use CRYPTOCHROMEs (CRYs) and/or the compound eye for the light perception necessary for photic entrainment. The molecular mechanism underlying CRY-dependent entrainment is well understood, while that of the compound eye-dependent entrainment remains to be elucidated. Using molecular and behavioral experiments, we investigated the role of timeless (tim) in the photic entrainment mechanism in the cricket Gryllus bimaculatus. RNA interference of tim (timRNAi) disrupted the entrainment or prolonged the transients for resynchronization to phase-delayed light-dark cycles. The treatment reduced the magnitude of phase delay caused by delayed light-off, but augmented advance shifts caused by light exposure at late night. TIM protein levels showed daily cycling with an increase during the night and reduction by light exposure at both early and late night. These results suggest that tim plays a critical role in the entrainment to delayed light cycles.
Collapse
Affiliation(s)
- Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tsugumichi Shinohara
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Koichi Miyagawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
13
|
Moriyama Y, Takeuchi K, Tomioka K. Constant Light, Pdp1, and Tim Exert Influence on Free-Running Period of Locomotor Rhythms in the Cricket Gryllus bimaculatus. Zoolog Sci 2022; 39:459-467. [DOI: 10.2108/zs220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Homma S, Murata A, Ikegami M, Kobayashi M, Yamazaki M, Ikeda K, Daimon T, Numata H, Mizoguchi A, Shiomi K. Circadian Clock Genes Regulate Temperature-Dependent Diapause Induction in Silkworm Bombyx mori. Front Physiol 2022; 13:863380. [PMID: 35574475 PMCID: PMC9091332 DOI: 10.3389/fphys.2022.863380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
The bivoltine strain of the domestic silkworm, Bombyx mori, exhibits a facultative diapause phenotype that is determined by maternal environmental conditions during embryonic and larval development. Although a recent study implicated a circadian clock gene period (per) in circadian rhythms and photoperiod-induced diapause, the roles of other core feedback loop genes, including timeless (tim), Clock (Clk), cycle (cyc), and cryptochrome2 (cry2), have to be clarified yet. Therefore, the aim of this study was to elucidate the roles of circadian clock genes in temperature-dependent diapause induction. To achieve this, per, tim, Clk, cyc, and cry2 knockout (KO) mutants were generated, and the percentages of diapause and non-diapause eggs were determined. The results show that per, tim, Clk, cyc, and cry2 regulated temperature-induced diapause by acting upstream of cerebral γ-aminobutyric acid (GABA)ergic and diapause hormone signaling pathways. Moreover, the temporal expression of the clock genes in wild-type (wt) silkworms was significantly different from that of thermosensitive transient receptor potential ankyrin 1 (TRPA1) KO mutants during embryonic development. Overall, the findings of this study provide target genes for regulating temperature-dependent diapause induction in silkworms.
Collapse
Affiliation(s)
- Satoshi Homma
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Akihisa Murata
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Masato Ikegami
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Kento Ikeda
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
15
|
Barberà M, Collantes-Alegre JM, Martínez-Torres D. Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2022; 31:159-169. [PMID: 34743397 DOI: 10.1111/imb.12747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Aphids are paradigmatic photoperiodic animals often used to study the role of the circadian clock in the seasonal response. Previously, we described some elements of the circadian clock core (genes period and timeless) and output (melatonin, AANATs and PTTH) that could have a role in the regulation of the aphid seasonal response. More recently, we identified two opsins (C-ops and SWO4) as candidate input photoperiodic receptors. In the present report, we focus on the study of cryptochromes (cry) as photoreceptors of the circadian clock and discuss their involvement in the seasonal response. We analyse the expression of cry1 and cry2 genes in a circadian and seasonal context, and map their expression sites in the brain. We observe a robust rhythmic expression of cry2 peaking at dusk in phase with core clock genes period and timeless, while cry1 shows a weaker rhythm. Changes in cry1 and cry2 expression correlate with activation of the seasonal response, suggesting a possible link. Finally, we map the expression of cry1 and cry2 genes to clock neurons in the pars lateralis, a region essential for the photoperiodic response. Our results support a role for cry as elements of the aphid circadian clock and suggest a role in photoreception for cry1 and in clock repression for cry2.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, Paterna, València, Spain
| | | | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, Paterna, València, Spain
| |
Collapse
|
16
|
Xu JW, Li LL, Wang M, Yang HH, Yao WC, Dewer Y, Zhu XY, Zhang YN. Identification and dynamic expression profiling of circadian clock genes in Spodoptera litura provide new insights into the regulation of sex pheromone communication. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:78-90. [PMID: 35225175 DOI: 10.1017/s0007485321000559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.
Collapse
Affiliation(s)
- Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Meng Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
17
|
Ghazy NA, Suzuki T. Environmental RNAi-based reverse genetics in the predatory mite Neoseiulus californicus: Towards improved methods of biological control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104993. [PMID: 34955179 DOI: 10.1016/j.pestbp.2021.104993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The predatory mite Neoseiulus californicus (McGregor) (Mesostigmata: Phytoseiidae) has been commercialized by manufacturers in the pest control industry and is used worldwide as a natural enemy of spider mites. However, because its genome has not been sequenced, reverse genetics techniques that could be used to analyze gene function have not been established. Here we partially sequenced the gene that encodes the vacuolar-type H+-ATPase (V-ATPase), an ATP-dependent proton pump, in N. californicus (NcVATPase) and then conducted a functional analysis using environmental RNA interference (eRNAi) by orally administering sequence-specific exogenous dsRNA (dsRNA-NcVATPase) to larvae and adult females. The larvae treated with dsRNA-NcVATPase took longer to develop and had lower survivorship, fecundity, and offspring viability at the adult stage than those treated with a control dsRNA. Adult females treated with dsRNA-NcVATPase showed significant reductions in survival, fecundity, and prey consumption, and their endogenous gene expression level of NcVATPase was reduced by approximately 65% compared with the control. Our findings suggest that the NcVATPase gene, silencing of which inhibits feeding and reproduction, is an excellent biomarker for investigating the eRNAi mechanism in N. californicus. The highly efficient experimental system of eRNAi established in this study paves the way for applied research using eRNAi to enhance the predatory ability of N. californicus.
Collapse
Affiliation(s)
- Noureldin Abuelfadl Ghazy
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Agriculture Zoology Department, Faculty of Agriculture, Mansoura University, 35516 El-Mansoura, Egypt; Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan.
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan.
| |
Collapse
|
18
|
Colizzi FS, Beer K, Cuti P, Deppisch P, Martínez Torres D, Yoshii T, Helfrich-Förster C. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. Front Physiol 2021; 12:705048. [PMID: 34366893 PMCID: PMC8336691 DOI: 10.3389/fphys.2021.705048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Paolo Cuti
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - David Martínez Torres
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Ohguro C, Moriyama Y, Tomioka K. The Compound Eye Possesses a Self-Sustaining Circadian Oscillator in the Cricket Gryllus bimaculatus. Zoolog Sci 2021; 38:82-89. [PMID: 33639722 DOI: 10.2108/zs200118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
Many insects show daily and circadian changes in morphology and physiology in their compound eye. In this study, we investigated whether the compound eye had an intrinsic circadian rhythm in the cricket Gryllus bimaculatus. We found that clock genes period (per), timeless (tim), cryptochrome 2 (cry2), and cycle (cyc) were rhythmically expressed in the compound eye under 12-h light/12-h dark cycles (LD 12:12) and constant darkness (DD) at a constant temperature. After the optic nerves were severed (ONX), a weak but significant rhythmic expression persisted for per and tim under LD 12:12, while under DD, tim and cyc showed rhythmic expression. We also found that more than half of the ONX compound eyes exhibited weak but significant circadian electroretinographic rhythms. These results clearly demonstrate that the cricket compound eye possesses an intrinsic circadian oscillator which can drive the circadian light sensitivity rhythm in the eye, and that the circadian clock in the optic lobe exerts its influence on the oscillator in the eye.
Collapse
Affiliation(s)
- Chikako Ohguro
- Department of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
20
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
21
|
Tomiyama Y, Shinohara T, Matsuka M, Bando T, Mito T, Tomioka K. The role of clockwork orange in the circadian clock of the cricket Gryllus bimaculatus. ZOOLOGICAL LETTERS 2020; 6:12. [PMID: 33292692 PMCID: PMC7659126 DOI: 10.1186/s40851-020-00166-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The circadian clock generates rhythms of approximately 24 h through periodic expression of the clock genes. In insects, the major clock genes period (per) and timeless (tim) are rhythmically expressed upon their transactivation by CLOCK/CYCLE, with peak levels in the early night. In Drosophila, clockwork orange (cwo) is known to inhibit the transcription of per and tim during the daytime to enhance the amplitude of the rhythm, but its function in other insects is largely unknown. In this study, we investigated the role of cwo in the clock mechanism of the cricket Gryllus bimaculatus. The results of quantitative RT-PCR showed that under a light/dark (LD) cycle, cwo is rhythmically expressed in the optic lobe (lamina-medulla complex) and peaks during the night. When cwo was knocked down via RNA interference (RNAi), some crickets lost their locomotor rhythm, while others maintained a rhythm but exhibited a longer free-running period under constant darkness (DD). In cwoRNAi crickets, all clock genes except for cryptochrome 2 (cry2) showed arrhythmic expression under DD; under LD, some of the clock genes showed higher mRNA levels, and tim showed rhythmic expression with a delayed phase. Based on these results, we propose that cwo plays an important role in the cricket circadian clock.
Collapse
Affiliation(s)
- Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Tsugumichi Shinohara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, 700-8558 Japan
| | - Taro Mito
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513 Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
22
|
Narasaki-Funo Y, Tomiyama Y, Nose M, Bando T, Tomioka K. Functional analysis of Pdp1 and vrille in the circadian system of a cricket. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104156. [PMID: 33058831 DOI: 10.1016/j.jinsphys.2020.104156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Circadian rhythms are generated by a circadian clock for which oscillations are based on the rhythmic expression of the so-called clock genes. The present study investigated the role of Gryllus bimaculatus vrille (Gb'vri) and Par domain protein 1 (Gb'Pdp1) in the circadian clock of the cricket Gryllus bimaculatus. Structural analysis of Gb'vri and Gb'Pdp1 cDNAs revealed that they are a member of the bZIP transcription factors. Under light/dark cycles (LD) both genes were rhythmically expressed in the clock tissue, the optic lobes, whereas the rhythm diminished under constant darkness (DD). Gb'vri and Gb'Pdp1 mRNA levels were significantly reduced by RNA interference (RNAi) of Gb'Clk and Gb'cyc, suggesting they are controlled by Gb'CLK/Gb'CYC. RNAi of Gb'vri and Gb'Pdp1 had little effect on locomotor rhythms, although their effects became visible when treated together with Gb'cycRNAi. The average free-running period of Gb'vriRNAi/Gb'cycRNAi crickets was significantly shorter than that of Gb'cycRNAi crickets. A similar period shortening was observed also when treated with Gb'Pdp1RNAi/Gb'cycRNAi. Some Gb'Pdp1RNAi/Gb'cycRNAi crickets showed rhythm splitting into two free-running components with different periods. Gb'vriRNAi and Gb'Pdp1RNAi treatments significantly altered the expression of Gb'Clk, Gb'cyc, and Gb'tim in LD. These results suggest that Gb'vri and Gb'Pdp1 play important roles in cricket circadian clocks.
Collapse
Affiliation(s)
- Yumina Narasaki-Funo
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Motoki Nose
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tetsuya Bando
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8558, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
23
|
Takekata H, Tachibana SI, Motooka D, Nakamura S, Goto SG. Possible biological processes controlled by the circatidal clock in the mangrove cricket inferred from transcriptome analysis. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1838747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hiroki Takekata
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shin G. Goto
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
24
|
Werckenthin A, Huber J, Arnold T, Koziarek S, Plath MJA, Plath JA, Stursberg O, Herzel H, Stengl M. Neither per, nor tim1, nor cry2 alone are essential components of the molecular circadian clockwork in the Madeira cockroach. PLoS One 2020; 15:e0235930. [PMID: 32750054 PMCID: PMC7402517 DOI: 10.1371/journal.pone.0235930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks control rhythms in physiology and behavior entrained to 24 h light-dark cycles. Despite of conserved general schemes, molecular circadian clockworks differ between insect species. With RNA interference (RNAi) we examined an ancient circadian clockwork in a basic insect, the hemimetabolous Madeira cockroach Rhyparobia maderae. With injections of double-stranded RNA (dsRNA) of cockroach period (Rm´per), timeless 1 (Rm´tim1), or cryptochrome 2 (Rm´cry2) we searched for essential components of the clock´s core negative feedback loop. Single injections of dsRNA of each clock gene into adult cockroaches successfully and permanently knocked down respective mRNA levels within ~two weeks deleting daytime-dependent mRNA rhythms for Rm´per and Rm´cry2. Rm´perRNAi or Rm´cry2RNAi affected total mRNA levels of both genes, while Rm´tim1 transcription was independent of both, also keeping rhythmic expression. Unexpectedly, circadian locomotor activity of most cockroaches remained rhythmic for each clock gene knockdown employed. It expressed weakened rhythms and unchanged periods for Rm´perRNAi and shorter periods for Rm´tim1RNAi and Rm´cry2RNAi.As a hypothesis of the cockroach´s molecular clockwork, a basic network of switched differential equations was developed to model the oscillatory behavior of clock cells expressing respective clock genes. Data were consistent with two synchronized main groups of coupled oscillator cells, a leading (morning) oscillator, or a lagging (evening) oscillator that couple via mutual inhibition. The morning oscillators express shorter, the evening oscillators longer endogenous periods based on core feedback loops with either PER, TIM1, or CRY2/PER complexes as dominant negative feedback of the clockwork. We hypothesize that dominant morning oscillator cells with shorter periods express PER, but not CRY2, or TIM1 as suppressor of clock gene expression, while two groups of evening oscillator cells with longer periods either comprise TIM1 or CRY2/PER suppressing complexes. Modelling suggests that there is an additional negative feedback next to Rm´PER in cockroach morning oscillator cells.
Collapse
Affiliation(s)
- Achim Werckenthin
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Jannik Huber
- Department of Control and System Theory, University of Kassel, Kassel, Germany
| | - Thordis Arnold
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Susanne Koziarek
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Marcus J. A. Plath
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Jenny A. Plath
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Olaf Stursberg
- Department of Control and System Theory, University of Kassel, Kassel, Germany
| | - Hanspeter Herzel
- Department of Theoretical Biology, Charité Berlin, Berlin, Germany
| | - Monika Stengl
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| |
Collapse
|
25
|
Andreatta G, Tessmar-Raible K. The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks. J Mol Biol 2020; 432:3525-3546. [PMID: 32198116 PMCID: PMC7322537 DOI: 10.1016/j.jmb.2020.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented "lunar-rhythmic" terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings that start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads toward pathways, as well as molecular markers. However, for each interpretation, it is important to carefully consider the, partly substantially differing, conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
26
|
Kaniewska MM, Vaněčková H, Doležel D, Kotwica-Rolinska J. Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus. Front Physiol 2020; 11:242. [PMID: 32300305 PMCID: PMC7142227 DOI: 10.3389/fphys.2020.00242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks are synchronized with the external environment by light and temperature. The effect of these cues on behavior is well-characterized in Drosophila, however, little is known about synchronization in non-model insect species. Therefore, we explored entrainment of locomotor activity by light and temperature in the linden bug Pyrrhocoris apterus (Heteroptera), an insect species with a strong seasonal response (reproductive diapause), which is triggered by both photoperiod and thermoperiod. Our results show that either light or temperature cycles are strong factors entraining P. apterus locomotor activity. Pyrrhocoris is able to be partially synchronized by cycles with temperature amplitude as small as 3°C and more than 50% of bugs is synchronized by 5°C steps. If conflicting zeitgebers are provided, light is the stronger signal. Linden bugs lack light-sensitive (Drosophila-like) cryptochrome. Notably, a high percentage of bugs is rhythmic even in constant light (LL) at intensity ∼400 lux, a condition which induces 100% arrhythmicity in Drosophila. However, the rhythmicity of bugs is still reduced in LL conditions, whereas rhythmicity remains unaffected in constant dark (DD). Interestingly, a similar phenomenon is observed after temperature cycles entrainment. Bugs released to constant thermophase and DD display weak rhythmicity, whereas strong rhythmicity is observed in bugs released to constant cryophase and DD. Our study describes the daily and circadian behavior of the linden bug as a response to photoperiodic and thermoperiodic entraining cues. Although the molecular mechanism of the circadian clock entrainment in the linden bug is virtually unknown, our study contributes to the knowledge of the insect circadian clock features beyond Drosophila research.
Collapse
Affiliation(s)
- Magdalena Maria Kaniewska
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Hana Vaněčková
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - David Doležel
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Joanna Kotwica-Rolinska
- Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| |
Collapse
|
27
|
Kannan NN, Tomiyama Y, Nose M, Tokuoka A, Tomioka K. Temperature Entrainment of Circadian Locomotor and Transcriptional Rhythms in the Cricket, Gryllus bimaculatus. Zoolog Sci 2019; 36:95-104. [PMID: 31120643 DOI: 10.2108/zs180148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
Most animals exhibit circadian rhythms in various physiological and behavioral functions regulated by circadian clock that resides in brain and in many peripheral tissues. Temperature cycle is an important time cue for entrainment, even in mammals, since the daily change in body temperature is thought to be used for phase regulation of clocks in peripheral tissues. However, little is known about the mechanisms by which temperature resets the clock. In the present study, we investigated the effect of temperature on circadian activity rhythm and clock gene transcription by using the cricket, Gryllus bimaculatus. We show that temperature cycle can entrain both behavioral and transcriptional rhythms of clock genes, such as period, timeless, cryptochrome2 and cycle in the circadian pacemaker tissue, optic lobe. Under temperature cycle, phase of evening peak of locomotor activity occurred 1 h before the warm-to-cold phase transition, which is associated with earlier peaks of mRNA expression rhythm of the clock genes than that under light/dark cycles. When the temperature cycle was advanced by 6 h, behavioral rhythms re-entrained to newly phased temperature cycle after ∼16 transient cycles. The mRNA oscillation of period and timeless gained stable rhythm under phase advanced temperature cycles with a lesser number of transient cycles than cryptochrome2 and cycle. These results suggest that temperature cycle can entrain behavioral and molecular rhythms in cricket and clock genes vary in sensitivity to temperature. It is thus likely that clock genes play differential roles in resetting the clock with environmental temperature changes.
Collapse
Affiliation(s)
- Nisha N Kannan
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| | - Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Motoki Nose
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Atsushi Tokuoka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
28
|
Jiang YD, Yuan X, Bai YL, Wang GY, Zhou WW, Zhu ZR. Knockdown of timeless Disrupts the Circadian Behavioral Rhythms in Laodelphax striatellus (Hemiptera: Delphacidae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:1216-1225. [PMID: 30059997 DOI: 10.1093/ee/nvy095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Most living organisms developed the innate clock system to anticipate daily environmental changes and to enhance their chances of survival. timeless (tim) is a canonical clock gene. It has been extensively studied in Drosophila melanogaster (Diptera: Drosophilidae) as a key component of the endogenous circadian clock, but its role is largely unknown in some agriculture pests. Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), an important rice pest, exhibits a robust locomotor rhythm. In the present study, we cloned tim gene (ls-tim) from L. striatellus and investigated its function in the regulation of behavioral rhythms. Quantitative real-time polymerase chain reaction revealed a circadian expression pattern of ls-tim under different light conditions with a trough in the photophase and a peak in the late scotophase. After the knockdown of ls-tim via RNA interference (RNAi), the adults showed an earlier onset of locomotor activity under light/dark cycles and became arrhythmic in constant darkness. ls-tim RNAi also abolished the timing of adult emergence that normally occurs in the early photophase. These results suggest that ls-tim is essential for the light-entrained circadian rhythms in L. striatellus and provide more insights into the endogenous clock network underlying the behavioral and physiological rhythms of this insect.
Collapse
Affiliation(s)
- Yan-Dong Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin Yuan
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yue-Liang Bai
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gui-Yao Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Kutaragi Y, Tokuoka A, Tomiyama Y, Nose M, Watanabe T, Bando T, Moriyama Y, Tomioka K. A novel photic entrainment mechanism for the circadian clock in an insect: involvement of c-fos and cryptochromes. ZOOLOGICAL LETTERS 2018; 4:26. [PMID: 30250749 PMCID: PMC6145112 DOI: 10.1186/s40851-018-0109-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Entrainment to the environmental light cycle is an essential property of the circadian clock. Although the compound eye is known to be the major photoreceptor necessary for entrainment in many insects, the molecular mechanisms of photic entrainment remain to be explored. RESULTS We found that cryptochromes (crys) and c-fos mediate photic entrainment of the circadian clock in a hemimetabolous insect, the cricket Gryllus bimaculatus. We examined the effects of RNA interference (RNAi)-mediated knockdown of the cry genes, Gb'cry1 and Gb'cry2, on photic entrainment, and light-induced resetting of the circadian locomotor rhythm. Gb'cry2 RNAi accelerated entrainment for delay shifts, while Gb'cry1/ Gb'cry2 double RNAi resulted in significant lengthening of transient cycles in both advance and delay shifts, and even in entrainment failure in some crickets. Double RNAi also strongly suppressed light induced resetting. The Gb'cry-mediated phase shift or resetting of the rhythm was preceded by light-induced Gb'c-fosB expression. We also found that Gb'c-fosB, Gb'cry2 and Gb'period (Gb'per) were likely co-expressed in some optic lobe neurons. CONCLUSION Based on these results, we propose a novel model for photic entrainment of the insect circadian clock, which relies on the light information perceived by the compound eye.
Collapse
Affiliation(s)
- Yuki Kutaragi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Atsushi Tokuoka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Motoki Nose
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0811 Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama, 700-8558 Japan
| | - Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Matsushima 577, Kurashiki, 701-0192 Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
30
|
Pett JP, Kondoff M, Bordyugov G, Kramer A, Herzel H. Co-existing feedback loops generate tissue-specific circadian rhythms. Life Sci Alliance 2018; 1:e201800078. [PMID: 30456356 PMCID: PMC6238625 DOI: 10.26508/lsa.201800078] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/04/2022] Open
Abstract
The analysis of tissue-specific data-based models of the gene regulatory network of the mammalian circadian clock reveals organ-specific synergies of feedback loops. Gene regulatory feedback loops generate autonomous circadian rhythms in mammalian tissues. The well-studied core clock network contains many negative and positive regulations. Multiple feedback loops have been discussed as primary rhythm generators but the design principles of the core clock and differences between tissues are still under debate. Here we use global optimization techniques to fit mathematical models to circadian gene expression profiles for different mammalian tissues. It turns out that for every investigated tissue multiple model parameter sets reproduce the experimental data. We extract for all model versions the most essential feedback loops and find auto-inhibitions of period and cryptochrome genes, Bmal1–Rev-erb-α loops, and repressilator motifs as possible rhythm generators. Interestingly, the essential feedback loops differ between tissues, pointing to specific design principles within the hierarchy of mammalian tissue clocks. Self-inhibitions of Per and Cry genes are characteristic for models of suprachiasmatic nucleus clocks, whereas in liver models many loops act in synergy and are connected by a repressilator motif. Tissue-specific use of a network of co-existing synergistic feedback loops could account for functional differences between organs.
Collapse
Affiliation(s)
- J Patrick Pett
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthew Kondoff
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Grigory Bordyugov
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
Jiang YD, Yuan X, Zhou WW, Bai YL, Wang GY, Zhu ZR. Cryptochrome Regulates Circadian Locomotor Rhythms in the Small Brown Planthopper Laodelphax striatellus (Fallén). Front Physiol 2018; 9:149. [PMID: 29541034 PMCID: PMC5835671 DOI: 10.3389/fphys.2018.00149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/13/2018] [Indexed: 11/13/2022] Open
Abstract
Most living organisms have developed internal circadian clocks to anticipate the daily environmental changes. The circadian clocks are composed of several transcriptional-translational feedback loops, in which cryptochromes (CRYs) serve as critical elements. In insects, some CRYs act as photopigments to control circadian photoentrainment, while the others act as transcriptional regulators. We cloned and characterized two cryptochrome genes, the Drosophila-like (lscry1) and vertebrate-like (lscry2) genes, in a rice pest Laodelphax striatellus. Quantitative real-time PCR showed that lscry1 and lscry2 expressed ubiquitously from nymph to adult stages as well as in different tissues. The transcript levels of lscry2 fluctuated in a circadian manner. Constant light led to arrhythmic locomotor activities in L. striatellus. It also inhibited the mRNA oscillation of lscry2 and promoted the transcription of lscry1. Knockdown of lscry1 or lscry2 by RNA interference (RNAi) reduced the rhythmicity of L. striatellus in constant darkness, but not in light dark cycles. These results suggested that lscry1 and lscry2 were putative circadian clock genes of L. striatellus, involved in the regulation of locomotor rhythms.
Collapse
Affiliation(s)
| | | | | | | | | | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Nose M, Tokuoka A, Bando T, Tomioka K. timeless2 plays an important role in reproduction and circadian rhythms in the cricket Gryllus bimaculatus. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:9-17. [PMID: 29287788 DOI: 10.1016/j.jinsphys.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/30/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
The timeless2 (tim2) gene is an insect orthologue of the mammalian clock gene Timeless (mTim). Although its functional role has been extensively studied in mammals, little is known regarding its role in insects. In the present study, we obtained tim2 cDNA (Gb'tim2) from the cricket Gryllus bimaculatus and characterized its functional role in embryonic development, egg production, and circadian rhythms. Gb'tim2 gave rise to a 1432 amino acid protein, and showed approximately 65% homology to that of Drosophila melanogaster. When treated with parental Gb'tim2RNAi, less than 2% of the treated eggs hatched. On the other hand, control eggs treated with DsRed2RNAi demonstrated a hatching rate of 70%. In most of the Gb'tim2RNAi treated embryos, development was arrested in early stages. Egg production in ovaries of adult virgin females treated with Gb'tim2RNAi was significantly reduced. In addition, while Gb'tim2RNAi crickets exhibited clear locomotor rhythm synchronized with light cycles, their light-on peak was weaker than that of control crickets. Under constant darkness, the activity rhythm of Gb'tim2RNAi crickets was often split into two components running with different periods. Molecular analysis revealed that Gb'tim2RNAi treatment downregulated mRNA levels of Gb'per and Gb'Clk, and enhanced Gb'cyc expression rhythm; no distinct effect was found on Gb'tim expression levels. The change in Gb'per, Gb'Clk and Gb'cyc levels may underlie the altered behavioral rhythms in Gb'tim2RNAi crickets. Both Gb'ClkRNAi and Gb'cycRNAi downregulated Gb'tim2 expression, which suggested that transcription of Gb'tim2 is mediated by Gb'CLK and Gb'CYC through E-box. These results suggested that Gb'tim2 may be involved in both reproduction and circadian rhythm regulation in crickets.
Collapse
Affiliation(s)
- Motoki Nose
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Atsushi Tokuoka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tetsuya Bando
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|