1
|
Gallo G, Picciariello A, Realis Luc A, Salvatore A, Di Vittori A, Rinaldi M, Trompetto M. Use of mesoglycan in the acute phase of hemorrhoidal disease (the CHORMES study): study protocol for a double-blind, randomized controlled trial. Trials 2024; 25:807. [PMID: 39623365 PMCID: PMC11613797 DOI: 10.1186/s13063-024-08648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/24/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Hemorrhoidal disease (HD) is associated with substantial economic burden and negative effects on health-related quality of life (HRQoL). The aCute HaemORrhoids treatment with MESoglycan (CHORMES) study aims to evaluate the effects of orally administered mesoglycan, a natural preparation of glycosaminoglycans with antithrombotic and profibrinolytic properties, as an acute treatment in patients with HD. METHODS CHORMES is a phase 2, double-blind, randomized controlled trial being conducted at two centers in Italy. Adults aged 18-75 years with Grade I-III HD according to Goligher classification or external thrombosed hemorrhoids, and a Hemorrhoidal Disease Symptom Score (HDSS) of ≥ 5, will be randomly allocated in a 1:1 ratio to mesoglycan or placebo and will be treated for 40 days (two capsules for the first 5 days and one capsule for the subsequent 35 days twice daily [after breakfast and dinner], equivalent to 200 mg in the first 5 days and 100 mg subsequently). Concomitant use of analgesics is permitted in both treatment groups. The trial aims to enroll 50 patients, with 25 patients in each treatment group. The primary objective of the trial is to evaluate the efficacy of mesoglycan in reducing symptoms of HD, assessed via change in HDSS from baseline (day 0) to day 40 in the intention-to-treat population. Secondary objectives include changes in HRQoL from baseline to day 40 using the Short Health Scale for Hemorrhoidal Disease, safety (adverse effects, physical assessments, vital signs and laboratory parameters in the safety population), fecal continence assessed using the Vaizey score, bleeding assessed using the Bleeding score, the amount and type of analgesic taken, and pain. Patient enrolment began on 11 December 2023, and trial completion is expected by December 2024. DISCUSSION The CHORMES trial will evaluate the efficacy and safety of mesoglycan, in addition to its impact on HRQoL, analgesic use and pain, in patients with HD. The results of the trial will assist clinicians in determining the most effective treatment for patients with HD. TRIAL REGISTRATION ClinicalTrials.gov NCT06101992. Prospectively registered on 26 October 2023 at https://clinicaltrials.gov/ct2/show/NCT06101992 .
Collapse
Affiliation(s)
- Gaetano Gallo
- Department of Surgery, Sapienza University of Rome, Rome, Italy.
| | | | | | - Antonella Salvatore
- Department of Colorectal Surgery, Santa Rita Clinic, Vercelli, Italy
- Department of Surgery, Colorectal Surgery Center, University of Cagliari, Cagliari, Italy
| | - Angelo Di Vittori
- Department of Colorectal Surgery, Santa Rita Clinic, Vercelli, Italy
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, Verona, Italy
| | - Marcella Rinaldi
- Departement of Precision and Regenerative Medicine and Ionian Area, Aldo Moro" University of Bari, Bari, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Santa Rita Clinic, Vercelli, Italy
| |
Collapse
|
2
|
Gallo G, Picciariello A, Tufano A, Camporese G. Clinical evidence and rationale of mesoglycan to treat chronic venous disease and hemorrhoidal disease: a narrative review. Updates Surg 2024; 76:423-434. [PMID: 38356039 PMCID: PMC10995001 DOI: 10.1007/s13304-024-01776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Chronic venous disease (CVD) and hemorrhoidal disease (HD) are among the most common vascular diseases in the world, with CVD affecting 22-41% of the population in Europe and HD having a point prevalence of 11-39%. The burden is substantial in terms of the effect of symptoms on patients' health-related quality of life (HRQoL) and direct/indirect medical costs. Treatment begins with lifestyle changes, compression in CVD and topical therapies in HD, and escalates as needed through oral therapies first and eventually to surgery for severe disease. CVD and HD share etiological features and pathological changes affecting the structure and function of the tissue extracellular matrix. Mesoglycan, a natural glycosaminoglycan (GAG) preparation composed primarily of heparan sulfate and dermatan sulfate, has been demonstrated to positively impact the underlying causes of CVD and HD, regenerating the glycocalyx and restoring endothelial function, in addition to having antithrombotic, profibrinolytic, anti-inflammatory, antiedema and wound-healing effects. In clinical trials, oral mesoglycan reduced the severity of CVD signs and symptoms, improved HRQoL, and accelerated ulcer healing. In patients with HD, mesoglycan significantly reduced the severity of signs and symptoms and the risk of rectal bleeding. In patients undergoing excisional hemorrhoidectomy, adding mesoglycan to standard postoperative care reduced pain, improved HRQoL, reduced incidence of thrombosis, and facilitated an earlier return to normal activities/work, compared with standard postoperative care alone. The clinical effects of mesoglycan in patients with CVD or HD are consistent with the agent's known mechanisms of action.
Collapse
Affiliation(s)
- Gaetano Gallo
- Department of Surgery, Sapienza University of Rome, Rome, Italy.
| | | | - Antonella Tufano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Camporese
- Department of Internal Medicine, Padua University Hospital, Padua, Italy
| |
Collapse
|
3
|
He S, He S, Chen Y, Jin X, Mei W, Lu Q. Beta-Sitosterol Modulates the Migration of Vascular Smooth Muscle Cells via the PPARG/AMPK/mTOR Pathway. Pharmacology 2022; 107:495-509. [PMID: 35679828 DOI: 10.1159/000525218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The increased migration of vascular smooth muscle cells (VSMCs) is an essential pathological factor in the early development of atherosclerosis. Beta-sitosterol (BS), a natural phytosterol abundant in plant seeds, exhibits various bioactivities, including cardioprotective effects. However, its effects on VSMC migration and underlying mechanisms remain to be explored. METHOD AND RESULT BS inhibited the proliferation and migration of angiotensin II-induced A7r5 cells and reduced intracellular oxidative stress. Targets related to VSMC migration and the targets of BS were screened, cross-referenced, and analyzed by network pharmacology combined with molecular docking technology. The identified targets were verified at the protein and gene levels using Western blotting and quantitative PCR, respectively. BS was observed to activate peroxisome proliferator-activated receptor-γ (PPARG) and adenosine 5'-monophosphate-activated protein kinase (AMPK) and negatively regulate mammalian target of rapamycin (mTOR) expression. Furthermore, a PPARG inhibitor reversed the BS-induced activation of AMPK and mTOR. CONCLUSION This study indicated that regulation of the PPARG/AMPK/mTOR signaling pathway could potentially contribute to the inhibitory effects of BS on angiotensin II-induced VSMC migration.
Collapse
Affiliation(s)
- Shumiao He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| | - Siqing He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuankun Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjie Mei
- Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| | - Qun Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Engineering and Technology Center for Molecular Probe and Bio-medicine Imaging, Guangzhou, China
| |
Collapse
|
4
|
Huang WQ, Zou Y, Tian Y, Ma XF, Zhou QY, Li ZY, Gong SX, Wang AP. Mammalian Target of Rapamycin as the Therapeutic Target of Vascular Proliferative Diseases: Past, Present, and Future. J Cardiovasc Pharmacol 2022; 79:444-455. [PMID: 34983907 DOI: 10.1097/fjc.0000000000001208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation. However, the molecular mechanisms linking mTOR to vascular proliferative diseases remain elusive. In our review, we summarize the key roles of the mTOR and the recent discoveries in vascular proliferative diseases, focusing on the therapeutic potential of mTOR inhibitors to target the mTOR signaling pathway for the treatment of vascular proliferative diseases. In this study, we discuss mTOR inhibitors as promising candidates to prevent VSMC-associated vascular proliferative diseases.
Collapse
Affiliation(s)
- Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Yan Zou
- Department of Hand and Foot Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China ; and
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Qin-Yi Zhou
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Zhen-Yu Li
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| |
Collapse
|
5
|
Su M, Fan S, Ling Z, Fan X, Xia L, Liu Y, Li S, Zhang Y, Zeng Z, Tang WH. Restoring the Platelet miR-223 by Calpain Inhibition Alleviates the Neointimal Hyperplasia in Diabetes. Front Physiol 2020; 11:742. [PMID: 32733269 PMCID: PMC7359912 DOI: 10.3389/fphys.2020.00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Platelet hyperactivity is the hallmark of diabetes, and platelet activation plays a crucial role in diabetic vascular complications. Recent studies have shown that upon activation, platelet-derived miRNAs are incorporated into vascular smooth muscle cells (VSMCs), regulating the phenotypic switch of VSMC. Under diabetes, miRNA deficiency in platelets fails to regulate the VSMC phenotypic switch. Therefore, manipulation of platelet-derived miRNAs expression may provide therapeutic option for diabetic vascular complications. We seek to investigate the effect of calpeptin (calpain inhibitor) on the expression of miRNAs in diabetic platelets, and elucidate the downstream signaling pathway involved in protecting from neointimal formation in diabetic mice with femoral wire injury model. Using human cell and platelet coculture, we demonstrate that diabetic platelet deficient of miR-223 fails to suppress VSMC proliferation, while overexpression of miR-223 in diabetic platelets suppressed the proliferation of VSMC to protect intimal hyperplasia. Mechanistically, miR-223 directly targets the insulin-like growth factor-1 receptor (IGF-1R), which inhibits the phosphorylation of GSK3β and activates the phosphorylation of AMPK, resulting in reduced VSMC dedifferentiation and proliferation. Using a murine model of vascular injury, we show that calpeptin restores the platelet expression of miR-223 in diabetes, and the horizontal transfer of platelet miR-223 into VSMCs inhibits VSMC proliferation in the injured artery by targeting the expression of IGF-1R. Our data present that the platelet-derived miR-223 suppressed VSMC proliferation via the regulation miR-223/IGF-1R/AMPK signaling pathways, and inhibition of calpain alleviates neointimal formation by restoring the expression of miR-223 in diabetic platelet.
Collapse
Affiliation(s)
- Meiling Su
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Shunyang Fan
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenwei Ling
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xuejiao Fan
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Luoxing Xia
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Yingying Liu
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Shaoying Li
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Yuan Zhang
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Zhi Zeng
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Wai Ho Tang
- Joint Program in Cardiovascular Medicine, Affiliated Guangzhou Women and Children's Medical Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Wang J, Niu X, Sun J, Zhang Y, Zhang T, Shen Z, Zhang Q, Xu H, Li X, Zhang R. Source profiles of PM 2.5 emitted from four typical open burning sources and its cytotoxicity to vascular smooth muscle cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136949. [PMID: 32041051 DOI: 10.1016/j.scitotenv.2020.136949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the chemical profiles of PM2.5 from open burning of electronic waste (E-waste), household garbage, wheat residue, and outdoor barbeque in a combustion chamber. Carbonaceous fractions, including polycyclic aromatic hydrocarbons (PAHs), and water-soluble ions and elements in PM2.5 were quantified. A PM2.5 exposure study was performed to detect PM2.5-induced bioreactivities in vascular smooth muscle cells (VSMCs). Among all fractions, organic carbon (OC) exhibited the highest mass contribution to PM2.5-ranging from 39.9% ± 0.82% to 53.1% ± 8.76%. Proportions of total water-soluble ions and total elements both followed the sequence E-waste > wheat straw > outdoor barbeque > household garbage. Because of the high burning temperature, outdoor barbeque PM2.5 exhibited the highest total quantified PAHs (29.7‰). E-waste PM2.5 exhibited the highest heavy metal contents, derived mainly from the materials in printed circuit boards. The coefficients of divergence among the four source profiles ranged from 0.47 to 0.75, indicating that the collinear problems could be avoided in source apportionment in receptor models. The induced production of reactive oxygen species exhibited a significant dose-dependent increase and followed the sequence E-waste > household garbage > outdoor barbeque > wheat residue. Similar patterns and sequence among the four sources were observed in monocyte chemoattractant protein 1 (MCP-1) and interleukin 1β (IL-1β) production. The data indicated that PM2.5 emitted from E-waste has the highest cytotoxicity and special protections should be aimed at mitigating it. The Pearson correlation coefficient demonstrated that elemental carbon, heavy metals, and nitrated PAHs were strongly correlated with VSMC bioreactivity. Light elements exhibited moderate negative correlations with bioreactivities, implying that light elements (e.g., Ca) could mitigate heavy metal-induced cytotoxicity. This study summarized the chemical profiles of PM2.5 from four typical open burning sources and demonstrated their high cytotoxicity to the cardiovascular system.
Collapse
Affiliation(s)
- Jinhui Wang
- NICU, Xi'an Children's Hospital, Xi'an 710003, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jian Sun
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuxiang Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Renjian Zhang
- Key Lab of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
7
|
Aloi TL, Camporese G, Izzo M, Kontothanassis D, Santoliquido A. Refining diagnosis and management of chronic venous disease: Outcomes of a modified Delphi consensus process. Eur J Intern Med 2019; 65:78-85. [PMID: 30898385 DOI: 10.1016/j.ejim.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
Chronic venous disease (CVD) is a common condition with major health consequences that is associated with poor long-term prognosis, significant socioeconomic impact, disabling symptoms and reduced quality of life. To provide practical guidance for diagnosis and management of CVD, a Delphi panel of 5 experts in steering committee and 28 angiologists/vascular surgeons met with the major aim of providing a supplement for established national and international guidelines. A total of 24 statements were voted upon in two rounds, of which consensus was reached on 22 statements, indicating a high level of overall agreement. Consensus was reached on 7 of 8 statements relative to diagnosis (CEAP classification, diagnostic tools, QoL assessment, diagnostic imaging) and on 15 of 16 statements on management (conservative treatments, compressive therapy, pharmacological therapy, surgical treatment). The results of the consensus reached are discussed herein from which it is clear that diagnostic and management approaches utilising personalised therapies tailored to the individual patient should be favoured. While it is clear that additional studies are needed on many aspects of diagnosis and management of CVD, the present Delphi survey provides some key recommendations for clinicians treating CVD that may be useful in daily practice.
Collapse
Affiliation(s)
- Teresa Lucia Aloi
- Istituti Clinici Scientifici Maugeri IRCCS, Cardio-Angiology Unit of Montescano and Pavia Institute, Italy.
| | - Giuseppe Camporese
- Unit of Angiology, Department of Cardiac, Thoracic, and Vascular Sciences, Padua University Hospital, Padua, Italy
| | - Marcello Izzo
- Math Tech Med Medicine & Bioscience - Research Center- University of Ferrara-, Italy; Compression Therapy Study Group (CTG)-, Italy
| | | | - Angelo Santoliquido
- Catholic University of Sacred Heart, Gemelli Policlinic Foundation - IRCCS, Rome, Italy
| |
Collapse
|
8
|
Nitschke Y, Yan Y, Buers I, Kintziger K, Askew K, Rutsch F. ENPP1-Fc prevents neointima formation in generalized arterial calcification of infancy through the generation of AMP. Exp Mol Med 2018; 50:1-12. [PMID: 30369595 PMCID: PMC6204430 DOI: 10.1038/s12276-018-0163-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Generalized arterial calcification of infancy (GACI) is associated with widespread arterial calcification and stenoses and is caused by mutations in ENPP1. ENPP1 encodes for ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which cleaves ATP to generate inorganic pyrophosphate (PPi) and adenosine monophosphate (AMP) extracellularly. The current study was designed to define the prevalence of arterial stenoses in GACI individuals and to identify the mechanism through which ENPP1 deficiency causes intimal proliferation. Furthermore, we aimed to effectively prevent and treat neointima formation in an animal model of GACI through the systemic administration of recombinant human (rh)ENPP1-Fc protein. Based on a literature review, we report that arterial stenoses are present in at least 72.4% of GACI cases. We evaluated the effect of rhENPP1-Fc on ENPP1-silenced human vascular smooth muscle cells (VSMCs) and on induced intimal proliferation in Enpp1-deficient ttw/ttw mice treated with carotid ligation. We demonstrate that silencing ENPP1 in VSMCs resulted in a tenfold increase in proliferation relative to that of cells transfected with negative control siRNA. The addition of rhENPP1-Fc, AMP or adenosine restored the silenced ENPP1-associated proliferation. In contrast, neither PPi nor etidronate, a current off-label treatment for GACI, had an effect on VSMC proliferation. Furthermore, subcutaneous rhENPP1-Fc protein replacement was effective in preventing and treating intimal hyperplasia induced by carotid ligation in an animal model of GACI. We conclude that ENPP1 inhibits neointima formation by generating AMP. RhENPP1-Fc may serve as an approach for the effective prevention and treatment of arterial stenoses in GACI. A protein replacement therapy may prove useful in tackling calcification and narrowing of the arteries in babies with a severe genetic disorder. Generalized Arterial Calcification of Infancy (GACI) is a rare condition in which infants’ arteries become calcified and their blood vessels internally scarred. It often leads to congestive heart failure. The ENPP1 gene encodes a protein that is crucial to preventing excess calcium build-up in the body. Mutations in the ENPP1 gene lead to GACI, but no therapies for the condition exist. Now, Frank Rutsch at Muenster University Children’s Hospital in Germany and co-workers have shown that administering a protein replacement can inhibit blood vessel scarring and arterial clogging in GACI mice models and in human stem cell cultures. The protein replacement boosts production of a key metabolic molecule called adenosine monophosphate.
Collapse
Affiliation(s)
- Yvonne Nitschke
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany.,Cells in Motion Cluster of Excellence, Münster University, Münster, Germany
| | - Yan Yan
- Alexion Pharmaceuticals, 100 College St, New Haven, CT, USA
| | - Insa Buers
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany.,Cells in Motion Cluster of Excellence, Münster University, Münster, Germany
| | - Kristina Kintziger
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Kim Askew
- Alexion Pharmaceuticals, 100 College St, New Haven, CT, USA
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany. .,Cells in Motion Cluster of Excellence, Münster University, Münster, Germany.
| |
Collapse
|
9
|
Paeoniflorin inhibits VSMCs proliferation and migration by arresting cell cycle and activating HO-1 through MAPKs and NF-κB pathway. Int Immunopharmacol 2017; 54:103-111. [PMID: 29121532 DOI: 10.1016/j.intimp.2017.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/22/2022]
Abstract
The proliferation, migration and inflammation of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis and progression of atherosclerosis. Paeoniflorin (PF) as active compound in the Rhizoma Atractylodes macrocephala has been used for various diseases like cancer, splenic asthenia, anaphylaxis and anorexia. This study aimed to explore whether and how PF regulated the inflammation, proliferation and migration of VSMCs under ox-LDL stimulation. Here, we found that PF dose-dependently inhibited ox-LDL-induced VSMCs proliferation and migration, and decreased inflammatory cytokines and chemokine overexpression. Mechanistically, PF prevented p38, ERK1/2 and NF-κB phosphorylation, and arrested cell cycle in S phase. Meanwhile, PF regulated the HO-1 and PCNA expression. Furthermore, PF blocked the foam cell formation in macrophages induced by ox-LDL. These results indicate that PF antagonizes the ox-LDL-induced VSMCs proliferation, migration and inflammation through activation of HO-1, cell cycle arrest and then suppression of p38, ERK1/2/MAPK and NF-κB signaling pathways.
Collapse
|
10
|
Luo L, Zheng W, Lian G, Chen H, Li L, Xu C, Xie L. Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad pathway. Int J Mol Med 2017; 41:51-60. [PMID: 29115380 PMCID: PMC5746303 DOI: 10.3892/ijmm.2017.3226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to assess the effects of therapy with adiponectin (APN) gene-modified adipose-derived stem cells (ADSCs) on pulmonary arterial hypertension (PAH) in rats and the underlying cellular and molecular mechanisms. ADSCs were successfully isolated from the rats and characterized. ADSCs were effectively infected with the green fluorescent protein (GFP)-empty (ADSCs-V) or the APN-GFP (ADSCs-APN) lentivirus and the APN expression was evaluated by ELISA. Sprague-Dawley rats were administered monocrotaline (MCT) to develop PAH. The rats were treated with MCT, ADSCs, ADSCs-V and ADSCs-APN. Then ADSCs-APN in the lung were investigated by confocal laser scanning microscopy and western blot analysis. Engrafted ADSCs in the lung were located around the vessels. Mean pulmonary arterial pressure (mPAP) and the right ventricular hypertrophy index (RVHI) in the ADSCs-APN-treated mice were significantly decreased as compared with the ADSCs and ADSCs-V treatments. Pulmonary vascular remodeling was assessed. Right ventricular (RV) function was evaluated by echocardiography. We found that pulmonary vascular remodeling and the parameters of RV function were extensively improved after ADSCs-APN treatment when compared with ADSCs and ADSCs-V treatment. Pulmonary artery smooth muscle cells (PASMCs) were isolated from the PAH rats. The antiproliferative effect of APN on PASMCs was assayed by Cell Counting Kit-8. The influence of APN and specific inhibitors on the levels of bone morphogenetic protein (BMP), adenosine monophosphate activated protein kinase (AMPK), and small mothers against decapentaplegia (Smad) pathways was detected by western blot analysis. We found that APN suppressed the proliferation of PASMCs isolated from the PAH rats by regulating the AMPK/BMP/Smad pathway. This effect was weakened by addition of the AMPK inhibitor (compound C) and BMP2 inhibitor (noggin). Therefore, combination treatment with ADSCs and APN effectively attenuated PAH in rats by inhibiting PASMC proliferation and regulating the AMPK/BMP/Smad pathway.
Collapse
Affiliation(s)
- Li Luo
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wuhong Zheng
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huaning Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Li
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liangdi Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
11
|
Effect of sirolimus on arteriosclerosis induced by advanced glycation end products via inhibition of the ILK/mTOR pathway in kidney transplantation recipients. Eur J Pharmacol 2017; 813:1-9. [DOI: 10.1016/j.ejphar.2017.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/17/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
|
12
|
The inhibitory effect of Isoliquiritigenin on the proliferation of human arterial smooth muscle cell. BMC Pharmacol Toxicol 2017; 18:57. [PMID: 28716056 PMCID: PMC5512881 DOI: 10.1186/s40360-017-0165-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/09/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Isoliquiritigenin (ISL) has various biological activities including as antioxidant and an inhibitor of PI3K/AKT signaling pathway. However, both oxidative stress and activated PI3K/AKT signaling contribute to the aberrant proliferation of vascular smooth muscle cells (VSMCs). This study is aimed to explore the effect of ISL on the proliferation of human arterial smooth muscle cells (HASMCs) and to investigate the underlying mechanisms. METHODS BrdU incorporation, cell cycle and reactive oxygen species (ROS) in normal or ISL treated HASMCs were analyzed by flow cytometry. Cell viablity was measured by CCK-8. Protein expression levels were examined by Western blot, and superoxide dismutase (SOD) activity was detected by using commercial kit. RESULTS We observed that ISL could inhibit the proliferation of HASMCs in a dose and time dependent manner. Cell cycle of ISL treated HASMCs arrested mainly in G1/S phase and accompanied with elevated expression of p27 and decreased expression of CyclinD1 and CyclinE. In addition, ISL could down-regulated the expression of p-PI3K and p-AKT, alleviated oxidative stress and enhanced the SOD activity in HASMCs. Furthermore, H2O2 treatment partly improved cell viability and up regulated p-PI3K and p-AKT in HASMCs. CONCLUSIONS Therefore, we concluded that ISL inhibited the proliferation of HASMCs via attenuating oxidative stress and suppressing PI3K/AKT signaling pathway. The inhibitory effect of ISL on PI3K/AKT signaling pathway, at least partly, was mediated by ROS.
Collapse
|
13
|
Pan S, Lin H, Luo H, Gao F, Meng L, Zhou C, Jiang C, Guo Y, Ji Z, Chi J, Guo H. Folic acid inhibits dedifferentiation of PDGF-BB-induced vascular smooth muscle cells by suppressing mTOR/P70S6K signaling. Am J Transl Res 2017; 9:1307-1316. [PMID: 28386356 PMCID: PMC5376021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Folic acid (FA) supplementation reduces the risk of atherosclerosis and stroke. Phenotypic change from differentiated to dedifferentiated vascular smooth muscle cells (VSMCs) plays an important role in atherosclerosis development; however, the exact mechanisms remain unknown. This study aimed to assess whether FA through mammalian target of rapamycin (mTOR)/P70S6K signaling inhibits platelet derived growth factor (PDGF-BB) induced VSMC dedifferentiation. METHODS VSMCs from primary cultures were identified by morphological observation and α-smooth muscle actin (α-SM-actin, α-SMA) immunocytochemistry. Then, VSMCs were induced by PDGF-BB and treated with varying FA concentrations. Rapamycin and MHY-1485 were used to inhibit or activate the mTOR/P70S6K pathway, respectively. Next, MTT, Transwell, and wound healing assays were employed to assess proliferation and migration of VSMCs. In addition, Western blotting was used to evaluate protein levels of α-SMA, calponin, osteopontin, mTOR, p-mTOR, P70S6K and p-P70S6K in VSMCs. RESULTS VSMCs showed phenotypic alteration from differentiated to dedifferentiated cells in response to PDGF-BB. MTT, Transwell and wound healing assays showed that FA markedly inhibited proliferation and migration in PDGF-BB-induced VSMCs, in a time and concentration-dependent manner. FA treatment increased the expression levels of the contractile phenotype marker proteins α-SMA and calponin compared with VSMCs stimulated by PDGF-BB alone. Furthermore, FA significantly suppressed mTOR and P70S6K phosphorylation compared with PDGF-BB alone. Similar to FA, downregulation of mTOR signaling by rapamycin inhibited VSMC dedifferentiation. In contrast, upregulation of mTOR signaling by MHY-1485 reversed the FA-induced inhibition of VSMC dedifferentiation. CONCLUSION Folic acid inhibits dedifferentiation of PDGF-BB-induced VSMCs by suppressing mTOR/P70S6K signaling.
Collapse
Affiliation(s)
- Sunlei Pan
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Hui Lin
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Hangqi Luo
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Changzuan Zhou
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Chengjian Jiang
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Yan Guo
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Zheng Ji
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Jufang Chi
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| |
Collapse
|