1
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
2
|
Chen X, Zhang T, Ren X, Wei Y, Zhang X, Zang X, Ju X, Qin C, Xu D. CHKB-AS1 enhances proliferation and resistance to NVP-BEZ235 of renal cancer cells via regulating the phosphorylation of MAP4 and PI3K/AKT/mTOR signaling. Eur J Med Res 2023; 28:588. [PMID: 38093375 PMCID: PMC10720114 DOI: 10.1186/s40001-023-01558-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Targeted therapy is pivotal in renal carcinoma treatment, and the dual-inhibitor NVP-BEZ235 has emerged as a promising candidate in preliminary studies. Its effectiveness against renal carcinoma and the mechanisms underlying potential resistance, however, warrant further exploration. This study aims to elucidate these aspects, enhancing our understanding of NVP-BEZ235's future clinical utility. To investigate resistance mechanisms, renal cancer cell lines were exposed to progressively increasing concentrations of NVP-BEZ235, leading to the development of stable resistance. These resistant cells underwent extensive RNA-sequencing analysis. We implemented gene interference techniques using plasmid vectors and lentivirus and conducted regular IC50 assessments. To pinpoint the role of LncRNAs, we utilized FISH and immunofluorescence staining assays, supplemented by RNA pull-down and RIP assays to delineate interactions between LncRNA and its RNA-binding protein (RBP). Further, Western blotting and qRT-PCR were employed to examine alterations in signaling pathways, with an animal model providing additional validation. Our results show a marked increase in the IC50 of NVP-BEZ235 in resistant cell lines compared to their parental counterparts. A significant revelation was the role of LncRNA-CHKB-AS1 in mediating drug resistance. We observed dysregulated expression of CHKB-AS1 in both clinical samples of clear cell renal cell carcinoma (ccRCC) and cell lines. In vivo experiments further substantiated our findings, showing that CHKB-AS1 overexpression significantly enhanced tumor growth and resistance to NVP-BEZ235 in a subcutaneous tumorigenesis model, as evidenced by increased tumor volume and weight, whereas CHKB-AS1 knockdown led to a marked reduction in these parameters. Critically, CHKB-AS1 was identified to interact with MAP4, a key regulator in the phosphorylation of the PI3k/Akt/mTOR pathway. This interaction contributes to a diminished antitumor effect of NVP-BEZ235, highlighting the intricate mechanism through which CHKB-AS1 modulates drug resistance pathways, potentially impacting therapeutic strategies against renal carcinoma.
Collapse
Affiliation(s)
- Xinglin Chen
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Tongtong Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Yuang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xinyue Zang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Xiran Ju
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China.
| | - Dongliang Xu
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
3
|
Proteomics as a Tool for the Study of Mitochondrial Proteome, Its Dysfunctionality and Pathological Consequences in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24054692. [PMID: 36902123 PMCID: PMC10003354 DOI: 10.3390/ijms24054692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The focus of this review is on the proteomic approaches applied to the study of the qualitative/quantitative changes in mitochondrial proteins that are related to impaired mitochondrial function and consequently different types of pathologies. Proteomic techniques developed in recent years have created a powerful tool for the characterization of both static and dynamic proteomes. They can detect protein-protein interactions and a broad repertoire of post-translation modifications that play pivotal roles in mitochondrial regulation, maintenance and proper function. Based on accumulated proteomic data, conclusions can be derived on how to proceed in disease prevention and treatment. In addition, this article will present an overview of the recently published proteomic papers that deal with the regulatory roles of post-translational modifications of mitochondrial proteins and specifically with cardiovascular diseases connected to mitochondrial dysfunction.
Collapse
|
4
|
Li L, Zhang Q, Lei X, Huang Y, Hu J. MAP4 as a New Candidate in Cardiovascular Disease. Front Physiol 2020; 11:1044. [PMID: 32982783 PMCID: PMC7479186 DOI: 10.3389/fphys.2020.01044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Microtubule and mitochondrial dysfunction have been implicated in the pathogenesis of cardiovascular diseases (CVDs), including cardiac hypertrophy, fibrosis, heart failure, and hypoxic/ischemic related heart dysfunction. Microtubule dynamics instability leads to disrupted cell homeostasis and cell shape, decreased cell survival, and aberrant cell division and cell cycle, while mitochondrial dysfunction contributes to abnormal metabolism and calcium flux, increased cell death, oxidative stress, and inflammation, both of which causing cell and tissue dysfunction followed by CVDs. A cytosolic skeleton protein, microtubule-associated protein 4 (MAP4), belonging to the family of microtubule-associated proteins (MAPs), is widely expressed in non-neural cells and possesses an important role in microtubule dynamics. Increased MAP4 phosphorylation results in microtubule instability. In addition, MAP4 also expresses in mitochondria and reveals a crucial role in maintaining mitochondrial homeostasis. Phosphorylated MAP4 promotes mitochondrial apoptosis, followed by cardiac injury. The aim of the present review is to highlight the novel role of MAP4 as a potential candidate in multiple cardiovascular pathologies.
Collapse
Affiliation(s)
- Lingfei Li
- Department of Dermatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiongyu Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
PINK1/PRKN-dependent mitophagy in the burn injury model. Burns 2020; 47:628-633. [PMID: 32900550 DOI: 10.1016/j.burns.2020.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Burn injury leads to mitochondrial dysfunction and autophagy, also known as mitophagy. The alleviation of mitochondrial damage may be a potential method for the treatment of burn injury and complications. In this animal study, we analyzed the expression of mitochondrial damage- and mitophagy-related factors, specifically PINK1 and PRKN. The results showed mitochondria damage in the skin; compared with the normal control group, genes involved in the mitochondrial damage, such as Nrf-1, UQCRC2, CYC1, and NDUFA9, as well as in the mitophagy, including PINK1, PRKN, MFN1, and USP30, were differentially expressed. Furthermore, PINK1 interacted with PRKN and participated in mitophagy in the skin. In conclusion, our data reveal more about the mechanism underlying mitophagy in burns, providing a potential clinical treatment.
Collapse
|