1
|
Gao S, Leng Y, Qiu Z, Li K, Li J, Peng J, Xie W, Lei S, Xia Z. Burn-Induced Gut Microbiota Dysbiosis Aggravates Skeletal Muscle Atrophy by Tryptophan-Kynurenine Mediated AHR Pathway Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409296. [PMID: 39950940 PMCID: PMC11984878 DOI: 10.1002/advs.202409296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/06/2025] [Indexed: 04/12/2025]
Abstract
The hypermetabolic response associated with burns is characterized by skeletal muscle atrophy and an increased incidence of disability and death. Significant remodeling of the gut microbiota occurs after severe burn trauma. However, the specific mechanisms by which gut microbiota contribute to burn-induced muscle atrophy remain unexplored. The results showed that the disruption of the gut microbiota exacerbated skeletal muscle atrophy. Fecal metabolite analysis revealed perturbations, primarily within the tryptophan (Trp) metabolic pathway. Animal models further demonstrated that gut microbiota disorder enhanced the expression of indoleamine 2,3-dioxygenase 1 (IDO-1) in the colon, ultimately resulting in Trp depletion and increased kynurenine (Kyn) levels in the serum and skeletal muscle. Excessive colonic Kyn is released into circulation, transported into skeletal muscle cells, and binds to the aryl hydrocarbon receptor (AHR), consequently triggering AHR nuclear translocation and initiating the transcription of skeletal muscle atrophy-related genes. Notably, serum samples from patients with burns exhibited Trp depletion, and Trp supplementation alleviated skeletal muscle atrophy in rats with burns. This study, for the first time, demonstrates that gut microbiota dysbiosis upregulates colonic IDO-1, promotes Trp-Kyn metabolism, and exacerbates burn-induced skeletal muscle atrophy, suggesting that Trp supplementation may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Shan Gao
- Department of AnaesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Department of AnaesthesiologyTongren Hospital of Wuhan University WuhanWuhanHubei430060China
| | - Yan Leng
- Department of AnaesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhen Qiu
- Department of AnaesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Kai Li
- Department of PainTongren Hospital of Wuhan UniversityWuhanHubei430060China
| | - Jun Li
- Department of AnaesthesiologyTongren Hospital of Wuhan University WuhanWuhanHubei430060China
| | - Jian Peng
- Department of AnaesthesiologyTongren Hospital of Wuhan University WuhanWuhanHubei430060China
| | - Weiguo Xie
- Department of BurnsTongren Hospital of Wuhan UniversityWuhanHubei430060China
| | - Shaoqing Lei
- Department of AnaesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhongyuan Xia
- Department of AnaesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| |
Collapse
|
2
|
Liu CQ, Yang J, Ren HF, Liao GN, Yin Z, Gao SL, Du QJ, Yuan XZ, Ullah H, Li K. Diversity of intestinal microbiota and inflammatory cytokines after severe trauma. Sci Rep 2025; 15:7955. [PMID: 40055423 PMCID: PMC11889259 DOI: 10.1038/s41598-025-92212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Accumulating evidence has reported that the intestinal microbiota could play important roles in the occurrence and progression of severe trauma. However, the hypothesized potential targeted intestinal microbiota to mediate and regulate the levels of inflammatory cytokines and promote rapid recovery of body after severe trauma remains unclear. This study was aimed to explore the changes and correlation of intestinal microbiota and inflammatory cytokines in rats with severe crush and fracture trauma. The controlled laboratory study design was used, and a crush and fracture severe trauma rat model was established. 16S rRNA high-throughput gene sequencing and ELISA were used to analyze the changes in intestinal microbiota and inflammatory cytokines within one week after trauma. The correlation between intestinal microbiota and inflammatory cytokines was also analyzed. Loss of overall diversity and expansion of intestinal microbiota in the rats due to severe trauma was observed. Specifically, there was a significant increase in the abundance of Muribaculaceae [LDA (Linear Discriminant Analysis)-value = 4.814, P = 0.014] after severe trauma, while Prevotella (LDA-value = 5.235, P = 0.020) and Alloprevotella (LDA-value = 4.443, P = 0.015) were slightly lower in the trauma group than in the control group. The levels of inflammatory cytokines (IL-1α, IL-6, IL-8 and TNF-α) in the trauma group decreased from the first day to the third day and continued to increase until one week after the trauma. Prevotellaceae_UCG_001 was correlated with TNF-a (R = 0.411, P = 0.033); Lactobacillus was negatively correlated with IL-6 (R = - 0.434, P = 0.024) and IL-1α (R = - 0.419, P = 0.030) and positively correlated with IL-8 (R = 0.391, P = 0.045); and Lachnospiraceae_NK4A136_group (R = - 0.559, P = 0.027) and Muribaculaceae (R = - 0.568, P = 0.024) were negatively correlated with IL-8. Severe trauma shows stress-like activities by negatively modulating intestinal microbiota and affecting certain inflammatory cytokines contributing to host health, which implies that the regulation of potentially targeted intestinal microbiota, and further mediating and maintaining the homeostasis of inflammatory cytokines, is expected to promote the accelerating recovery of the body after severe trauma.
Collapse
Affiliation(s)
- Chang-Qing Liu
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jie Yang
- Department of Colorectal Tumour Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hong-Fei Ren
- Department of Gastroenterology of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Guang-Neng Liao
- Animal Experiment Center of West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhe Yin
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Shi-Lin Gao
- Department of Colorectal Tumour Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Qiu-Jing Du
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Xing-Zhu Yuan
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hanif Ullah
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Ka Li
- Department of Operating Room of West China Hospital/West China School of Nursing, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing and Materials, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Feng A, Li C, Su S, Liu Y. 1,25(OH)2D3 supplementation alleviates gut-vascular barrier disruption via inhibition of S100B/ADAM10 pathway. Tissue Barriers 2024; 12:2327776. [PMID: 38494646 PMCID: PMC11583585 DOI: 10.1080/21688370.2024.2327776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Gut-vascular barrier (GVB) is the second barrier in mucosa to control systemic dissemination of gut bacteria. Severe burns induce enteroglial cells to produce S100B and endothelial cells to generate ADAM10 and cause vitamin D3 insufficiency/deficiency and GVB disruption. It is not clear whether vitamin D3 supplementation attenuates GVB damage via regulation of S100B/ADAM10 pathway. Here, GVB disruption was induced by 30% of total body surface area scalds. Rats were treated with 1,25(OH)2D3 (0.05, 0.5 or 5 μg/kg) or S100B monoclonal antibody (S100BmAb, 10 μg/kg) or GI254023X (ADAM10 inhibitor, 100 mg/kg). Rat enteric glial cell-line CRL2690 and rat intestinal microvascular endothelial cells (RIMECs) were treated with S100B (5 μM) or plus 1,25(OH)2D3 (0.05, 0.5 or 5 μM) or GI254023X (5 μM). S100B, TNF-α, 25(OH)D3 and 1,25(OH)2D3 in serum and gut mucosa were determined by enzyme-linked immunosorbent assay. The endothelial permeability was measured using FITC-dextran 70 kDa. ADAM10 and β-catenin expression was assayed by Western blot. The results showed that 1,25(OH)2D3 and 25(OH)D3 concentration in serum reduced whereas TNF-α and S100B in serum and gut mucosa increased in burned rats. S100BmAb, GI254023X and 1,25(OH)2D3 treatment lowered burns-increased GVB permeability. 1,25(OH)2D3 also decreased S100B concentration in serum and gut mucosa. 1,25(OH)2D3 inhibited S100B release from TNF-α-treated CRL2690 and raised β-catenin while decreasing ADAM10 protein in S100B-treated RIMECs. 1,25(OH)2D3 and GI254023X also decreased the endothelial permeability of S100B-treated RIMECs. Collectively, these findings provide evidence that severe burns lower serum 25(OH)D3 and 1,25(OH)2D3 concentration. 1,25(OH)2D3 supplementation alleviates burns-elicited GVB disruption via inhibition of S100B/ADAM10 signaling.
Collapse
Affiliation(s)
- Aiwen Feng
- Department of General Surgery, Maoming People’s Hospital, Southern Medical University, Zhanjiang, China
- Department of General Surgery, Maoming People’s Hospital, Guangdong Medical University, Guangzhou, China
| | - Cheng Li
- Department of General Surgery, Maoming People’s Hospital, Southern Medical University, Zhanjiang, China
| | - Shaosheng Su
- Department of General Surgery, Maoming People’s Hospital, Guangdong Medical University, Guangzhou, China
| | - Yingyan Liu
- Department of General Surgery, Maoming People’s Hospital, Guangdong Medical University, Guangzhou, China
| |
Collapse
|
4
|
Ullah H, Arbab S, Tian Y, Chen Y, Liu CQ, Li Q, Li K. Crosstalk between gut microbiota and host immune system and its response to traumatic injury. Front Immunol 2024; 15:1413485. [PMID: 39144142 PMCID: PMC11321976 DOI: 10.3389/fimmu.2024.1413485] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Millions of microorganisms make up the complex microbial ecosystem found in the human gut. The immune system's interaction with the gut microbiota is essential for preventing inflammation and maintaining intestinal homeostasis. Numerous metabolic products that can cross-talk between immune cells and the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits a great and multifaceted immune response in the minutes after the initial offense, containing simultaneous pro- and anti-inflammatory responses. The development of innovative therapies that improve patient outcomes depends on the gut microbiota and immunological responses to trauma. The altered makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological responses, resulting in inflammation. Major human diseases may become more common as a result of chronic dysbiosis and the translocation of bacteria and the products of their metabolism beyond the mucosal barrier. In this review, we briefly summarize the interactions between the gut microbiota and the immune system and human disease and their therapeutic probiotic formulations. We also discuss the immune response to traumatic injury.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Chang-qing Liu
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qijie Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zheng C, Wang L, Zou T, Lian S, Luo J, Lu Y, Hao H, Xu Y, Xiang Y, Zhang X, Xu G, Zou X, Jiang R. Ileitis promotes MASLD progression via bile acid modulation and enhanced TGR5 signaling in ileal CD8 + T cells. J Hepatol 2024; 80:764-777. [PMID: 38181823 DOI: 10.1016/j.jhep.2023.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND & AIMS Clinical evidence substantiates a link between inflammatory bowel disease, particularly Crohn's disease (CD), and metabolic dysfunction-associated steatotic liver disease (MASLD). This study aims to explore the underlying molecular mechanisms responsible for this association. METHODS MASLD was induced by administering high-fat and western diets, while inflammatory bowel disease was induced using DSS (dextran sulfate sodium) and the Il10 knockout (KO) mouse model. The investigation into the role of secondary bile acids (SBAs) in ileitis involved employing metagenomic sequencing, conducting metabolomics detection, performing fecal microbiota transplantation, and constructing CD8+ T cell-specific gene knockout mice. RESULTS In MASLD+DSS and Il10 KO MASLD mice, we observed ileitis characterized by T-cell infiltration and activation in the terminal ileum. This condition resulted in decreased bile acid levels in the portal vein and liver, inhibited hepatic farnesoid X receptor (FXR) activation, and exacerbated MASLD. Metagenomic and metabolomic analysis of ileal contents revealed increased Clostridium proliferation and elevated SBA levels in MASLD-associated ileitis. Experiments using germ-free mice and fecal microbiota transplantation suggested an association between SBA and MASLD-related ileitis. In vitro, SBAs promoted CD8+ T-cell activation via the TGR5, mTOR, and oxidative phosphorylation pathways. In vivo, TGR5 KO in CD8+ T cells effectively alleviated ileitis and reversed the MASLD phenotype. Clinical data further supported these findings, demonstrating a positive correlation between ileitis and MASLD. CONCLUSION MASLD-induced changes in intestinal flora result in elevated levels of SBAs in the ileum. In the presence of a compromised intestinal barrier, this leads to severe CD8+ T cell-mediated ileitis through the TGR5/mTOR/oxidative phosphorylation signaling pathway. Ileitis-induced tissue damage impairs enterohepatic circulation, inhibits hepatic FXR activation, and exacerbates the MASLD phenotype. IMPACT AND IMPLICATIONS Our study provides a comprehensive investigation of the interplay and underlying mechanisms connecting ileitis and metabolic dysfunction-associated steatotic liver disease (MASLD). Secondary bile acids produced by intestinal bacteria act as the critical link between MASLD and ileitis. Secondary bile acids exert their influence by disrupting liver lipid metabolism through the promotion of CD8+ T cell-mediated ileitis. In future endeavors to prevent and treat MASLD, it is essential to thoroughly account for the impact of the intestinal tract, especially the ileum, on liver function via the enterohepatic circulation.
Collapse
Affiliation(s)
- Chang Zheng
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, and Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Lei Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, and Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Tianhui Zou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Senlin Lian
- Medical School of Nanjing University, Nanjing 210993, Jiangsu Province, China
| | - Jiajing Luo
- Medical School of Nanjing University, Nanjing 210993, Jiangsu Province, China
| | - Yijun Lu
- Medical School of Nanjing University, Nanjing 210993, Jiangsu Province, China
| | - Hanbing Hao
- Medical School of Nanjing University, Nanjing 210993, Jiangsu Province, China
| | - Yuejie Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ying Xiang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, and Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xiaoqi Zhang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, and Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Guifang Xu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, and Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, and Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China; Department of Gastroenterology, Taikang Xianlin Drum Tower Hospital, Nanjing 210000, China.
| | - Runqiu Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
6
|
Hou B, Zhang H, Zhou L, Hu B, Tang W, Ye B, Wang C, Xu Y, Zou L, Hu J. In silico analysis of intestinal microbial instability and symptomatic markers in mice during the acute phase of severe burns. BMC Microbiol 2024; 24:124. [PMID: 38622529 PMCID: PMC11017597 DOI: 10.1186/s12866-024-03266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Severe burns may alter the stability of the intestinal flora and affect the patient's recovery process. Understanding the characteristics of the gut microbiota in the acute phase of burns and their association with phenotype can help to accurately assess the progression of the disease and identify potential microbiota markers. METHODS We established mouse models of partial thickness deep III degree burns and collected faecal samples for 16 S rRNA amplification and high throughput sequencing at two time points in the acute phase for independent bioinformatic analysis. RESULTS We analysed the sequencing results using alpha diversity, beta diversity and machine learning methods. At both time points, 4 and 6 h after burning, the Firmicutes phylum content decreased and the content of the Bacteroidetes phylum content increased, showing a significant decrease in the Firmicutes/Bacteroidetes ratio compared to the control group. Nine bacterial genera changed significantly during the acute phase and occupied the top six positions in the Random Forest significance ranking. Clustering results also clearly showed that there was a clear boundary between the communities of burned and control mice. Functional analyses showed that during the acute phase of burn, gut bacteria increased lipoic acid metabolism, seleno-compound metabolism, TCA cycling, and carbon fixation, while decreasing galactose metabolism and triglyceride metabolism. Based on the abundance characteristics of the six significantly different bacterial genera, both the XGboost and Random Forest models were able to discriminate between the burn and control groups with 100% accuracy, while both the Random Forest and Support Vector Machine models were able to classify samples from the 4-hour and 6-hour burn groups with 86.7% accuracy. CONCLUSIONS Our study shows an increase in gut microbiota diversity in the acute phase of deep burn injury, rather than a decrease as is commonly believed. Severe burns result in a severe imbalance of the gut flora, with a decrease in probiotics and an increase in microorganisms that trigger inflammation and cognitive deficits, and multiple pathways of metabolism and substance synthesis are affected. Simple machine learning model testing suggests several bacterial genera as potential biomarkers of severe burn phenotypes.
Collapse
Affiliation(s)
- Bochen Hou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
- School of Computer Science, Chongqing University, Chongqing, 400030, China
| | - Honglan Zhang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lina Zhou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Biao Hu
- Chongqing University of Technology, Chongqing, 400054, China
| | - Wenyi Tang
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Bo Ye
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Cui Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yongmei Xu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lingyun Zou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China.
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Chen L, Xie L, Tan J, Li N, Luo Y, Li M, Zhang S, Wang Z. The gut microbiota regulates the depressive-type behaviors and inflammatory processes after severe burn injuries in mice. Heliyon 2024; 10:e25617. [PMID: 38380023 PMCID: PMC10877245 DOI: 10.1016/j.heliyon.2024.e25617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
An emerging number of studies have recently revealed the correlation between burn injuries and psychological disorders. Gut microbiota and inflammatory factors may play a vital role in this process. Nevertheless, there are few studies conducted to disclose the potential mechanism of the gut microbiota between depression and burn injuries. In this study, we constructed a burn model of C57BL/6 mice, which showed that the symptom of depression became more and more severe with the burn of mice lasted longer. Meanwhile, there are significant differences of composition of gut microbiota among mice before and after burn. Then, we tested the inflammatory factors in the brain and peripheral blood, which showed an increased expression of Iba1, VWF, TNF-α and IL-6, and a decreased expression of IL-10 in burn mice. In addition, the expression of zonula occludens-1 (ZO-1) in cecum showed a down-regulation in burn mice, which indicated impaired intestinal barrier function. Lastly, the crossing fecal microbiota transplantation (FMT) and cohousing experiment were conducted to determine the functions of cross-transplantation of fecal microbiota on the depressive-type behaviours in burned mice. According to the score of Tail suspension test (TST), the burn mice were divided into two groups: Resilient mice (no-depressed mice) and Abnormal mice (depressed mice). After abnormal mice were transplanted with fecal microbiota of resilient mice, the symptom of depression was improved, and the expression of TNF-α, IL-6 and IL-10 return to normal levels (P < 0.05). On the contrary, after resilient mice were transplanted with fecal microbiota of abnormal mice both the TST scores and inflammatory factor developed depressive-type changes. In conclusion, our study demonstrated the changes of gut microbiota and inflammatory factors in depressed burn mice and non-depressed burn mice. The gut microbiota dysbiosis could impaired intestinal barrier function and lead to neuroinflammation, and this phenomenon could be significantly mitigated by FMT.
Collapse
Affiliation(s)
- Ling Chen
- Department of Clinical Nursing, School of Nursing, Army Medical University, Chongqing, China
- Department of Emergency, The 958th Hospital of PLA, The Affiliated Hospital of Southwest Hospital, Army Medical University, Chongqing, China
| | - Langlang Xie
- Department of Clinical Nursing, School of Nursing, Army Medical University, Chongqing, China
- Department of Emergency, The 958th Hospital of PLA, The Affiliated Hospital of Southwest Hospital, Army Medical University, Chongqing, China
| | - Jing Tan
- Department of Nursing Management, School of Nursing, Army Medical University, Chongqing, China
| | - Ning Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yue Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Maojun Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shi Zhang
- Department of Emergency, The 958th Hospital of PLA, The Affiliated Hospital of Southwest Hospital, Army Medical University, Chongqing, China
| | - Zonghua Wang
- Department of Clinical Nursing, School of Nursing, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Gao S, Zhao X, Leng Y, Xia Z. Dietary supplementation with inulin improves burn-induced skeletal muscle atrophy by regulating gut microbiota disorders. Sci Rep 2024; 14:2328. [PMID: 38282163 PMCID: PMC10822858 DOI: 10.1038/s41598-024-52066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
Inulin, as a prebiotic, could modulate the gut microbiota. Burn injury leads to gut microbiota disorders and skeletal muscle catabolism. Therefore, whether inulin can improve burn-induced muscle atrophy by regulating microbiota disorders remains unknown. This study aimed to clarify that inulin intake alleviates gut microbiota disorders and skeletal muscle atrophy in burned rats. Rats were divided into the sham group, burn group, prebiotic inulin intervention group, and pseudo-aseptic validation group. A 30% total body surface area (TBSA) third-degree burn wound on dorsal skin was evaluated in all groups except the sham group. Animals in the intervention group received 7 g/L inulin. Animals in the validation group received antibiotic cocktail and inulin treatment. In our study inulin intervention could significantly alleviate the burn-induced skeletal muscle mass decrease and skeletal myoblast cell apoptosis. Inulin intake increased the abundances of Firmicutes and Actinobacteria but decreased the abundance of Proteobacteria. The biosynthesis of amino acids was the most meaningful metabolic pathway distinguishing the inulin intervention group from the burn group, and further mechanistic studies have shown that inulin can promote the phosphorylation of the myogenesis-related proteins PI3K, AKT and P70S6K and activate PI3K/AKT signaling for protein synthesis. In conclusion, inulin alleviated burn induced muscle atrophy through PI3K/AKT signaling and regulated gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Shan Gao
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuai Zhao
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Leng
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Osuka A, Shigeno A, Matsuura H, Onishi S, Yoneda K. Systemic immune response of burns from the acute to chronic phase. Acute Med Surg 2024; 11:e976. [PMID: 38894736 PMCID: PMC11184575 DOI: 10.1002/ams2.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Immune responses that occur following burn injury comprise a series of reactions that are activated in response to damaged autologous tissues, followed by removal of damaged tissues and foreign pathogens such as invading bacteria, and tissue repair. These immune responses are considered to be programmed in living organisms. Developments of modern medicine have led to the saving of burned patients who could not be cured previously; however, the programmed response is no longer able to keep up, and various problems have arisen. This paper describes the mechanism of immune response specific to burn injury and the emerging concept of persistent inflammation, immunosuppression, and catabolism syndrome.
Collapse
Affiliation(s)
- Akinori Osuka
- Department of Trauma, Critical Care Medicine and Burn CenterJapan Community Health Care Organization Chukyo HospitalNagoyaJapan
- Department of Traumatology and Acute Critical MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Ayami Shigeno
- Department of Trauma, Critical Care Medicine and Burn CenterJapan Community Health Care Organization Chukyo HospitalNagoyaJapan
| | - Hiroshi Matsuura
- Department of Trauma, Critical Care Medicine and Burn CenterJapan Community Health Care Organization Chukyo HospitalNagoyaJapan
- Osaka Prefectural Nakakawachi Emergency and Critical Care CenterOsakaJapan
| | - Shinya Onishi
- Department of Trauma, Critical Care Medicine and Burn CenterJapan Community Health Care Organization Chukyo HospitalNagoyaJapan
- Department of Traumatology and Acute Critical MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhiro Yoneda
- Department of Trauma, Critical Care Medicine and Burn CenterJapan Community Health Care Organization Chukyo HospitalNagoyaJapan
- Department of Traumatology and Acute Critical MedicineOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
10
|
Zha X, Su S, Wu D, Zhang P, Wei Y, Fan S, Huang Q, Peng X. The impact of gut microbiota changes on the intestinal mucus barrier in burned mice: a study using 16S rRNA and metagenomic sequencing. BURNS & TRAUMA 2023; 11:tkad056. [PMID: 38130728 PMCID: PMC10734567 DOI: 10.1093/burnst/tkad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Background The gut microbiota is a complex ecosystem that plays a critical role in human health and disease. However, the relationship between gut microbiota and intestinal damage caused by burns is not well understood. The intestinal mucus layer is crucial for maintaining intestinal homeostasis and providing a physiological barrier against bacterial invasion. This study aims to investigate the impact of gut microbiota on the synthesis and degradation of intestinal mucus after burns and explore potential therapeutic targets for burn injury. Methods A modified histopathological grading system was employed to investigate the effects of burn injury on colon tissue and the intestinal mucus barrier in mice. Subsequently, 16S ribosomal RNA sequencing was used to analyze alterations in the gut microbiota at days 1-10 post-burn. Based on this, metagenomic sequencing was conducted on samples collected at days 1, 5 and 10 to investigate changes in mucus-related microbiota and explore potential underlying mechanisms. Results Our findings showed that the mucus barrier was disrupted and that bacterial translocation occurred on day 3 following burn injury in mice. Moreover, the gut microbiota in mice was significantly disrupted from days 1 to 3 following burn injury, but gradually recovered to normal as the disease progressed. Specifically, there was a marked increase in the abundance of symbiotic and pathogenic bacteria associated with mucin degradation on day 1 after burns, but the abundance returned to normal on day 5. Conversely, the abundance of probiotic bacteria associated with mucin synthesis changed in the opposite direction. Further analysis revealed that after a burn injury, bacteria capable of degrading mucus may utilize glycoside hydrolases, flagella and internalins to break down the mucus layer, while bacteria that synthesize mucus may help restore the mucus layer by promoting the production of short-chain fatty acids. Conclusions Burn injury leads to disruption of colonic mucus barrier and dysbiosis of gut microbiota. Some commensal and pathogenic bacteria may participate in mucin degradation via glycoside hydrolases, flagella, internalins, etc. Probiotics may provide short-chain fatty acids (particularly butyrate) as an energy source for stressed intestinal epithelial cells, promote mucin synthesis and accelerate repair of mucus layer.
Collapse
Affiliation(s)
- Xule Zha
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Sen Su
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Panyang Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
11
|
Marascio N, Scarlata GGM, Romeo F, Cicino C, Trecarichi EM, Quirino A, Torti C, Matera G, Russo A. The Role of Gut Microbiota in the Clinical Outcome of Septic Patients: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:ijms24119307. [PMID: 37298258 DOI: 10.3390/ijms24119307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sepsis is a life-threatening multiple-organ dysfunction caused by a dysregulated host response to infection, with high mortality worldwide; 11 million deaths per year are attributable to sepsis in high-income countries. Several research groups have reported that septic patients display a dysbiotic gut microbiota, often related to high mortality. Based on current knowledge, in this narrative review, we revised original articles, clinical trials, and pilot studies to evaluate the beneficial effect of gut microbiota manipulation in clinical practice, starting from an early diagnosis of sepsis and an in-depth analysis of gut microbiota.
Collapse
Affiliation(s)
- Nadia Marascio
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giuseppe Guido Maria Scarlata
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Francesco Romeo
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Claudia Cicino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Graecia" University of Catanzaro, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Alessandro Russo
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, "Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Yang XJ, Wang XH, Yang MY, Ren HY, Chen H, Zhang XY, Liu QF, Yang G, Yang Y, Yang XJ. Exploring choices of early nutritional support for patients with sepsis based on changes in intestinal microecology. World J Gastroenterol 2023; 29:2034-2049. [PMID: 37155528 PMCID: PMC10122787 DOI: 10.3748/wjg.v29.i13.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/21/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Sepsis exacerbates intestinal microecological disorders leading to poor prognosis. Proper modalities of nutritional support can improve nutrition, immunity, and intestinal microecology. AIM To identify the optimal modality of early nutritional support for patients with sepsis from the perspective of intestinal microecology. METHODS Thirty patients with sepsis admitted to the intensive care unit of the General Hospital of Ningxia Medical University, China, between 2019 and 2021 with indications for nutritional support, were randomly assigned to one of three different modalities of nutritional support for a total of 5 d: Total enteral nutrition (TEN group), total parenteral nutrition (TPN group), and supplemental parenteral nutrition (SPN group). Blood and stool specimens were collected before and after nutritional support, and changes in gut microbiota, short-chain fatty acids (SCFAs), and immune and nutritional indicators were detected and compared among the three groups. RESULTS In comparison with before nutritional support, the three groups after nutritional support presented: (1) Differences in the gut bacteria (Enterococcus increased in the TEN group, Campylobacter decreased in the TPN group, and Dialister decreased in the SPN group; all P < 0.05); (2) different trends in SCFAs (the TEN group showed improvement except for Caproic acid, the TPN group showed improvement only for acetic and propionic acid, and the SPN group showed a decreasing trend); (3) significant improvement of the nutritional and immunological indicators in the TEN and SPN groups, while only immunoglobulin G improved in the TPN group (all P < 0.05); and (4) a significant correlation was found between the gut bacteria, SCFAs, and nutritional and immunological indicators (all P < 0.05). CONCLUSION TEN is recommended as the preferred mode of early nutritional support in sepsis based on clinical nutritional and immunological indicators, as well as changes in intestinal microecology.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Hong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ming-Yue Yang
- Department of Emergency Medicine, Affiliated Hospital of Jining Medical University, Jining 272030, Shandong Province, China
| | - Hong-Yan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201318, China
| | - Hui Chen
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201318, China
| | - Xiao-Ya Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qin-Fu Liu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ge Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- Department of Critical Care Medicine, Southeast University School of Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Jun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
13
|
Huang Z, Huang Y, Chen J, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jia B. The role and therapeutic potential of gut microbiome in severe burn. Front Cell Infect Microbiol 2022; 12:974259. [PMID: 36467727 PMCID: PMC9714625 DOI: 10.3389/fcimb.2022.974259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 05/07/2025] Open
Abstract
Severe burn is a serious acute trauma that can lead to significant complications such as sepsis, multiple organ failure, and high mortality worldwide. The gut microbiome, the largest microbial reservoir in the human body, plays a significant role in this pathogenic process. Intestinal dysbiosis and disruption of the intestinal mucosal barrier are common after severe burn, leading to bacterial translocation to the bloodstream and other organs of the body, which is associated with many subsequent severe complications. The progression of some intestinal diseases can be improved by modulating the composition of gut microbiota and the levels of its metabolites, which also provides a promising direction for post-burn treatment. In this article, we summarised the studies describing changes in the gut microbiome after severe burn, as well as changes in the function of the intestinal mucosal barrier. Additionally, we presented the potential and challenges of microbial therapy, which may provide microbial therapy strategies for severe burn.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Microbiota Dysbiosis and Gut Barrier Dysfunction Associated with Non-Alcoholic Fatty Liver Disease Are Modulated by a Specific Metabolic Cofactors' Combination. Int J Mol Sci 2022; 23:ijms232213675. [PMID: 36430154 PMCID: PMC9692973 DOI: 10.3390/ijms232213675] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The gut is a selective barrier that not only allows the translocation of nutrients from food, but also microbe-derived metabolites to the systemic circulation that flows through the liver. Microbiota dysbiosis occurs when energy imbalances appear due to an unhealthy diet and a sedentary lifestyle. Dysbiosis has a critical impact on increasing intestinal permeability and epithelial barrier deterioration, contributing to bacterial and antigen translocation to the liver, triggering non-alcoholic fatty liver disease (NAFLD) progression. In this study, the potential therapeutic/beneficial effects of a combination of metabolic cofactors (a multi-ingredient; MI) (betaine, N-acetylcysteine, L-carnitine, and nicotinamide riboside) against NAFLD were evaluated. In addition, we investigated the effects of this metabolic cofactors' combination as a modulator of other players of the gut-liver axis during the disease, including gut barrier dysfunction and microbiota dysbiosis. Diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (NAFLD group) or with a combination of metabolic cofactors (NAFLD-MI group), and small intestines were harvested from all animals for histological, molecular, and omics analysis. The MI treatment ameliorated gut morphological changes, decreased gut barrier permeability, and reduced gene expression of some proinflammatory cytokines. Moreover, epithelial cell proliferation and the number of goblet cells were increased after MI supplementation. In addition, supplementation with the MI combination promoted changes in the intestinal microbiota composition and diversity, as well as modulating short-chain fatty acids (SCFAs) concentrations in feces. Taken together, this specific combination of metabolic cofactors can reverse gut barrier disruption and microbiota dysbiosis contributing to the amelioration of NAFLD progression by modulating key players of the gut-liver axis.
Collapse
|
15
|
Guo J, Lou X, Gong W, Bian J, Liao Y, Wu Q, Jiao Q, Zhang X. The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Front Cell Infect Microbiol 2022; 12:953474. [PMID: 36250050 PMCID: PMC9557054 DOI: 10.3389/fcimb.2022.953474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that the effect of intestinal microecological disorders on organismal physiology is not limited to the digestive system, which provides new perspectives for microecological studies and new ideas for clinical diagnosis and prevention of microecology-related diseases. Stress triggers impairment of intestinal mucosal barrier function, which could be duplicated by animal models. In this paper, pathological animal models with high prevalence and typical stressors-corresponding to three major stressors of external environmental factors, internal environmental factors, and social psychological factors, respectively exemplified by burns, intestinal ischemia-reperfusion injury (IIRI), and depression models-were selected. We summarized the construction and evaluation of these typical animal models and the effects of stress on the organism and intestinal barrier, as well as systematically discussed the effects of different stresses on the intestinal mucosal barrier and intestinal microecology.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Yuhan Liao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Qi Wu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
16
|
Zhang L, Meng Y, Li J, Yu J, Mu G, Tuo Y. Lactiplantibacillus plantarum Y42 in Biofilm and Planktonic States Improves Intestinal Barrier Integrity and Modulates Gut Microbiota of Balb/c Mice. Foods 2022; 11:1451. [PMID: 35627021 PMCID: PMC9141668 DOI: 10.3390/foods11101451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
In our previous study, Lactiplantibacillus plantarum Y42 showed some potential probiotic functions and the ability to form biofilm. The aim of this study was to compare the similarities and differences in the probiotic and physiological traits of L. plantarum Y42 in the biofilm and planktonic states. L. plantarum Y42 in the biofilm state was proven to have higher survival after passing through mimic gastrointestinal fluid, as well as excellent adhesion properties on the HT-29 cell monolayers, than those in the planktonic state. The expression of tight junction proteins (TJ proteins) of HT-29 cell monolayers treated by L. plantarum Y42 in the planktonic state increased, while similar changes were not observed in the HT-29 cells treated by the strain in the biofilm state. Furthermore, Balb/c mice were orally administered L. plantarum Y42 in the biofilm and planktonic states, respectively. Compared to the planktonic state, the oral administration of L. plantarum Y42 in the biofilm state significantly boosted IgA levels and improved the immunity of the mice. High-throughput sequencing showed that the diversity and structure of the intestinal flora of the mice were changed after the oral administration of L. plantarum Y42, including the up-regulated relative abundance of Lactobacillus in the intestinal tract of the mice, with no difference between the biofilm and planktonic states. Moreover, oral administration of L. plantarum Y42 in biofilm and planktonic states reduced the release of proinflammatory factors, to a certain extent, in the serum of the mice. The similarities and differences in the probiotic and physiological properties of L. plantarum Y42 in the biofilm and planktonic states can be contributed to the reasonable application of the strain.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yuan Meng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Jiayi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
| |
Collapse
|
17
|
Qiao H, Zhao T, Yin J, Zhang Y, Ran H, Chen S, Wu Z, Zhang R, Wang X, Gan L, Wang J. Structural Characteristics of Inulin and Microcrystalline Cellulose and Their Effect on Ameliorating Colitis and Altering Colonic Microbiota in Dextran Sodium Sulfate-Induced Colitic Mice. ACS OMEGA 2022; 7:10921-10932. [PMID: 35415348 PMCID: PMC8991927 DOI: 10.1021/acsomega.1c06552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Several studies have reported that dietary fibers (DFs) from plants may exert beneficial effects on inflammatory bowel disease. In the present study, we investigated the structural differences of soluble DF (inulin) and insoluble DF (microcrystalline cellulose, MCC) and their effects on the intestinal barrier integrity, gut microbiota community, and inflammation response in mice with dextran sodium sulfate (DSS)-induced colitis. Mice were fed for 21 days with diets containing inulin or MCC (2.5 g/kg body weight), and colitis was induced by administration of DSS (4% w/v) in drinking water during the last 8 days of experimentation. The results showed that inulin and MCC differ in morphology and structure. MCC exhibited a smaller particle size, a larger specific surface area, and higher thermal stability than inulin. In addition, both inulin and MCC restored various physical signs (body weight, colon weight and length, disease activity index score, and infiltration of inflammatory cells), gut barrier function (as evidenced by the increased expression of claudin-3, claudin-7, ZO-2, occludin, JAM-2, and MUC-3 and the decreased activity of myeloperoxidase activity), downregulation of mRNA expression of proinflammatory cytokines (caspase-1, NLPR3, TLR4, TNF-α, and IL-1β), and modulation of colon microbiota community. Taken together, the present study demonstrates that DFs differ in morphology and structure and ameliorate DSS-induced colitis in mice by blocking proinflammatory cytokines, reinforcing gut barrier integrity, and modulating gut microbiota. Therefore, DFs, especially inulin, are promising dietary supplements to alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Hanzhen Qiao
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Tongxi Zhao
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Jie Yin
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Yichen Zhang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Hongmei Ran
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Shaojie Chen
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Ziwei Wu
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Ran Zhang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Xingkexin Wang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Liping Gan
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Jinrong Wang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| |
Collapse
|
18
|
Dyamenahalli K, Choy K, Frank DN, Najarro K, Boe D, Colborn KL, Idrovo JP, Wagner AL, Wiktor AJ, Afshar M, Burnham EL, McMahan RH, Kovacs EJ. Age and Injury Size Influence the Magnitude of Fecal Dysbiosis in Adult Burn Patients. J Burn Care Res 2022; 43:1145-1153. [PMID: 35020913 PMCID: PMC9435505 DOI: 10.1093/jbcr/irac001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Clinical studies have demonstrated that age 50 years or older is an independent risk factor associated with poor prognosis after burn injury, the second leading cause of traumatic injuries in the aged population. While mechanisms driving age-dependent postburn mortality are perplexing, changes in the intestinal microbiome, may contribute to the heightened, dysregulated systemic response seen in aging burn patients. The fecal microbiome from 22 patients admitted to a verified burn center from July 2018 to February 2019 was stratified based on the age of 50 years and total burn surface area (TBSA) size of ≥10%. Significant differences (P = .014) in overall microbiota community composition (ie, beta diversity) were measured across the four patient groups: young <10% TBSA, young ≥10% TBSA, older <10% TBSA, and older ≥10% TBSA. Differences in beta diversity were driven by %TBSA (P = .013) and trended with age (P = .087). Alpha diversity components, richness, evenness, and Shannon diversity were measured. We observed significant differences in bacterial species evenness (P = .0023) and Shannon diversity (P = .0033) between the groups. There were significant correlations between individual bacterial species and levels of short-chain fatty acids. Specifically, levels of fecal butyrate correlated with the presence of Enterobacteriaceae, an opportunistic gut pathogen, when elevated in burn patients lead to worsen outcomes. Overall, our findings reveal that age-specific changes in the fecal microbiome following burn injuries may contribute to immune system dysregulation in patients with varying TBSA burns and potentially lead to worsened clinical outcomes with heightened morbidity and mortality.
Collapse
Affiliation(s)
| | | | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, USA,Gastrointestinal and Liver and Innate Immunity Program, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kevin Najarro
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, USA,Rocky Mountain Regional VA Medical Center, VA Eastern Colorado Health Care System Research Service, Aurora, USA
| | - Devin Boe
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kathryn L Colborn
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Anne L Wagner
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Arek J Wiktor
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Majid Afshar
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Ellen L Burnham
- Department of Medicine, Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Rachel H McMahan
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, USA,Rocky Mountain Regional VA Medical Center, VA Eastern Colorado Health Care System Research Service, Aurora, USA
| | - Elizabeth J Kovacs
- Address correspondence to Elizabeth J. Kovacs, PhD, Department of Surgery, GITES, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave, RC2, Mail Stop #8620, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Toni T, Alverdy J, Gershuni V. Re-examining chemically defined liquid diets through the lens of the microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:903-911. [PMID: 34594028 PMCID: PMC8815794 DOI: 10.1038/s41575-021-00519-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Trends in nutritional science are rapidly shifting as information regarding the value of eating unprocessed foods and its salutary effect on the human microbiome emerge. Unravelling the evolution and ecology by which humans have harboured a microbiome that participates in every facet of health and disease is daunting. Most strikingly, the host habitat has sought out naturally occurring foodstuff that can fulfil its own metabolic needs and also the needs of its microbiota, each of which remain inexorably connected to one another. With the introduction of modern medicine and complexities of critical care, came the assumption that the best way to feed a critically ill patient is by delivering fibre-free chemically defined sterile liquid foods (that is, total enteral nutrition). In this Perspective, we uncover the potential flaws in this assumption and discuss how emerging technology in microbiome sciences might inform the best method of feeding malnourished and critically ill patients.
Collapse
Affiliation(s)
- Tiffany Toni
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - John Alverdy
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Victoria Gershuni
- University of Pennsylvania, Department of Surgery, Philadelphia, PA, USA and Washington University in St Louis, Department of Surgery, St Louis, MO, USA,Corresponding author
| |
Collapse
|
20
|
Niu M, Chen P. Crosstalk between gut microbiota and sepsis. BURNS & TRAUMA 2021; 9:tkab036. [PMID: 34712743 PMCID: PMC8547143 DOI: 10.1093/burnst/tkab036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is an overwhelming inflammatory response to microbial infection. Sepsis management remains a clinical challenge. The role of the gut microbiome in sepsis has gained some attention. Recent evidence has demonstrated that gut microbiota regulate host physiological homeostasis mediators, including the immune system, gut barrier function and disease susceptibility pathways. Therefore, maintenance or restoration of microbiota and metabolite composition might be a therapeutic or prophylactic target against critical illness. Fecal microbiota transplantation and supplementation of probiotics are microbiota-based treatment methods that are somewhat limited in terms of evidence-based efficacy. This review focuses on the importance of the crosstalk between the gastrointestinal ecosystem and sepsis to highlight novel microbiota-targeted therapies to improve the outcomes of sepsis treatment.
Collapse
Affiliation(s)
- Mengwei Niu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Gao Y, Yang R, Guo L, Wang Y, Liu WJ, Ai S, Woon TH, Wang Z, Zhai Y, Wang Z, Peng L. Qing-Re-Xiao-Zheng Formula Modulates Gut Microbiota and Inhibits Inflammation in Mice With Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:719950. [PMID: 34604258 PMCID: PMC8481597 DOI: 10.3389/fmed.2021.719950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Evidence indicates that the metabolic inflammation induced by gut microbiota dysbiosis contributes to diabetic kidney disease. Prebiotic supplementations to prevent gut microbiota dysbiosis, inhibit inflammatory responses, and protect the renal function in DKD. Qing-Re-Xiao-Zheng formula (QRXZF) is a Traditional Chinese Medicine (TCM) formula that has been used for DKD treatment in China. Recently, there are growing studies show that regulation of gut microbiota is a potential therapeutic strategy for DKD as it is able to reduce metabolic inflammation associated with DKD. However, it is unknown whether QRXZF is effective for DKD by regulating of gut microbiota. In this study, we investigated the reno-protective effect of QRXZF by exploring its potential mechanism between gut microbiota and downstream inflammatory pathways mediated by gut-derived lipopolysaccharide (LPS) in the kidney. High-fat diet (HFD) and streptozotocin injection-induced DKD mice model was established to assess the QRXZF effect in vivo. Mice treated with QRXZF for 8 weeks had significantly lower levels of urinary albumin, serum cholesterol and triglycerides. The renal injuries observed through histological analysis were attenuated as well. Also, mice in the QRXZF group had higher levels of Zonula occludens protein-1 (ZO-1) expression, lower levels of serum fluorescein-isothiocyanate (FITC)-dextran and less-damaged colonic mucosa as compared to the DKD group, implying the benefit role for the gut barrier integrity. QRXZF treatment also reversed gut dysbiosis and reduced levels of gut-derived LPS. Notably, the expression of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), which are important inflammation pathways in DKD, were suppressed in the QRXZF groups. In conclusion, our results indicated that the reno-protective effects of QRXZF was probably associated with modulating gut microbiota and inhibiting inflammatory responses in the kidney.
Collapse
Affiliation(s)
- Yabin Gao
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ruibing Yang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Guo
- Jitang College of North China University of Science and Technology, Hebei, China
| | - Yaoxian Wang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sinan Ai
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Zheng Wang
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuanyuan Zhai
- College of Life Sciences, Hebei University, Hebei, China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zhen Wang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
22
|
Abstract
ABSTRACT Burn injuries are a common form of traumatic injury that leads to significant morbidity and mortality worldwide. Burn injuries are characterized by inflammatory processes and alterations in numerous organ systems and functions. Recently, it has become apparent that the gastrointestinal bacterial microbiome is a key component of regulating the immune response and recovery from burn and can also contribute to significant detrimental sequelae after injury, such as sepsis and multiple organ failure. Microbial dysbiosis has been linked to multiple disease states; however, its role in exacerbating acute traumatic injuries, such as burn, is poorly understood. In this article, we review studies that document changes in the intestinal microbiome after burn injury, assess the implications in post-burn pathogenesis, and the potential for further discovery and research.
Collapse
Affiliation(s)
- Marisa E. Luck
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Caroline J. Herrnreiter
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Biochemistry and Molecular Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Mashkoor A. Choudhry
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Biochemistry and Molecular Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
23
|
Qin C, Jiang Y, Yu M, Bian Y, Yu Y. Exploration of Potential Molecular Targets of Dexmedetomidine in the Intestinal Repair of Burnt Rats. J Inflamm Res 2021; 14:3197-3206. [PMID: 34285543 PMCID: PMC8286122 DOI: 10.2147/jir.s315952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background More and more burn survivors were suffering from varying degrees of damage to the intestinal barrier. Dexmedetomidine (Dex) was frequently used as sedative in more cases, but it was found to have repair effect on intestinal barrier dysfunction recently. This study aimed to explore the potential specific targets of Dex in intestinal barrier repair in burn rats model. Methods Male adult SD rats were used to establish 40% TBSA III degree scald model in our study. The samples were divided into four groups: burn rats (Burn), burn rats with Dex medication (Burn-Dex), sham rats (Sham) and sham rats with Dex medication (Sham-Dex). And plasma FITC-dextran and diamine oxidase (DAO) were detected to determine the intestinal permeability. Differentially expressed proteins were further adopted to protein-protein interaction network analysis, Gene Ontology analysis (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results It showed that 40% TBSA III degree scald model was successfully constructed. And plasma FITC-dextran and DAO decreased significantly after Dex administration. Additionally, differentially expressed genes Psmb10, Psmb7 among the experimental groups were screened, which were significantly enriched in proteasome and other several pathways. Conclusion The results above suggested that Q4KM35 and Q9JHW0, which are encoded by Psmb10 and Psmb7, respectively, are two possible protein targets of Dex in intestinal barrier repair.
Collapse
Affiliation(s)
- Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, 300000, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin, 300071, People's Republic of China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, 300000, People's Republic of China
| | - Mingdong Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, 300000, People's Republic of China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, 300000, People's Republic of China
| |
Collapse
|
24
|
Li P, Xia Z, Kong W, Wang Q, Zhao Z, Arnold A, Xu Q, Xu J. Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity. Nutr Metab (Lond) 2021; 18:65. [PMID: 34167568 PMCID: PMC8223334 DOI: 10.1186/s12986-021-00592-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background Impaired hepatic fatty acid metabolism and persistent mitochondrial dysfunction are phenomena commonly associated with liver failure. Decreased serum levels of L-carnitine, a amino acid derivative involved in fatty-acid and energy metabolism, have been reported in severe burn patients. The current study aimed to evaluate the effects of L-carnitine supplementation on mitochondrial damage and other hepatocyte injuries following severe burns and the related mechanisms. Methods Serum carnitine and other indicators of hepatocytic injury, including AST, ALT, LDH, TG, and OCT, were analyzed in severe burn patients and healthy controls. A burn model was established on the back skin of rats; thereafter, carnitine was administered, and serum levels of the above indicators were evaluated along with Oil Red O and TUNEL staining, transmission electron microscopy, and assessment of mitochondrial membrane potential and carnitine palmitoyltransferase 1 (CPT1) activity and expression levels in the liver. HepG2 cells pretreated with the CPT1 inhibitor etomoxir were treated with or without carnitine for 24 h. Next, the above indicators were examined, and apoptotic cells were analyzed via flow cytometry. High-throughput sequencing of rat liver tissues identified several differentially expressed genes (Fabp4, Acacb, Acsm5, and Pnpla3) were confirmed using RT-qPCR. Results Substantially decreased serum levels of carnitine and increased levels of AST, ALT, LDH, and OCT were detected in severe burn patients and the burn model rats. Accumulation of TG, evident mitochondrial shrinkage, altered mitochondrial membrane potential, decreased ketogenesis, and reduced CPT1 activity were detected in the liver tissue of the burned rats. Carnitine administration recovered CPT1 activity and improved all indicators related to cellular and fatty acid metabolism and mitochondrial injury. Inhibition of CPT1 activity with etomoxir induced hepatocyte injuries similar to those in burn patients and burned rats; carnitine supplementation restored CPT1 activity and ameliorated these injuries. The expression levels of the differentially expressed genes Fabp4, Acacb, Acsm5, and Pnpla3 in the liver tissue from burned rats and etomoxir-treated hepatocytes were also restored by treatment with exogenous carnitine. Conclusion Exogenous carnitine exerts protective effects against severe burn-induced cellular, fatty-acid metabolism, and mitochondrial dysfunction of hepatocytes by restoring CPT1 activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00592-x.
Collapse
Affiliation(s)
- Pengtao Li
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhengguo Xia
- Department of Wound Repair and Plastic and Aesthetic Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Road, Xinzhan District, China
| | - Weichang Kong
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Qiong Wang
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ziyue Zhao
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ashley Arnold
- International College of Anhui Medical University, No. 81 Meishan road, Hefei, 230032, Anhui, China
| | - Qinglian Xu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
25
|
Segers C, Mysara M, Claesen J, Baatout S, Leys N, Lebeer S, Verslegers M, Mastroleo F. Intestinal mucositis precedes dysbiosis in a mouse model for pelvic irradiation. ISME COMMUNICATIONS 2021; 1:24. [PMID: 36737646 PMCID: PMC9723693 DOI: 10.1038/s43705-021-00024-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Pelvic radiotherapy is known to evoke intestinal mucositis and dysbiosis. Currently, there are no effective therapies available to mitigate these injuries, which is partly due to a lack of insight into the events causing mucositis and dysbiosis. Here, the complex interplay between the murine host and its microbiome following pelvic irradiation was mapped by characterizing intestinal mucositis along with extensive 16S microbial profiling. We demonstrated important morphological and inflammatory implications within one day after exposure, thereby impairing intestinal functionality and inducing translocation of intraluminal bacteria into mesenteric lymph nodes as innovatively quantified by flow cytometry. Concurrent 16S microbial profiling revealed a delayed impact of pelvic irradiation on beta diversity. Analysis of composition of microbiomes identified biomarkers for pelvic irradiation. Among them, members of the families Ruminococcaceae, Lachnospiraceae and Porphyromonadaceae were differentially affected. Altogether, our unprecedented findings showed how pelvic irradiation evoked structural and functional changes in the intestine, which secondarily resulted in a microbiome shift. Therefore, the presented in vivo irradiation-gut-microbiome platform allows further research into the pathobiology of pelvic irradiation-induced intestinal mucositis and resultant dysbiosis, as well as the exploration of mitigating treatments including drugs and food supplements.
Collapse
Affiliation(s)
- Charlotte Segers
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Jürgen Claesen
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Epidemiology and Data Science, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sarah Baatout
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, University of Ghent, Ghent, Belgium
| | - Natalie Leys
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mieke Verslegers
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Felice Mastroleo
- Interdisciplinary Biosciences group, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium.
| |
Collapse
|
26
|
Shi Y, Peng Y, Zhang Y, Chen Y, Zhang C, Luo X, Chen Y, Yuan Z, Chen J, Gong Y. Safety and Efficacy of a Phage, kpssk3, in an in vivo Model of Carbapenem-Resistant Hypermucoviscous Klebsiella pneumoniae Bacteremia. Front Microbiol 2021; 12:613356. [PMID: 34093455 PMCID: PMC8175031 DOI: 10.3389/fmicb.2021.613356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most significant threats to global public health. As antibiotic failure is increasing, phages are gradually becoming important agents in the post-antibiotic era. In this study, the therapeutic effects and safety of kpssk3, a previously isolated phage infecting carbapenem-resistant hypermucoviscous Klebsiella pneumoniae (CR-HMKP), were evaluated in a mouse model of systemic CR-HMKP infection. The therapeutic efficacy experiment showed that intraperitoneal injection with a single dose of phage kpssk3 (1 × 107 PFU/mouse) 3 h post infection protected 100% of BALB/c mice against bacteremia induced by intraperitoneal challenge with a 2 × LD100 dose of NY03, a CR-HMKP clinical isolate. In addition, mice were treated with antibiotics from three classes (polymyxin B, tigecycline, and ceftazidime/avibactam plus aztreonam), and the 7 days survival rates of the treated mice were 20, 20, and 90%, respectively. The safety test consisted of 2 parts: determining the cytotoxicity of kpssk3 and evaluating the short- and long-term impacts of phage therapy on the mouse gut microbiota. Phage kpssk3 was shown to not be cytotoxic to mammalian cells in vitro or in vivo. Fecal samples were collected from the phage-treated mice at 3 time points before (0 day) and after (3 and 10 days) phage therapy to study the change in the gut microbiome via high-throughput 16S rDNA sequence analysis, which revealed no notable alterations in the gut microbiota except for decreases in the Chao1 and ACE indexes.
Collapse
Affiliation(s)
- Yunlong Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqiang Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yajie Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiqiang Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
27
|
Liu X, Chen Y, You B, Peng Y, Chen Y, Yang Z, Zhang Y, Chen J. Molecular mechanism mediating enteric bacterial translocation after severe burn: the role of cystic fibrosis transmembrane conductance regulator. BURNS & TRAUMA 2021; 9:tkaa042. [PMID: 33501367 PMCID: PMC7809362 DOI: 10.1093/burnst/tkaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Indexed: 11/23/2022]
Abstract
Background Gut ischemia and hypoxia post severe burn leads to breakdown of intestinal epithelial
barrier and enteric bacterial translocation (EBT), resulting in serious complications,
such as systemic inflammatory response syndrome, sepsis and multiple organ failure.
Cystic fibrosis transmembrane conductance regulator (CFTR) is known to be downregulated
by hypoxia and modulate junctional complexes, which are crucial structures maintaining
the intestinal barrier. This study aimed to investigate whether CFTR plays a role in
both regulating the intestinal barrier and mediating EBT post severe burn, as well as
the signaling pathways involved in these processes. Methods An in vitro Caco-2 cell model subjected to hypoxic injury and an
in vivo mouse model with a 30% total body surface area full-thickness
dermal burn were established. DF 508 mice (mice with F508del CFTR gene mutation) were
used as an in vivo model to further demonstrate the role of CFTR in maintaining normal
intestinal barrier function. QRT-PCR, western blot, ELISA, TER assay and
immunofluorescence staining were used to detect the expression and localization of CFTR
and tight junction proteins, as well as the function of tight junctions. Results Our data indicated that, in Caco-2 cells, the hypoxia condition significantly reduced
CFTR expression; activated extracellular signal-regulated kinase and nuclear factor-κB
signaling; elevated secretion of inflammatory factors (tumor necrosis factor-α,
interleukin-1β and interleukin-8); downregulated zonula occludens-1, occludin and
E-cadherin expression; decreased transepithelial electrical resistance values; and led
to a cellular mislocation of ZO-1. More importantly, knockdown of CFTR caused similar
alterations. The upregulation of inflammatory factors and downregulation of tight
junction proteins (ZO-1 and occludin) induced by knockdown of CFTR could be reversed by
specific extracellular signal-regulated kinase or nuclear factor-κB inhibition. In
support of the in vitro data, exuberant secretion of pro-inflammatory
mediators and EBT was observed in the intestine of severely burnt mice in
vivo. EBT occurred in DF508 mice (mice with the F508del CFTR gene mutation),
accompanied by augmented tumor necrosis factor-α, interleukin-1β and interleukin-8
levels in the ileum compared to wildtype mice. In addition, vitamin D3 was shown to
protect the intestinal epithelial barrier from hypoxic injury. Conclusions Collectively, the present study illustrated that CFTR and downstream signaling were
critical in modulating the intestinal epithelial junction and EBT post severe burn.
Collapse
Affiliation(s)
- Xinzhu Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Bo You
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China.,Department of Burn and Plastic Surgery, No. 958 Hospital of Army, Southwest Hospital, Third Military Medical University (Army Military Medical University), Jian Xin Dong Street, Chongqing 400020, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhi Zao Ju Road, Shanghai 200011, China
| | - Yajie Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Zichen Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhi Zao Ju Road, Shanghai 200011, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| |
Collapse
|
28
|
Jiang Y, Zhang C, Wang T. bFGF ameliorates intestinal mucosal permeability and barrier function through tight junction proteins in burn injury rats. Burns 2020; 47:1129-1136. [PMID: 33422356 DOI: 10.1016/j.burns.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUD To investigate the protective effect of exogenous basic fibroblast growth factor (bFGF) treatment on the intestinal mucosa in scalded rats. METHODS Thirty-six SD rats were randomly divided into 3 groups (n = 12): sham group, scald group and bFGF group (0.5 mg/kg). Intestinal barrier dysfunction was evaluated by permeability of intestinal mucosa to fluorescein isothiocyanate (FITC)-dextran and Chiu's grading system. H&E staining was used to detect the morphological changes of intestinal mucosa. Immunohistochemistry was used to observe zonula occludens-1 (ZO-1) and occludin. Western blot assay was used to detect the expression of ZO-1, Claudin-1, occludin and myosin light-chain kinase (MLCK). RESULTS The results demonstrated that following bFGF treatment, permeability of the intestinal epithelium barrier of was significantly decreased compared to scald group. H&E staining and Chiu's grading were consistent with previous result. The expression of ZO-1, Claudin-1, occludin in bFGF group were significantly increased compared to scald group, while MLCK protein was decreased. CONCLUSIONS bFGF ameliorates permeability of intestinal mucosa after burns. The possible mechanism may be relate to bFGF could increase the expression level of tight junction proteins (TJPs).
Collapse
Affiliation(s)
- Yan Jiang
- Department of Burns and Plastic Surgery, Laiyang Central Hospital of Yantai, Yantai, Shandong, China.
| | - Caifeng Zhang
- Department of Burns and Plastic Surgery, Laiyang Central Hospital of Yantai, Yantai, Shandong, China
| | - Tingli Wang
- Department of Burns and Plastic Surgery, Laiyang Central Hospital of Yantai, Yantai, Shandong, China
| |
Collapse
|
29
|
Burn resuscitation strategy influences the gut microbiota-liver axis in swine. Sci Rep 2020; 10:15655. [PMID: 32973266 PMCID: PMC7515893 DOI: 10.1038/s41598-020-72511-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fluid resuscitation improves clinical outcomes of burn patients; however, its execution in resource-poor environments may have to be amended with limited-volume strategies. Liver dysfunction is common in burn patients and gut dysbiosis is an understudied aspect of burn sequelae. Here, the swine gut microbiota and liver transcripts were investigated to determine the impact of standard-of-care modified Brooke (MB), limited-volume colloid (LV-Co), and limited-volume crystalloid (LV-Cr) resuscitation on the gut microbiota, and to evaluate its' potential relationship with liver dysfunction. Independent of resuscitation strategy, bacterial diversity was reduced 24 h post-injury, and remained perturbed at 48 h. Changes in community structure were most pronounced with LV-Co, and correlated with biomarkers of hepatocellular damage. Hierarchical clustering revealed a group of samples that was suggestive of dysbiosis, and LV-Co increased the risk of association with this group. Compared with MB, LV-Co and LV-Cr significantly altered cellular stress and ATP pathways, and gene expression of these perturbed pathways was correlated with major dysbiosis-associated bacteria. Taken together, LV-Co resuscitation exacerbated the loss of bacterial diversity and increased the risk of dysbiosis. Moreover, we present evidence of a linkage between liver (dys)function and the gut microbiota in the acute setting of burn injury.
Collapse
|
30
|
Corcione S, Lupia T, De Rosa FG. Microbiome in the setting of burn patients: implications for infections and clinical outcomes. BURNS & TRAUMA 2020; 8:tkaa033. [PMID: 32821744 PMCID: PMC7428410 DOI: 10.1093/burnst/tkaa033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Indexed: 01/02/2023]
Abstract
Burn damage can lead to a state of immune dysregulation that facilitates the development of infections in patients. The most deleterious impact of this dysfunction is the loss of the skin’s natural protective barrier. Furthermore, the risk of infection is exacerbated by protracted hospitalization, urinary catheters, endotracheal intubation, inhalation injury, arterial lines and central venous access, among other mainstays of burn care. Currently, infections comprise the leading cause of mortality after major burn injuries, which highlights the improvements observed over the last 50 years in the care provided to burn victims. The need to implement the empirical selection of antibiotic therapy to treat multidrug-resistant bacteria may concomitantly lead to an overall pervasiveness of difficult-to-treat pathogens in burn centres, as well as the propagation of antimicrobial resistance and the ultimate dysregulation of a healthy microbiome. While preliminary studies are examining the variability and evolution of human and mice microbiota, both during the early and late phase burn injury, one must consider that abnormal microbiome conditions could influence the systemic inflammatory response. A better understanding of the changes in the post-burn microbiome might be useful to interpret the provenance and subsequent development of infections, as well as to come up with inferences on the prognosis of burn patients. This review aims to summarise the current findings describing the microbiological changes in different organs and systems of burn patients and how these alterations affect the risks of infections, complications, and, ultimately, healing.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Italy
| | | |
Collapse
|
31
|
Boldeanu L, Boldeanu MV, Bogdan M, Meca AD, Coman CG, Buca BR, Tartau CG, Tartau LM. Immunological approaches and therapy in burns (Review). Exp Ther Med 2020; 20:2361-2367. [PMID: 32765715 PMCID: PMC7401720 DOI: 10.3892/etm.2020.8932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Burns have become an important public health problem in the last two decades, with just over a quarter of a million deaths annually. Major burns are accompanied by a strong inflammatory response, which will most often lead to systemic response inflammatory syndrome, followed by sepsis and finally induce multiple organ failure. The main mechanism involved in wound healing after burns is the inflammatory process, characterized by the recruitment of myeloid and T cells and by the involvement of numerous cytokines, chemokines, complement fractions, as well as various growth factors. Inflammasomes, protein-based cytosolic complexes, activated during metabolic stress or infection, play a role in modulating and improving the defense capacity of the innate immune system. Nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has been studied predominantly and several hypotheses have been issued. Restoring the balance between the pro-inflammatory response and the anti-inflammatory activity is the key element to effective therapy in burns. Severe burns require nutritional support and pharmacotherapy not only for burn area but for different pathological complications of burn injury. In-depth research is required to find new ways to modulate the defense capacity, to prevent the complications of abnormal immune response and to treat burn injuries efficiently.
Collapse
Affiliation(s)
- Lidia Boldeanu
- Department of Microbiology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy, 200349 Craiova, Romania.,Department of Medico Science SRL, Stem Cell Bank Unit, 200690 Craiova, Romania
| | - Maria Bogdan
- Department of Pharmacology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea Daniela Meca
- Department of Pharmacology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Corneliu George Coman
- Department of Pharmacology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Beatrice Rozalina Buca
- Department of Pharmacology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cosmin Gabriel Tartau
- Department of Pharmacology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Mititelu Tartau
- Department of Pharmacology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
32
|
Song Y, Li Y, Xiao Y, Hu W, Wang X, Wang P, Zhang X, Yang J, Huang Y, He W, Huang C. Neutralization of interleukin-17A alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model. BURNS & TRAUMA 2019; 7:37. [PMID: 31890716 PMCID: PMC6933641 DOI: 10.1186/s41038-019-0177-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Background The intestinal barrier integrity can be disrupted due to burn injury, which is responsible for local and systemic inflammatory responses. Anti-inflammation strategy is one of the proposed therapeutic approaches to control inflammatory cascade at an early stage. Interleukin-17A (IL-17A) plays a critical role in inflammatory diseases. However, the role of IL-17A in the progression of burn-induced intestinal inflammation is poorly understood. In this study, we aimed to investigate the effect of IL-17A and associated pro-inflammatory cytokines that were deeply involved in the pathogenesis of burn-induced intestinal inflammatory injury, and furthermore, we sought to determine the early source of IL-17A in the intestine. Methods Mouse burn model was successfully established with infliction of 30% total body surface area scald burn. The histopathological manifestation, intestinal permeability, zonula occludens-1 expression, pro-inflammatory cytokines were determined with or without IL-17A-neutralization. Flow cytometry was used to detect the major source of IL-17A+ cells in the intestine. Results Burn caused intestinal barrier damage, increase of intestinal permeability, alteration of zonula occludens-1 expressions, elevation of IL-17A, IL-6, IL-1β and tumor necrosis factor-α (TNF-α), whereas IL-17A neutralization dramatically alleviated burn-induced intestinal barrier disruption, maintained zonula occludens-1 expression, and noticeably, inhibited pro-inflammatory cytokines elevation. In addition, we observed that the proportion of intestinal IL-17A+Vγ4+ T subtype cells (but not IL-17A+Vγ1+ T subtype cells) were increased in burn group, and neutralization of IL-17A suppressed this increase. Conclusions The main original findings of this study are intestinal mucosa barrier is disrupted after burn through affecting the expression of pro-inflammatory cytokines, and a protective role of IL-17A neutralization for intestinal mucosa barrier is determined. Furthermore, Vγ4+ T cells are identified as the major early producers of IL-17A that orchestrate an inflammatory response in the burn model. These data suggest that IL-17A blockage may provide a unique target for therapeutic intervention to treat intestinal insult after burn.
Collapse
Affiliation(s)
- Yajun Song
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Yang Li
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Ya Xiao
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Wengang Hu
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Xu Wang
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Pei Wang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Xiaorong Zhang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Jiacai Yang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Yong Huang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Weifeng He
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Chibing Huang
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| |
Collapse
|
33
|
Song H, Zhang J, He W, Wang P, Wang F. Activation of Cofilin Increases Intestinal Permeability via Depolymerization of F-Actin During Hypoxia in vitro. Front Physiol 2019; 10:1455. [PMID: 31849705 PMCID: PMC6901426 DOI: 10.3389/fphys.2019.01455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanical barriers play a key role in maintaining the normal function of the intestinal mucosa. The barrier function of intestinal epithelial cells is significantly damaged after severe hypoxia. However, the molecular mechanisms underlying this hypoxia-induced damage are still not completely clear. Through the establishment of an in vitro cultured intestinal epithelial cell monolayer model (Caco-2), we treated cells with hypoxia or drugs [jasplakinolide or latrunculin A (LatA)] to detect changes in the transepithelial electrical resistance (TER), the expression of the cellular tight junction (TJ) proteins zonula occludens-1 (ZO-1) and occludin, the distribution of F-actin, the ratio of F-actin/G-actin content, and the expression of the cofilin protein. The results showed that hypoxia and drug treatment could both induce a significant reduction in the TER of the intestinal epithelial cell monolayer and a significant reduction in the expression of the ZO-1 and occludin protein. Hypoxia and LatA could cause a significant reduction in the ratio of F-actin/G-actin content, whereas jasplakinolide caused a significant increase in the ratio of F-actin/G-actin content. After hypoxia, cofilin phosphorylation was decreased. We concluded that the barrier function of the intestinal epithelial cell monolayer was significantly damaged after severe burn injury. The molecular mechanism might be that hypoxia-induced F-actin depolymerization and an imbalance between F-actin and G-actin through cofilin activation resulted in reduced expression and a change in the distribution of cellular TJ proteins.
Collapse
Affiliation(s)
- Huapei Song
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jian Zhang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wen He
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pei Wang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fengjun Wang
- Department of Burns, State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
34
|
He W, Wang Y, Wang P, Wang F. Intestinal barrier dysfunction in severe burn injury. BURNS & TRAUMA 2019; 7:24. [PMID: 31372365 PMCID: PMC6659221 DOI: 10.1186/s41038-019-0162-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
Severe burn injury is often accompanied by intestinal barrier dysfunction, which is closely associated with post-burn shock, bacterial translocation, systemic inflammatory response syndrome, hypercatabolism, sepsis, multiple organ dysfunction syndrome, and other complications. The intestinal epithelium forms a physical barrier that separates the intestinal lumen from the internal milieu, in which the tight junction plays a principal role. It has been well documented that after severe burn injury, many factors such as stress, ischemia/hypoxia, proinflammatory cytokines, and endotoxins can induce intestinal barrier dysfunction via multiple signaling pathways. Recent advances have provided new insights into the mechanisms and the therapeutic strategies of intestinal epithelial barrier dysfunction associated with severe burn injury. In this review, we will describe the current knowledge of the mechanisms involved in intestinal barrier dysfunction in response to severe burn injury and the emerging therapies for treating intestinal barrier dysfunction following severe burn injury.
Collapse
Affiliation(s)
- Wen He
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yu Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Pei Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|