1
|
Edenborough K, Supriyati E, Dufault S, Arguni E, Indriani C, Denton J, Sasmono RT, Ahmad RA, Anders KL, Simmons CP. Dengue virus genomic surveillance in the applying Wolbachia to eliminate dengue trial reveals genotypic efficacy and disruption of focal transmission. Sci Rep 2024; 14:28004. [PMID: 39543157 PMCID: PMC11564853 DOI: 10.1038/s41598-024-78008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Release of Aedes aegypti mosquitoes infected with Wolbachia pipientis (wMel strain) is a biocontrol approach against Ae. aegypti-transmitted arboviruses. The Applying Wolbachia to Eliminate Dengue (AWED) cluster-randomised trial was conducted in Yogyakarta, Indonesia in 2018-2020 and provided pivotal evidence for the efficacy of wMel-Ae. aegypti mosquito population replacement in significantly reducing the incidence of virologically-confirmed dengue (VCD) across all four dengue virus (DENV) serotypes. Here, we sequenced the DENV genomes from 318 dengue cases detected in the AWED trial, with the aim of characterising DENV genetic diversity, measuring genotype-specific intervention effects, and inferring DENV transmission dynamics in wMel-treated and untreated areas of Yogyakarta. Phylogenomic analysis of all DENV sequences revealed the co-circulation of five endemic DENV genotypes: DENV-1 genotype I (12.5%) and IV (4.7%), DENV-2 Cosmopolitan (47%), DENV-3 genotype I (8.5%), and DENV-4 genotype II (25.7%), and one recently imported genotype, DENV-4 genotype I (1.6%). The diversity of genotypes detected among AWED trial participants enabled estimation of the genotype-specific protective efficacies of wMel, which were similar (± 10%) to the point estimates of the respective serotype-specific efficacies reported previously. This indicates that wMel afforded protection to all of the six genotypes detected in Yogyakarta. We show that within this substantial overall viral diversity, there was a strong spatial and temporal structure to the DENV genomic relationships, consistent with highly focal DENV transmission around the home in wMel-untreated areas and a near-total disruption of transmission by wMel. These findings can inform long-term monitoring of DENV transmission dynamics in Wolbachia-treated areas including Yogyakarta.
Collapse
Affiliation(s)
- Kathryn Edenborough
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Suzanne Dufault
- Division of Biostatistics, School of Public Health, University of California, Berkeley, USA
| | - Eggi Arguni
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Child Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Citra Indriani
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Epidemiology Biostatistics and Public Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jai Denton
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia
| | - R Tedjo Sasmono
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Riris Andono Ahmad
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Epidemiology Biostatistics and Public Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Katherine L Anders
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Prahran, Melbourne, VIC, Australia
| | - Cameron P Simmons
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Nabeshima T, Ngwe Tun MM, Thuy NTT, Hang NLK, Mai LTQ, Hasebe F, Takamatsu Y. An outbreak of a novel lineage of dengue virus 2 in Vietnam in 2022. J Med Virol 2023; 95:e29255. [PMID: 38009688 DOI: 10.1002/jmv.29255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
In 2022, a large dengue outbreak was reported in Vietnam, where dengue was endemic. A total of 1889 acute-phase serum samples were collected from patients with suspected dengue at Vung Tau General Hospital, the core hospital in Vung Tau Province, southern Vietnam. Among the 1889 samples analyzed for laboratory confirmation of dengue virus (DENV) infection, 339 positive cases were identified, of which 130 were primary infections and 209 were secondary infections. DENV-2 was the dominant serotype in both primary and secondary infection groups. Phylogenetic analysis based on sequences of the envelope protein-coding region revealed the emergence of a new DENV-2 lineage during this outbreak.
Collapse
Affiliation(s)
- Takeshi Nabeshima
- Department of Virology, Institute of Tropical Medicine, Nagasaki University (ITM-NU), Nagasaki, Japan
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University (ITM-NU), Nagasaki, Japan
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan
| | - Nguyen Thi Thu Thuy
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen Le Khanh Hang
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Le Thi Quynh Mai
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University (ITM-NU), Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Nakamura Y, Moi ML, Shiina T, Shin-I T, Suzuki R. Idiotope-Driven T-Cell/B-Cell Collaboration-Based T-Cell Epitope Prediction Using B-Cell Receptor Repertoire Sequences in Infectious Diseases. Viruses 2023; 15:v15051186. [PMID: 37243272 DOI: 10.3390/v15051186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
T-cell recognition of antigen epitopes is a crucial step for the induction of adaptive immune responses, and the identification of such T-cell epitopes is, therefore, important for understanding diverse immune responses and controlling T-cell immunity. A number of bioinformatic tools exist that predict T-cell epitopes; however, many of these methods highly rely on evaluating conventional peptide presentation by major histocompatibility complex (MHC) molecules, but they ignore epitope sequences recognized by T-cell receptor (TCR). Immunogenic determinant idiotopes are present on the variable regions of immunoglobulin molecules expressed on and secreted by B-cells. In idiotope-driven T-cell/B-cell collaboration, B-cells present the idiotopes on MHC molecules for recognition by idiotope-specific T-cells. According to the idiotype network theory formulated by Niels Jerne, such idiotopes found on anti-idiotypic antibodies exhibit molecular mimicry of antigens. Here, by combining these concepts and defining the patterns of TCR-recognized epitope motifs (TREMs), we developed a T-cell epitope prediction method that identifies T-cell epitopes derived from antigen proteins by analyzing B-cell receptor (BCR) sequences. This method allowed us to identify T-cell epitopes that contain the same TREM patterns between BCR and viral antigen sequences in two different infectious diseases caused by dengue virus and SARS-CoV-2 infection. The identified epitopes were among the T-cell epitopes detected in previous studies, and T-cell stimulatory immunogenicity was confirmed. Thus, our data support this method as a powerful tool for the discovery of T-cell epitopes from BCR sequences.
Collapse
Affiliation(s)
| | - Meng Ling Moi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc., Osaka 567-0085, Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara National Hospital, Kanagawa 252-0392, Japan
| |
Collapse
|
4
|
Phadungsombat J, Vu HTT, Nguyen QT, Nguyen HTV, Nguyen HTN, Dang BT, Nakayama EE, Ishizaki A, Ichimura H, Shioda T, Pham TN. Molecular Characterization of Dengue Virus Strains from the 2019-2020 Epidemic in Hanoi, Vietnam. Microorganisms 2023; 11:1267. [PMID: 37317240 DOI: 10.3390/microorganisms11051267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Dengue virus (DENV), which has circulated in Vietnam for several decades, has multiple serotypes and genotypes. A 2019 dengue outbreak resulted in a larger number of cases than any other outbreak. We conducted a molecular characterization using samples collected in 2019-2020 from dengue patients in Hanoi and nearby cities located in northern Vietnam. The circulating serotypes were DENV-1 (25%, n = 22) and DENV-2 (73%, n = 64). Phylogenetic analyses revealed that all DENV-1 (n = 13) were genotype I and clustered to local strains circulating during the previous outbreak in the 2017, whereas DENV-2 consisted of two genotypes: Asian-I (n = 5), related to local strains from 2006-2022, and cosmopolitan (n = 18), the predominant genotype in this epidemic. The current cosmopolitan virus was identified as having an Asian-Pacific lineage. The virus was closely related to strains in other recent outbreaks in Southeast Asian countries and China. Multiple introductions occurred in 2016-2017, which were possibly from maritime Southeast Asia (Indonesia, Singapore, and Malaysia), mainland Southeast Asia (Cambodia and Thailand), or China, rather than from an expansion of localized Vietnamese cosmopolitan strains that were previously detected in the 2000s. We also analyzed the genetic relationship between Vietnam's cosmopolitan strain and recent global strains reported from Asia, Oceania, Africa, and South America. This analysis revealed that viruses of Asian-Pacific lineage are not restricted to Asia but have spread to Peru and Brazil in South America.
Collapse
Affiliation(s)
- Juthamas Phadungsombat
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | - Quynh Thi Nguyen
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | - Bich Thi Dang
- National Hospital for Tropical Disease, Hanoi 100000, Vietnam
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Azumi Ishizaki
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hiroshi Ichimura
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Thach Ngoc Pham
- National Hospital for Tropical Disease, Hanoi 100000, Vietnam
| |
Collapse
|
5
|
Srisawat N, Gubler DJ, Pangestu T, Thisyakorn U, Ismail Z, Goh D, Capeding MR, Bravo L, Yoksan S, Tantawichien T, Hadinegoro SR, Rafiq K, Picot VS, Ooi EE. Proceedings of the 5th Asia Dengue Summit. Trop Med Infect Dis 2023; 8:tropicalmed8040231. [PMID: 37104356 PMCID: PMC10142460 DOI: 10.3390/tropicalmed8040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
The 5th Asia Dengue Summit, themed "Roll Back Dengue", was held in Singapore from 13 to 15 June 2022. The summit was co-convened by Asia Dengue Voice and Action (ADVA), Global Dengue and Aedes transmitted Diseases Consortium (GDAC), Southeast Asian Ministers of Education Tropical Medicine and Public Health Network (SEAMEO TROPMED), and the Fondation Mérieux (FMx). Dengue experts from academia and research and representatives from the Ministries of Health, Regional and Global World Health Organization (WHO), and International Vaccine Institute (IVI) participated in the three-day summit. With more than 270 speakers and delegates from over 14 countries, 12 symposiums, and 3 full days, the 5th ADS highlighted the growing threat of dengue, shared innovations and strategies for successful dengue control, and emphasized the need for multi-sectoral collaboration to control dengue.
Collapse
Affiliation(s)
- Nattachai Srisawat
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10330, Thailand
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169547, Singapore
| | - Tikki Pangestu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 169547, Singapore
| | - Usa Thisyakorn
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok 10330, Thailand
| | - Zulkifli Ismail
- Department of Pediatrics, KPJ Selangor Specialist Hospital, Malaysia
| | - Daniel Goh
- Division of Pediatric Pulmonary Medicine and Sleep, Khoo Teck Puat National University Children's Medical Institute, National University Hospital, Singapore 169547, Singapore
| | | | - Lulu Bravo
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Terapong Tantawichien
- Division of Infectious Diseases, Department of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sri Rezeki Hadinegoro
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Kamran Rafiq
- International Society of Neglected Tropical Diseases, London WC2H 9JQ, UK
| | | | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169547, Singapore
| |
Collapse
|
6
|
Ashall J, Shah S, Biggs JR, Chang JNR, Jafari Y, Brady OJ, Mai HK, Lien LT, Do Thai H, Nguyen HAT, Anh DD, Iwasaki C, Kitamura N, Van Loock M, Herrera-Taracena G, Rasschaert F, Van Wesenbeeck L, Yoshida LM, Hafalla JCR, Hue S, Hibberd ML. A phylogenetic study of dengue virus in urban Vietnam shows long-term persistence of endemic strains. Virus Evol 2023; 9:vead012. [PMID: 36926448 PMCID: PMC10013730 DOI: 10.1093/ve/vead012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Dengue virus (DENV) causes repeated outbreaks of disease in endemic areas, with patterns of local transmission strongly influenced by seasonality, importation via human movement, immunity, and vector control efforts. An understanding of how each of these interacts to enable endemic transmission (continual circulation of local virus strains) is largely unknown. There are times of the year when no cases are reported, often for extended periods of time, perhaps wrongly implying the successful eradication of a local strain from that area. Individuals who presented at a clinic or hospital in four communes in Nha Trang, Vietnam, were initially tested for DENV antigen presence. Enrolled positive individuals then had their corresponding household members invited to participate, and those who enrolled were tested for DENV. The presence of viral nucleic acid in all samples was confirmed using quantitative polymerase chain reaction, and positive samples were then whole-genome sequenced using an amplicon and target enrichment library preparation techniques and Illumina MiSeq sequencing technology. Generated consensus genome sequences were then analysed using phylogenetic tree reconstruction to categorise sequences into clades with a common ancestor, enabling investigations of both viral clade persistence and introductions. Hypothetical introduction dates were additionally assessed using a molecular clock model that calculated the time to the most recent common ancestor (TMRCA). We obtained 511 DENV whole-genome sequences covering four serotypes and more than ten distinct viral clades. For five of these clades, we had sufficient data to show that the same viral lineage persisted for at least several months. We noted that some clades persisted longer than others during the sampling time, and by comparison with other published sequences from elsewhere in Vietnam and around the world, we saw that at least two different viral lineages were introduced into the population during the study period (April 2017-2019). Next, by inferring the TMRCA from the construction of molecular clock phylogenies, we predicted that two of the viral lineages had been present in the study population for over a decade. We observed five viral lineages co-circulating in Nha Trang from three DENV serotypes, with two likely to have remained as uninterrupted transmission chains for a decade. This suggests clade cryptic persistence in the area, even during periods of low reported incidence.
Collapse
Affiliation(s)
- James Ashall
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sonal Shah
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Joseph R Biggs
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jui-Ning R Chang
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Yalda Jafari
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Oliver J Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Huynh Kim Mai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Le Thuy Lien
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hung Do Thai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hien Anh Thi Nguyen
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Chihiro Iwasaki
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriko Kitamura
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Marnix Van Loock
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Global Public Health, Janssen Research & Development, LLC, 800 Ridgeview Drive, Horsham, PA 19044, USA
| | - Freya Rasschaert
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | | | - Lay-Myint Yoshida
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stephane Hue
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
7
|
Pham TH, Nguyen PN, Ho QN. Perinatal Transmission of Dengue Infection among Dengue Hemorrhagic Fever Outbreaks in Southern Vietnam: The First Case Managed at Tu Du Hospital and Review of Literature. Am J Trop Med Hyg 2023; 108:155-160. [PMID: 36375466 PMCID: PMC9833081 DOI: 10.4269/ajtmh.22-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue hemorrhagic fever is a high-risk pathology in pregnancy, leading to an increased mortality rate for both the mother and baby. Perinatal transmission of dengue infection may occur during the labor stage of the febrile phase, despite its extreme rarity. In the present case, a young female patient with pregnancy at 39 weeks 3 days of gestational age was hospitalized because of dengue hemorrhagic fever. Upon monitoring, her platelet count gradually decreased to a very low of 13,000 mm3 on the third day of fever. However, her platelet count increased soon afterwards. On the eighth day of admission, she was delivered by emergency cesarean section due to acute fetal distress. The female neonate was promptly assessed by the pediatric team upon cesarean surgery. The neonate was diagnosed with vertical transmission of dengue infection based on positive dengue virus nonstructural protein 1 antigen, and low platelet count was found on the first day postpartum. When there is a high suspicion of perinatal transmission, closely monitoring the newborn helps to avoid the adverse outcomes and mortality for the infant. Herein, we thoroughly report an unusual case of maternal-fetal transmission of dengue during pregnancy at our maternity hospital.
Collapse
Affiliation(s)
- Thanh Hai Pham
- Tu Du Clinical Research Unit (TD-CRU), Tu Du Hospital, Ho Chi Minh City, Vietnam
| | - Phuc Nhon Nguyen
- Tu Du Clinical Research Unit (TD-CRU), Tu Du Hospital, Ho Chi Minh City, Vietnam
- Department of High-Risk Pregnancy, Tu Du Hospital, Ho Chi Minh City, Vietnam
| | - Quang Nhat Ho
- Department of Postoperative Care, Tu Du Hospital, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Trojánek M, Grebenyuk V, Manďáková Z, Sojková N, Zelená H, Roháčová H, Stejskal F. Epidemiology of dengue, chikungunya and Zika virus infections in travellers: A 16-year retrospective descriptive study at a tertiary care centre in Prague, Czech Republic. PLoS One 2023; 18:e0281612. [PMID: 36809441 PMCID: PMC9942961 DOI: 10.1371/journal.pone.0281612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION This study aims to describe the epidemiological characteristics of imported cases of dengue (DEN), chikungunya (CHIK), and Zika virus (ZIKV) infections in Czech travellers. MATERIALS AND METHODS This single-centre descriptive study has retrospectively analysed data of patients with laboratory confirmed DEN, CHIK, and ZIKV infections diagnosed at the Department of Infectious, Parasitic and Tropical Diseases of the University Hospital Bulovka in Prague, Czech Republic from 2004 to 2019. RESULTS The study included a total of 313 patients with DEN, 30 with CHIK, and 19 with ZIKV infections. Most patients travelled as tourists:263 (84.0%), 28 (93.3%), and 17 (89.5%), respectively (p = 0.337). The median duration of stay was 20 (IQR 14-27), 21 (IQR 14-29), and 15 days (IQR 14-43), respectively (p = 0.935). Peaks of imported DEN and ZIKV infections were noted in 2016, and in 2019 in the case of CHIK infection. Most cases of DEN and CHIKV infections were acquired in Southeast Asia:212 (67.7%) and 15 (50%), respectively, while ZIKV infection was most commonly imported from the Caribbean (11; 57,9%). CONCLUSIONS Arbovirus infections represent an increasingly significant cause of illness in Czech travellers. Comprehensive knowledge of the specific epidemiological profile of these diseases is an essential prerequisite for good travel medicine practice.
Collapse
Affiliation(s)
- Milan Trojánek
- Department of Infectious Diseases, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Infectious Diseases, University Hospital Bulovka, Prague, Czech Republic
- Department of Infectious Diseases and Travel Medicine, University Hospital Motol, Prague, Czech Republic
| | - Vyacheslav Grebenyuk
- Department of Infectious Diseases, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Infectious Diseases, University Hospital Bulovka, Prague, Czech Republic
- Department of Infectious Diseases and Travel Medicine, University Hospital Motol, Prague, Czech Republic
- * E-mail:
| | - Zdenka Manďáková
- Department of Epidemiology of Infectious Diseases, National Institute of Public Health, Prague, Czech Republic
| | - Naděžda Sojková
- Department of Clinical Microbiology, University Hospital Bulovka, Prague, Czech Republic
| | - Hana Zelená
- National Reference Laboratory for Arboviruses, Institute of Public Health in Ostrava, Czech Republic
| | - Hana Roháčová
- Department of Infectious Diseases, University Hospital Bulovka, Prague, Czech Republic
| | - František Stejskal
- Department of Infectious Diseases, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Infectious Diseases, University Hospital Bulovka, Prague, Czech Republic
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Infectious Diseases, Regional Hospital Liberec, Liberec, Czech Republic
| |
Collapse
|
9
|
Thao TTP, Co NQ, Anh HN, Luu NT, Hau VTB, Thuy NTT, Van Chien T, Anh NT, Bui TQ, Cuong TD, Quy PT, Triet NT, Van Sung T, Nhung NTA. Anti-Dengue Screening on Several Vietnamese Medicinal Plants: Experimental Evidences and Computational Analyses. Chem Biodivers 2022; 19:e202101026. [PMID: 35698444 DOI: 10.1002/cbdv.202101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Worldwide, medicinal plants have been known for economic and geographical advantages, thus possibly holding potentiality against dengue hemorrhagic fever. The methanol/water extracts from different parts of fourteen Vietnam-based plant species were subjected for experimental screening on anti-dengue activity using baby hamster kidney cells (BHK21) and plaque reduction neutralisation test (PRNT). Firstly, the methanol/water extracts were tested against serotype dengue virus DENV-1. Seven out from nineteen extracts show the PRNT50 values less than 31.25 μg/mL. Four of the above extracts namely from Euphorbia hirta, Cordyline terminalis, Carica papaya, and Elaeagnus latifolia were chosen for testing against the serotype DENV-2. All of them exhibit good activity with the PRNT50 values less than 31.25 μg/ml, which were further fractionated to obtain hexane, ethyl acetate and butanol fractions. Anti-dengue virus activity of the fractions against four serotypes DENV-1, -2, -3 and -4 was evaluated. As results, the ethyl acetate fraction of Elaeagnus latifolia is highly active against all four serotype viruses. The structural formulae of its nine constituents were input for molecular docking simulation. The docking-based order for static inhibitability is 6-3L6P>7-3L6P>9-3L6P>2-3L6P>3-3L6P≈5-3L6P>9-3L6P>1-3L6P>8-3L6P; QSARIS-based analysis reveals the biocompatibility of the most promising ligands (4-7); ADMET-based analysis expects their pharmacological suitability. Exceptional finding on 2-3LKW hydrophilic interaction at Lys43 (with the associated Gibbs free energy of -10.3 kcal mol-1 ) raises an open explanation for inhibitory effects. The results encourage further investigations for more in-depth mechanisms and drug development, such as in vitro enzyme assays or in vitro clinical trials with natural substances from E. latifolia.
Collapse
Affiliation(s)
- Tran Thi Phuong Thao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen Quang Co
- Institute of Biotechnology, Hue University, Hue City, 530000, Vietnam
| | - Ho Ngoc Anh
- Institute of Biochemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen Thi Luu
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Vu Thi Bich Hau
- National Institute of Hygiene and Epidemiology, 1 Yersin street, Hai Ba Trung, Hanoi, 10000, Vietnam
| | - Nguyen Thi Thu Thuy
- National Institute of Hygiene and Epidemiology, 1 Yersin street, Hai Ba Trung, Hanoi, 10000, Vietnam
| | - Tran Van Chien
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen The Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University, Hue, 530000, Vietnam
| | - To Dao Cuong
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong District, Hanoi, 12116, Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot, 630000, Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue, 530000, Vietnam
| |
Collapse
|