1
|
Polyák P, Vadász KF, Tátraaljai D, Puskas JE. Preparation of surgical meshes using self-regulating technology based on reaction-diffusion processes. Med Biol Eng Comput 2024; 62:3343-3354. [PMID: 38837082 PMCID: PMC11485147 DOI: 10.1007/s11517-024-03141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
While reaction-diffusion processes are utilized in multiple scientific fields, these phenomena have seen limited practical application in the polymer industry. Although self-regulating processes driven by parallel reaction and diffusion can lead to patterned structures, most polymeric products with repeating subunits are still prepared by methods that require complex and expensive instrumentation. A notable, high-added-value example is surgical mesh, which is often manufactured by weaving or knitting. In our present work, we demonstrate how the polymer and the biomedical industry can benefit from the pattern-forming capabilities of reaction-diffusion. We would like to propose a self-regulating method that facilitates the creation of surgical meshes from biocompatible polymers. Since the control of the process assumes a thorough understanding of the underlying phenomena, the theoretical background, as well as a mathematical model that can accurately describe the empirical data, is also introduced and explained. Our method offers the benefits of conventional techniques while introducing additional advantages not attainable with them. Most importantly, the method proposed in this paper enables the rapid creation of meshes with an average pore size that can be adjusted easily and tailored to fit the intended area of application.
Collapse
Affiliation(s)
- Péter Polyák
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 1680 Madison Avenue, Wooster, 44691, OH, USA.
| | - Katalin Fodorné Vadász
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., Budapest, H-1117, Hungary
| | - Dóra Tátraaljai
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., Budapest, H-1117, Hungary
| | - Judit E Puskas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 1680 Madison Avenue, Wooster, 44691, OH, USA
| |
Collapse
|
2
|
Hatewar A, Mahakalkar C, Kshirsagar S, Ram Sohan P, Dixit S, Bikkumalla S. From Meshes to Minimally Invasive Techniques: A Comprehensive Review of Modern Hernia Repair Approaches. Cureus 2024; 16:e66206. [PMID: 39233930 PMCID: PMC11374351 DOI: 10.7759/cureus.66206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Hernias are a common medical condition characterized by the protrusion of organs or tissues through weakened muscle walls, affecting millions worldwide annually. Historically, from being treated with open surgeries using tension-free mesh repairs, the landscape of hernia repair has evolved significantly. This evolution has been marked by the advent and refinement of minimally invasive techniques, including laparoscopic and robotic-assisted approaches, which offer reduced postoperative pain, shorter recovery times, and improved patient outcomes compared to traditional methods. This comprehensive review aims to elucidate the evolution of hernia repair techniques, emphasizing the transition from conventional mesh repairs to advanced minimally invasive methodologies. By examining the historical progression and current state of hernia surgery, this review thoroughly analyzes the advancements in surgical techniques, materials, and technologies. Furthermore, it explores emerging trends such as biological meshes, ultrasound-guided procedures, and 3D printing applications in hernia repair. The clinical significance of these advancements lies in their potential to enhance the patient's quality of life, minimize complications, and optimize healthcare resource utilization. Insights gained from this review will inform clinicians and researchers about the efficacy, safety, and comparative effectiveness of various hernia repair approaches, guiding future directions in hernia management and fostering innovation in surgical practice.
Collapse
Affiliation(s)
- Akansha Hatewar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Chanrashekhar Mahakalkar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shivani Kshirsagar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Poosarla Ram Sohan
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sparsh Dixit
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shruthi Bikkumalla
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
4
|
Najm A, Niculescu AG, Gaspar BS, Grumezescu AM, Beuran M. A Review of Abdominal Meshes for Hernia Repair-Current Status and Emerging Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7124. [PMID: 38005054 PMCID: PMC10672379 DOI: 10.3390/ma16227124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Abdominal hernias are common issues in the clinical setting, burdening millions of patients worldwide. Associated with pain, decreased quality of life, and severe potential complications, abdominal wall hernias should be treated as soon as possible. Whether an open repair or laparoscopic surgical approach is tackled, mesh reinforcement is generally required to ensure a durable hernia repair. Over the years, numerous mesh products have been made available on the market and in clinical settings, yet each of the currently used meshes presents certain limitations that reflect on treatment outcomes. Thus, mesh development is still ongoing, and emerging solutions have reached various testing stages. In this regard, this paper aims to establish an up-to-date framework on abdominal meshes, briefly overviewing currently available solutions for hernia repair and discussing in detail the most recent advances in the field. Particularly, there are presented the developments in lightweight materials, meshes with improved attachment, antimicrobial fabrics, composite and hybrid textiles, and performant mesh designs, followed by a systematic review of recently completed clinical trials.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| |
Collapse
|
5
|
Elumalai A, Nayak Y, Ganapathy AK, Chen D, Tappa K, Jammalamadaka U, Bishop G, Ballard DH. Reverse Engineering and 3D Printing of Medical Devices for Drug Delivery and Drug-Embedded Anatomic Implants. Polymers (Basel) 2023; 15:4306. [PMID: 37959986 PMCID: PMC10647997 DOI: 10.3390/polym15214306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, 3D printing (3DP) has advanced traditional medical treatments. This review explores the fusion of reverse engineering and 3D printing of medical implants, with a specific focus on drug delivery applications. The potential for 3D printing technology to create patient-specific implants and intricate anatomical models is discussed, along with its ability to address challenges in medical treatment. The article summarizes the current landscape, challenges, benefits, and emerging trends of using 3D-printed formulations for medical implantation and drug delivery purposes.
Collapse
Affiliation(s)
- Anusha Elumalai
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Yash Nayak
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Aravinda K. Ganapathy
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - David Chen
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas, 7000 Fannin Street, Houston, TX 77030, USA;
| | | | - Grace Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
6
|
Najm A, Niculescu AG, Rădulescu M, Gaspar BS, Grumezescu AM, Beuran M. Novel Material Optimization Strategies for Developing Upgraded Abdominal Meshes. Int J Mol Sci 2023; 24:14298. [PMID: 37762601 PMCID: PMC10531784 DOI: 10.3390/ijms241814298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Over 20 million hernias are operated on globally per year, with most interventions requiring mesh reinforcement. A wide range of such medical devices are currently available on the market, most fabricated from synthetic polymers. Yet, searching for an ideal mesh is an ongoing process, with continuous efforts directed toward developing upgraded implants by modifying existing products or creating innovative systems from scratch. In this regard, this review presents the most frequently employed polymers for mesh fabrication, outlining the market available products and their relevant characteristics, further focusing on the state-of-the-art mesh approaches. Specifically, we mainly discuss recent studies concerning coating application, nanomaterials addition, stem cell seeding, and 3D printing of custom mesh designs.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
7
|
Kusk MW, Stowe J, Hess S, Gerke O, Foley S. Low-cost 3D-printed anthropomorphic cardiac phantom, for computed tomography automatic left ventricle segmentation and volumetry - A pilot study. Radiography (Lond) 2023; 29:131-138. [PMID: 36368249 DOI: 10.1016/j.radi.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Accurate cardiac left ventricle (LV) delineation is essential to CT-derived left ventricular ejection fraction (LVEF). To evaluate dose-reduction potential, an anatomically accurate heart phantom, with realistic X-ray attenuation is required. We demonstrated and tested a custom-made phantom using 3D-printing, and examined the influence of image noise on automatically measured LV volumes METHODS: A single coronary CT angiography (CCTA) dataset was segmented and converted to Standard Tessellation Language (STL) mesh, using open-source software. A 3D-printed model, with hollow left heart chambers, was printed and cavities filled with gelatinized contrast media. This was CT-scanned in an anthropomorphic chest phantom, at different exposure conditions. LV and "myocardium" noise and attenuation was measured. LV volume was automatically measured using two different methods. We calculated Spearmans' correlation of LV volume with noise and contrast-noise ratio respectively om 486 scans of the phantom. Source images were compared to one phantom series with similar parameters. This was done using Dice coefficient on LV short-axis segmentations. RESULTS Phantom "Myocardium" and LV attenuation was comparable to measurements on source images. Automatic volume measurement succeeded, with mean volume deviation to patient images less than 2 ml. There was a moderate correlation of volume with CNR, and strong correlation of volume with image noise. With papillary muscles included in LV volume, the correlation was positive, but negative when excluded. Variation of volumes was lowest at 90-100 kVp for both methods in the 486 repeat scans. The Dice coefficient was 0.87, indicating high overlap between the single phantom series and source scan. Cost of 3D-printer and materials was 400 and 30 Euro respectively. CONCLUSION Both anatomically and radiologically the phantom mimicked the source scans closely. LV volumetry was reliably performed with automatic algorithms. IMPLICATIONS FOR PRACTICE Patient-specific cardiac phantoms may be produced at minimal cost and can potentially be used for other anatomies and pathologies. This enables radiographic phantom studies without need for dedicated 3D-labs or expensive commercial phantoms.
Collapse
Affiliation(s)
- M W Kusk
- Radiography & Diagnostic Imaging, School of Medicine, University College Dublin, Ireland; Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Hospital South West Jutland Esbjerg, Denmark; IRIS - Imaging Research Initiative Southwest, Esbjerg, Denmark.
| | - J Stowe
- Radiography & Diagnostic Imaging, School of Medicine, University College Dublin, Ireland
| | - S Hess
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Hospital South West Jutland Esbjerg, Denmark; IRIS - Imaging Research Initiative Southwest, Esbjerg, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - O Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - S Foley
- Radiography & Diagnostic Imaging, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
8
|
Houshyar S, Yin H, Pope L, Zizhou R, Dekiwadia C, Hill-Yardin EL, Yeung JMC, John S, Fox K, Tran N, Cole I, Elbourne A, Truong VK, Truskewycz A. Smart Suture with Iodine Contrasting Nanoparticle for Computed Tomography. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Woodington BJ, Coles L, Rochford AE, Freeman P, Sawiak S, O'Neill SJK, Scherman OA, Barone DG, Proctor CM, Malliaras GG. X-Ray Markers for Thin Film Implants. Adv Healthc Mater 2022; 11:e2200739. [PMID: 35871265 PMCID: PMC11468128 DOI: 10.1002/adhm.202200739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Implantable electronic medical devices are used in functional mapping of the brain before surgery and to deliver neuromodulation for the treatment of neurological and neuropsychiatric disorders. Their electrode arrays are assembled by hand, and this leads to bulky form factors with limited flexibility and low electrode counts. Thin film implants, made using microfabrication techniques, are emerging as an attractive alternative, as they offer dramatically improved conformability and enable high density recording and stimulation. A major limitation of these devices, however, is that they are invisible to fluoroscopy, the most common method used to monitor the insertion of implantable electrodes. Here, the development of mechanically flexible X-ray markers using bismuth- and barium-infused elastomers is reported. Their X-ray attenuation properties in human cadavers are explored and it is shown that they are biocompatible in cell cultures. It is further shown that they do not distort magnetic resonance imaging images and their integration with thin film implants is demonstrated. This work removes a key barrier for the adoption of thin film implants in brain mapping and in neuromodulation.
Collapse
Affiliation(s)
- Ben J. Woodington
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Lawrence Coles
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Amy E. Rochford
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Paul Freeman
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB3 0ESUK
| | - Stephen Sawiak
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | - Stephen J. K. O'Neill
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Oren A. Scherman
- Melville Laboratory for Polymer SynthesisYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Damiano G. Barone
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | - Christopher M. Proctor
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
10
|
Ding X, Zhu J, Liu A, Guo Q, Cao Q, Xu Y, Hua Y, Yang Y, Li P. Preparation and Biocompatibility Study of Contrast-Enhanced Hernia Mesh Material. Tissue Eng Regen Med 2022; 19:703-715. [PMID: 35612710 DOI: 10.1007/s13770-022-00460-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Meshes play a crucial role in hernia repair. However, the displacement of mesh inevitably leads to various associated complications. This process is difficult to be traced by conventional imaging means. The purpose of this study is to create a contrast-enhanced material with high-density property that can be detected by computed tomography (CT). METHODS The contrast-enhanced monofilament was manufactured from barium sulfate nanoparticles and medical polypropylene (PP/Ba). To characterize the composite, stress tensile tests and scanning electron microscopy (SEM) was performed. Toxicity and biocompatibility of PP/Ba materials was verified by in vitro cellular assays. Meanwhile, the inflammatory response was tested by protein adsorption assay. In addition, an animal model was established to demonstrate the long-term radiographic effect of the composite material in vivo. Subsequent pathological tests confirmed its in vivo compatibility. RESULTS The SEM revealed that the main component of the monofilament is carbon. In vitro cell experiments demonstrated that novel material does not affect cell activity and proliferation. Protein adsorption assays indicated that the contrast-enhanced material does not cause additional inflammatory responses. In addition, in vivo experiments illustrated that PP/Ba mesh can be detected by CT and has good in vivo compatibility. CONCLUSION These results highlight the excellent biocompatibility of the contrast-enhanced material, which is suitable for human abdominal wall tissue engineering.
Collapse
Affiliation(s)
- Xuzhong Ding
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Jiachen Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, Jiangsu, China
| | - Anning Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Qiyang Guo
- Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Qing Cao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Yu Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Ye Hua
- Department of Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, Jiangsu, China.
| | - Peng Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China.
| |
Collapse
|
11
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
12
|
Surgical mesh coatings for infection control and temperature sensing: An in-vitro investigation. OPENNANO 2021. [DOI: 10.1016/j.onano.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Pérez-Köhler B, Benito-Martínez S, Gómez-Gil V, Rodríguez M, Pascual G, Bellón JM. New Insights into the Application of 3D-Printing Technology in Hernia Repair. MATERIALS 2021; 14:ma14227092. [PMID: 34832493 PMCID: PMC8623842 DOI: 10.3390/ma14227092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022]
Abstract
Abdominal hernia repair using prosthetic materials is among the surgical interventions most widely performed worldwide. These materials, or meshes, are implanted to close the hernial defect, reinforcing the abdominal muscles and reestablishing mechanical functionality of the wall. Meshes for hernia repair are made of synthetic or biological materials exhibiting multiple shapes and configurations. Despite the myriad of devices currently marketed, the search for the ideal mesh continues as, thus far, no device offers optimal tissue repair and restored mechanical performance while minimizing postoperative complications. Additive manufacturing, or 3D-printing, has great potential for biomedical applications. Over the years, different biomaterials with advanced features have been successfully manufactured via 3D-printing for the repair of hard and soft tissues. This technological improvement is of high clinical relevance and paves the way to produce next-generation devices tailored to suit each individual patient. This review focuses on the state of the art and applications of 3D-printing technology for the manufacture of synthetic meshes. We highlight the latest approaches aimed at developing improved bioactive materials (e.g., optimizing antibacterial performance, drug release, or device opacity for contrast imaging). Challenges, limitations, and future perspectives are discussed, offering a comprehensive scenario for the applicability of 3D-printing in hernia repair.
Collapse
Affiliation(s)
- Bárbara Pérez-Köhler
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Selma Benito-Martínez
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Verónica Gómez-Gil
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Marta Rodríguez
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Gemma Pascual
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (B.P.-K.); (S.B.-M.)
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| | - Juan Manuel Bellón
- Biomedical Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (V.G.-G.); (M.R.); (J.M.B.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Departamento de Cirugía, Ciencias Médicas y Sociales, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
14
|
Pinho LAG, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol 2021; 74:1391-1405. [PMID: 34665263 DOI: 10.1093/jpp/rgab146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Three-dimensional printing (3DP) has opened the era of drug personalization, promising to revolutionize the pharmaceutical field with improvements in efficacy, safety and compliance of the treatments. As a result of these investigations, a vast therapeutic field has opened for 3DP-loaded drug devices with an anatomical fit. Along these lines, innovative dosage forms, unimaginable until recently, can be obtained. This review explores 3DP-engineered drug devices described in recent research articles, as well as in patented inventions, and even devices already produced by 3DP with drug-loading potential. KEY FINDINGS 3D drug-loaded stents, implants and prostheses are reviewed, along with devices produced to fit hard-to-attach body parts such as nasal masks, vaginal rings or mouthguards. The most promising 3DP techniques for such devices and the complementary technologies surrounding these inventions are also discussed, particularly the scanners useful for mapping body parts. Health regulatory concerns regarding the new use of such technology are also analysed. SUMMARY The scenario discussed in this review shows that for wearable 3DP drug devices to become a tangible reality to users, it will be necessary to overcome the existing regulatory barriers, create new interfaces with electronic systems and improve the mapping mechanisms of body surfaces.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
15
|
Domsta V, Seidlitz A. 3D-Printing of Drug-Eluting Implants: An Overview of the Current Developments Described in the Literature. Molecules 2021; 26:4066. [PMID: 34279405 PMCID: PMC8272161 DOI: 10.3390/molecules26134066] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
The usage of 3D-printing for drug-eluting implants combines the advantages of a targeted local drug therapy over longer periods of time at the precise location of the disease with a manufacturing technique that easily allows modifications of the implant shape to comply with the individual needs of each patient. Research until now has been focused on several aspects of this topic such as 3D-printing with different materials or printing techniques to achieve implants with different shapes, mechanical properties or release profiles. This review is intended to provide an overview of the developments currently described in the literature. The topic is very multifaceted and several of the investigated aspects are not related to just one type of application. Consequently, this overview deals with the topic of 3D-printed drug-eluting implants in the application fields of stents and catheters, gynecological devices, devices for bone treatment and surgical screws, antitumoral devices and surgical meshes, as well as other devices with either simple or complex geometry. Overall, the current findings highlight the great potential of the manufacturing of drug-eluting implants via 3D-printing technology for advanced individualized medicine despite remaining challenges such as the regulatory approval of individualized implants.
Collapse
Affiliation(s)
- Vanessa Domsta
- Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Anne Seidlitz
- Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| |
Collapse
|
16
|
Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A, Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev 2021; 174:294-316. [PMID: 33895212 DOI: 10.1016/j.addr.2021.04.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The 'one-size-fits-all' approach followed by conventional drug delivery platforms often restricts its application in pharmaceutical industry, due to the incapability of adapting to individual pharmacokinetic traits. Driven by the development of additive manufacturing (AM) technology, three-dimensional (3D) printed drug delivery medical devices have gained increasing popularity, which offers key advantages over traditional drug delivery systems. The major benefits include the ability to fabricate 3D structures with customizable design and intricate architecture, and most importantly, ease of personalized medication. Furthermore, the emergence of multi-material printing and four-dimensional (4D) printing integrates the benefits of multiple functional materials, and thus provide widespread opportunities for the advancement of personalized drug delivery devices. Despite the remarkable progress made by AM techniques, concerns related to regulatory issues, scalability and cost-effectiveness remain major hurdles. Herein, we provide an overview on the latest accomplishments in 3D printed drug delivery devices as well as major challenges and future perspectives for AM enabled dosage forms and drug delivery systems.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Niloofar Heshmati Aghda
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Amit Raviraj Pillai
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Rishi Thakkar
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Kumar Gupta D, Ali MH, Ali A, Jain P, Anwer MK, Iqbal Z, Mirza MA. 3D printing technology in healthcare: applications, regulatory understanding, IP repository and clinical trial status. J Drug Target 2021; 30:131-150. [PMID: 34047223 DOI: 10.1080/1061186x.2021.1935973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass consumerization of three-dimensional (3D) printing innovation has revolutionised admittance of 3D-printing in an expansive scope of ventures. When utilised predominantly for industrial manufacturing, 3D-printing strategies have rapidly attained acquaintance in different parts of health care industry. 3D-printing is a moderately new technology that has discovered promising applications in the medication conveyance and clinical areas. This review intends to explore different parts of 3D- printing innovation concerning pharmaceutical and clinical applications. Review on pharmaceutical products like tablets, caplets, films, polypills, microdots, biodegradable patches, medical devices (uterine and subcutaneous), patient specific implants, cardiovascular stents, etc. and prosthetics/anatomical structures, surgical models, organs and tissues created utilising 3D-printing is being presented. In addition, the regulatory understanding and current IP and clinical trial status pertaining to 3D fabricated products/medical applications have also been funnelled, garnering information from different web portals of regulatory agencies and databases. It is additionally certain that for such new innovations, there would be difficulties and questions before these are acknowledged as protected and viable. The circumstance demands purposeful and wary endeavours to acquire regulations which would at last prompt the accomplishment of this progressive innovation, thus various regulatory challenges faced have been conscientiously discussed.
Collapse
Affiliation(s)
- Dipak Kumar Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Humair Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
Serrano-Aroca Á, Pous-Serrano S. Prosthetic meshes for hernia repair: State of art, classification, biomaterials, antimicrobial approaches, and fabrication methods. J Biomed Mater Res A 2021; 109:2695-2719. [PMID: 34021705 DOI: 10.1002/jbm.a.37238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Worldwide, hernia repair represents one of the most frequent surgical procedures encompassing a global market valued at several billion dollars. This type of surgery usually requires the implantation of a mesh that needs the appropriate chemical, physical and biological properties for the type of repair. This review thus presents a description of the types of hernias, current hernia repair methods, and the state of the art of prosthetic meshes for hernia repair providing the most important meshes used in clinical practice by surgeons working in this area classified according to their biological or chemical nature, morphology and whether bioabsorbable or not. We emphasise the importance of surgical site infection in herniatology, how to deal with this microbial problem, and we go further into the future research lines on the production of advanced antimicrobial meshes to improve hernia repair and prevent microbial infections, including multidrug-resistant strains. A great deal of progress has been made in this biomedical field in the last decade. However, we are still far from an ideal antimicrobial mesh that can also provide excellent integration to the abdominal wall, mechanical performance, low visceral adhesion and minimal inflammatory or foreign body reactions, among many other problems.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Salvador Pous-Serrano
- Surgical Unit of Abdominal Wall, Department of General and Digestive Surgery, La Fe University Hospital, Valencia, Spain
| |
Collapse
|
19
|
Guo HH, Persson M, Weinheimer O, Rosenberg J, Robinson TE, Wang J. A calibration CT mini-lung-phantom created by 3-D printing and subtractive manufacturing. J Appl Clin Med Phys 2021; 22:183-190. [PMID: 33949078 PMCID: PMC8200432 DOI: 10.1002/acm2.13263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 11/06/2022] Open
Abstract
We describe the creation and characterization of a calibration CT mini‐lung‐phantom incorporating simulated airways and ground‐glass densities. Ten duplicate mini‐lung‐phantoms with Three‐Dimensional (3‐D) printed tubes simulating airways and gradated density polyurethane foam blocks were designed and built. Dimensional accuracy and CT numbers were measured using micro‐CT and clinical CT scanners. Micro‐CT images of airway tubes demonstrated an average dimensional variation of 0.038 mm from nominal values. The five different densities of incorporated foam blocks, simulating ground‐glass, showed mean CT numbers (±standard deviation) of −897.0 ± 1.5, −844.1 ± 1.5, −774.1 ± 2.6, −695.3 ± 1.6, and −351.0 ± 3.7 HU, respectively. Three‐Dimensional printing and subtractive manufacturing enabled rapid, cost‐effective production of ground‐truth calibration mini‐lung‐phantoms with low inter‐sample variation that can be scanned simultaneously with the patient undergoing lung quantitative CT.
Collapse
Affiliation(s)
- H Henry Guo
- Department of Radiology, Stanford Medical Center, Stanford, CA, USA
| | - Mats Persson
- Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Oliver Weinheimer
- Department of Radiology, University of Heidelberg, Heidelberg, Germany
| | | | - Terry E Robinson
- Emeritus, Department of Pediatrics, Stanford Medical Center, Stanford, CA, USA
| | - Jia Wang
- Environmental Health and Safety, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration. ACS Biomater Sci Eng 2021; 7:2064-2082. [PMID: 33856203 DOI: 10.1021/acsbiomaterials.1c00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Meshes have been the overwhelmingly popular choice for the repair of abdominal wall defects to retrieve the bodily integrity of musculofascial layer. Broadly, they are classified into synthetic, biological and composite mesh based on their mechanical and biocompatible features. With the development of anatomical repair techniques and the increasing requirements of constructive remodeling, however, none of these options satisfactorily manages the conditional repair. In both preclinical and clinical studies, materials/agents equipped with distinct functions have been characterized and applied to improve mesh-aided repair, with the importance of mesh functionalization being highlighted. However, limited information exists on systemic comparisons of the underlying mechanisms with respect to functionalized strategies, which are fundamental throughout repair and regeneration. Herein, we address this topic and summarize the current literature by subdividing common functions of the mesh into biomechanics-matched, macrophage-mediated, integration-enhanced, anti-infective and antiadhesive characteristics for a comprehensive overview. In particular, we elaborate their effects separately with respect to host response and integration and discuss their respective advances, challenges and future directions toward a clinical alternative. From the vastly different approaches, we provide insight into the mechanisms involved and offer suggestions for personalized modifications of these emerging meshes.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nina Wei
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| |
Collapse
|
21
|
Adib AA, Sheikhi A, Shahhosseini M, Simeunović A, Wu S, Castro CE, Zhao R, Khademhosseini A, Hoelzle DJ. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Biofabrication 2020; 12:045006. [PMID: 32464607 DOI: 10.1088/1758-5090/ab97a1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We develop and characterize a biomaterial formulation and robotic methods tailored for intracorporeal tissue engineering (TE) via direct-write (DW) 3D printing. Intracorporeal TE is defined as the biofabrication of 3D TE scaffolds inside of a living patient, in a minimally invasive manner. A biomaterial for intracorporeal TE requires to be 3D printable and crosslinkable via mechanisms that are safe to native tissues and feasible at physiological temperature (37 °C). The cell-laden biomaterial (bioink) preparation and bioprinting methods must support cell viability. Additionally, the biomaterial and bioprinting method must enable the spatially accurate intracorporeal 3D delivery of the biomaterial, and the biomaterial must adhere to or integrate into the native tissue. Current biomaterial formulations do not meet all the presumed intracorporeal DW TE requirements. We demonstrate that a specific formulation of gelatin methacryloyl (GelMA)/Laponite®/methylcellulose (GLM) biomaterial system can be 3D printed at physiological temperature and crosslinked using visible light to construct 3D TE scaffolds with clinically relevant dimensions and consistent structures. Cell viability of 71%-77% and consistent mechanical properties over 21 d are reported. Rheological modifiers, Laponite® and methylcellulose, extend the degradation time of the scaffolds. The DW modality enables the piercing of the soft tissue and over-extrusion of the biomaterial into the tissue, creating a novel interlocking mechanism with soft, hydrated native tissue mimics and animal muscle with a 3.5-4 fold increase in the biomaterial/tissue adhesion strength compared to printing on top of the tissue. The developed GLM biomaterial and robotic interlocking mechanism pave the way towards intracorporeal TE.
Collapse
Affiliation(s)
- A Asghari Adib
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Farmer ZL, Domínguez-Robles J, Mancinelli C, Larrañeta E, Lamprou DA. Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches. Int J Pharm 2020; 585:119512. [PMID: 32526332 DOI: 10.1016/j.ijpharm.2020.119512] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023]
Abstract
Pelvic Organ Prolapse (POP) and Stress Urinary Incontinence (SUI) are two prevalent disorders affecting 30-40% of women worldwide. Current strategies to repair or improve these medical conditions are non-surgical options such as physiotherapy, or surgical options such as the use of vaginal meshes. The synthetic material polypropylene (PP), which has long been used for manufacturing these vaginal meshes, is associated with severe complications such as chronic pain, infection or mesh erosion. As a result of a widespread reporting and unacceptably high rates of complications, these issues have become a public health concern. Regulatory bodies have recently deemed the transvaginal placement of PP mesh in the pelvic floor (PF) no longer a suitable treatment method for PF repair, leading to the need for a novel approach to the manufacture and selection of materials for urogynecological meshes. Medical devices, such as vaginal meshes can be manufactured using a variety of techniques including injection moulding, electrospinning, hot-melt extrusion (HME) or more recently 3D printing. Over the past decade, the use of 3D printing within the medical device industry has expanded and offers a promising approach to manufacture patient-specific surgical mesh when combined with imaging tools. This review will summarise the current strategies to treat POP and SUI, the issues and use of current meshes for the treatment of these pelvic floor disorders (PFDs), and the future directions for the manufacture of more suitable urogynecological meshes, as well as their potential materials.
Collapse
Affiliation(s)
- Zara-Louise Farmer
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Caterina Mancinelli
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
23
|
Ballard DH, Wake N, Witowski J, Rybicki FJ, Sheikh A. Radiological Society of North America (RSNA) 3D Printing Special Interest Group (SIG) clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: abdominal, hepatobiliary, and gastrointestinal conditions. 3D Print Med 2020; 6:13. [PMID: 32514795 PMCID: PMC7278118 DOI: 10.1186/s41205-020-00065-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Medical 3D printing has demonstrated value in anatomic models for abdominal, hepatobiliary, and gastrointestinal conditions. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness criteria for abdominal, hepatobiliary, and gastrointestinal 3D printing indications. Methods A literature search was conducted to identify all relevant articles using 3D printing technology associated with a number of abdominal pathologic processes. Each included study was graded according to published guidelines. Results Evidence-based appropriateness guidelines are provided for the following areas: intra-hepatic masses, hilar cholangiocarcinoma, biliary stenosis, biliary stones, gallbladder pathology, pancreatic cancer, pancreatitis, splenic disease, gastric pathology, small bowel pathology, colorectal cancer, perianal fistula, visceral trauma, hernia, abdominal sarcoma, abdominal wall masses, and intra-abdominal fluid collections. Conclusion This document provides initial appropriate use criteria for medical 3D printing in abdominal, hepatobiliary, and gastrointestinal conditions.
Collapse
Affiliation(s)
- David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, Campus Box 8131, St. Louis, MO, 63110, USA.
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jan Witowski
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21, 31-501, Krakow, Poland
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
24
|
Domínguez-Robles J, Mancinelli C, Mancuso E, García-Romero I, Gilmore BF, Casettari L, Larrañeta E, Lamprou DA. 3D Printing of Drug-Loaded Thermoplastic Polyurethane Meshes: A Potential Material for Soft Tissue Reinforcement in Vaginal Surgery. Pharmaceutics 2020; 12:E63. [PMID: 31941047 PMCID: PMC7023419 DOI: 10.3390/pharmaceutics12010063] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/09/2023] Open
Abstract
Current strategies to treat pelvic organ prolapse (POP) or stress urinary incontinence (SUI), include the surgical implantation of vaginal meshes. Recently, there have been multiple reports of issues generated by these meshes conventionally made of poly(propylene). This material is not the ideal candidate, due to its mechanical properties leading to complications such as chronic pain and infection. In the present manuscript, we propose the use of an alternative material, thermoplastic polyurethane (TPU), loaded with an antibiotic in combination with fused deposition modelling (FDM) to prepare safer vaginal meshes. For this purpose, TPU filaments containing levofloxacin (LFX) in various concentrations (e.g., 0.25%, 0.5%, and 1%) were produced by extrusion. These filaments were used to 3D print vaginal meshes. The printed meshes were fully characterized through different tests/analyses such as fracture force studies, attenuated total reflection-Fourier transform infrared, thermal analysis, scanning electron microscopy, X-ray microcomputed tomography (μCT), release studies and microbiology testing. The results showed that LFX was uniformly distributed within the TPU matrix, regardless the concentration loaded. The mechanical properties showed that poly(propylene) (PP) is a tougher material with a lower elasticity than TPU, which seemed to be a more suitable material due to its elasticity. In addition, the printed meshes showed a significant bacteriostatic activity on both Staphylococcus aureus and Escherichia coli cultures, minimising the risk of infection after implanting them. Therefore, the incorporation of LFX to the TPU matrix can be used to prepare anti-infective vaginal meshes with enhanced mechanical properties compared with current PP vaginal meshes.
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK; (J.D.-R.); (C.M.); (B.F.G.)
| | - Caterina Mancinelli
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK; (J.D.-R.); (C.M.); (B.F.G.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy;
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Jordanstown BT37 0QB, UK;
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Brendan F. Gilmore
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK; (J.D.-R.); (C.M.); (B.F.G.)
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy;
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK; (J.D.-R.); (C.M.); (B.F.G.)
| | - Dimitrios A. Lamprou
- School of Pharmacy, Queen’s University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK; (J.D.-R.); (C.M.); (B.F.G.)
| |
Collapse
|
25
|
Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Gaisford S, Basit AW. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv 2019; 16:1081-1094. [PMID: 31478752 DOI: 10.1080/17425247.2019.1660318] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: Three-dimensional (3D) printing is a relatively new, rapid manufacturing technology that has found promising applications in the drug delivery and medical sectors. Arguably, never before has the healthcare industry experienced such a transformative technology. This review aims to discuss the state of the art of 3D printing technology in healthcare and drug delivery. Areas covered: The current and future applications of printing technologies within drug delivery and medicine have been discussed. The latest innovations in 3D printing of customized medical devices, drug-eluting implants, and printlets (3D-printed tablets) with a tailored dose, shape, size, and release characteristics have been covered. The review also covers the state of the art of 3D printing in healthcare (covering topics such as dentistry, surgical and bioprinting of patient-specific organs), as well as the potential of recent innovations, such as 4D printing, to shape the future of drug delivery and to improve treatment pathways for patients. Expert opinion: A future perspective is provided on the potential for 3D printing in healthcare, covering strategies to overcome the major barriers to integration that are faced today.
Collapse
Affiliation(s)
| | - Atheer Awad
- UCL School of Pharmacy, University College London , London , UK
| | | | - Grace B Hatton
- UCL School of Pharmacy, University College London , London , UK
| | - Jack Firth
- Department of Biochemical Engineering, University College London, London, UK
| | - Alvaro Goyanes
- FabRx Ltd , Ashford , TN24 0RW , UK.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Simon Gaisford
- UCL School of Pharmacy, University College London , London , UK.,FabRx Ltd , Ashford , TN24 0RW , UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London , London , UK.,FabRx Ltd , Ashford , TN24 0RW , UK
| |
Collapse
|
26
|
Ballard DH, Tappa K, Boyer CJ, Jammalamadaka U, Hemmanur K, Weisman JA, Alexander JS, Mills DK, Woodard PK. Antibiotics in 3D-printed implants, instruments and materials: benefits, challenges and future directions. JOURNAL OF 3D PRINTING IN MEDICINE 2019; 3:83-93. [PMID: 31258936 PMCID: PMC6587109 DOI: 10.2217/3dp-2019-0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/23/2019] [Indexed: 04/17/2023]
Abstract
3D printing is an additive manufacturing technology, which permits innovative approaches for incorporating antibiotics into 3D printed constructs. Antibiotic-incorporating applications in medicine have included medical implants, prostheses, along with procedural and surgical instruments. 3D-printed antibiotic-impregnated devices offer the advantages of increased surface area for drug distribution, sequential layers of antibiotics produced through layer-by-layer fabrication, and the ability to rapidly fabricate constructs based on patient-specific anatomies. To date, fused deposition modeling has been the main 3D printing method used to incorporate antibiotics, although inkjet and stereolithography techniques have also been described. This review offers a state-of-the-art summary of studies that incorporate antibiotics into 3D-printed constructs and summarizes the rationale, challenges, and future directions for the potential use of this technology in patient care.
Collapse
Affiliation(s)
- David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Author for correspondence: Tel.: +1 314 226 5464; Fax: +1 314 747 4671;
| | - Karthik Tappa
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christen J Boyer
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, LA 71103, USA
| | - Udayabhanu Jammalamadaka
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kavya Hemmanur
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jeffery A Weisman
- University of Illinois at Chicago Occupational Medicine, Chicago, IL 60612, USA
| | - Jonathan S Alexander
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, LA 71103, USA
| | - David K Mills
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
27
|
3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery. J Funct Biomater 2019; 10:jfb10020017. [PMID: 30939719 PMCID: PMC6616894 DOI: 10.3390/jfb10020017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Additive manufacturing has great potential for personalized medicine in osseous fixation surgery, including maxillofacial and orthopedic applications. The purpose of this study was to demonstrate 3D printing methods for the fabrication of patient-specific fixation implants that allow for localized drug delivery. 3D printing was used to fabricate gentamicin (GS) and methotrexate (MTX)-loaded fixation devices, including screws, pins, and bone plates. Scaffolds with different infill ratios of polylactic acid (PLA), both without drugs and impregnated with GS and MTX, were printed into cylindrical and rectangular-shaped constructs for compressive and flexural strength mechanical testing, respectively. Bland PLA constructs showed significantly higher flexural strength when printed in a Y axis at 100% infill compared to other axes and infill ratios; however, there was no significant difference in flexural strength between other axes and infill ratios. GS and MTX-impregnated constructs had significantly lower flexural and compressive strength as compared to the bland PLA constructs. GS-impregnated implants demonstrated bacterial inhibition in plate cultures. Similarly, MTX-impregnated implants demonstrated a cytotoxic effect in osteosarcoma assays. This proof of concept work shows the potential of developing 3D printed screws and plating materials with the requisite mechanical properties and orientations. Drug-impregnated implants were technically successful and had an anti-bacterial and chemotherapeutic effect, but drug addition significantly decreased the flexural and compressive strengths of the custom implants.
Collapse
|
28
|
Boyer CJ, Boktor M, Samant H, White LA, Wang Y, Ballard DH, Huebert RC, Woerner JE, Ghali GE, Alexander JS. 3D Printing for Bio-Synthetic Biliary Stents. Bioengineering (Basel) 2019; 6:E16. [PMID: 30744131 PMCID: PMC6466390 DOI: 10.3390/bioengineering6010016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing is an additive manufacturing method that holds great potential in a variety of future patient-specific medical technologies. This project validated a novel crosslinked polyvinyl alcohol (XL-PVA) 3D printed stent infused with collagen, human placental mesenchymal stem cells (PMSCs), and cholangiocytes. The biofabrication method in the present study examined 3D printing and collagen injection molding for rapid prototyping of customized living biliary stents with clinical applications in the setting of malignant and benign bile duct obstructions. XL-PVA stents showed hydrophilic swelling and addition of radiocontrast to the stent matrix improved radiographic opacity. Collagen loaded with PMSCs contracted tightly around hydrophilic stents and dense choloangiocyte coatings were verified through histology and fluorescence microscopy. It is anticipated that design elements used in these stents may enable appropriate stent placement, provide protection of the stent-stem cell matrix against bile constituents, and potentially limit biofilm development. Overall, this approach may allow physicians to create personalized bio-integrating stents for use in biliary procedures and lays a foundation for new patient-specific stent fabrication techniques.
Collapse
Affiliation(s)
- Christen J Boyer
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Moheb Boktor
- Gastroenterology and Hepatology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Hrishikesh Samant
- Gastroenterology and Hepatology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Luke A White
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Yuping Wang
- Obstetrics and Gynecology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - David H Ballard
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA.
| | - Robert C Huebert
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jennifer E Woerner
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Ghali E Ghali
- Oral and Maxillofacial Surgery, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| | - Jonathan S Alexander
- Molecular and Cellular Physiology, Health Sciences Center, Louisiana State University, Shreveport, LA 71103, USA.
| |
Collapse
|