1
|
Ong JJ, Jørgensen AK, Zhu Z, Telford R, Davies PJ, Gaisford S, Goyanes A, Basit AW. Volumetric printing and non-destructive drug quantification of water-soluble supramolecular hydrogels. Drug Deliv Transl Res 2025; 15:2048-2063. [PMID: 39424706 PMCID: PMC12037435 DOI: 10.1007/s13346-024-01723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Vat photopolymerisation 3D printing is being actively explored for manufacturing personalised medicines due to its high dimensional accuracy and lack of heat application. However, several challenges have hindered its clinical translation, including the inadequate printing speeds, the lack of resins that give soluble matrices, and the need for non-destructive quality control measures. In this study, for the first time, a rapid approach to producing water-soluble vat photopolymerised matrices and a means of non-destructively verifying their drug content were investigated. Volumetric printing, a novel form of vat photopolymerisation, was used to fabricate personalised warfarin-loaded 3D-printed tablets (printlets). Eight different formulations containing varying amounts of warfarin (0.5-6.0% w/w) were used to print two different sized torus-shaped printlets within 6.5 to 11.1 s. Nuclear magnetic resonance (NMR) spectroscopy revealed the presence of only trace amounts of unreacted acrylate monomers, suggesting that the photopolymerisation reaction had occurred to near completion. All printlets completely solubilised and released their entire drug load within 2.5 to 7 h. NIR spectroscopy (NIRS) was used to non-destructively verify the dose of warfarin loaded into the vat photopolymerised printlets. The partial least square regression model built showed strong linearity (R2 = 0.980), and high accuracy in predicting the drug loading of the test sample (RMSEP = 0.205%). Therefore, this study advances pharmaceutical vat photopolymerisation by demonstrating the feasibility of producing water-soluble printlets via volumetric printing and quantifying the drug load of vat photopolymerised printlets with NIRS.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Anna Kirstine Jørgensen
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zilan Zhu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Richard Telford
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Philip J Davies
- TA Instruments, a Division of Waters Ltd, Stamford Avenue, Altrincham Road, Wilmslow, Cheshire, SK9 4AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- FABRX Ltd, Henwood House, Henwood, Ashford, TN24 8DH, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- FABRX Ltd, Henwood House, Henwood, Ashford, TN24 8DH, UK.
| |
Collapse
|
2
|
Murugan M, Ramasamy SK, Venkatesan G, Lee J, Barathi S, Kandasamy S, Sarangi PK. The comprehensive review on 3D printing- pharmaceutical drug delivery and personalized food and nutrition. Food Chem 2024; 459:140348. [PMID: 38991438 DOI: 10.1016/j.foodchem.2024.140348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Three-dimensional printing is one of the emerging technologies that is gaining interest from the pharmaceutical industry as it provides an opportunity to customize drugs according to each patient's needs. Combining different active pharmaceutical ingredients, using different geometries, and providing sustained release enhances the effectiveness of medicine. One of the most innovative uses of 3D printing is producing fabrics, medical devices, medical implants, orthoses, and prostheses. This review summarizes the various 3D printing techniques such as stereolithography, inkjet printing, thermal inkjet printing, fused deposition modelling, extrusion printing, semi-solid extrusion printing, selective laser sintering, and hot-melt extrusion. Also, discusses the drug relies profile and its mechanisms, characteristics, and applications of the most common types of 3D printed API formulations and its recent development. Here, Authors also, summarizes the central flow of 3D food printing process and knowledge extension toward personalized nutrition.
Collapse
Affiliation(s)
- Meenakshi Murugan
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala -133207, Haryana, India
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala -133207, Haryana, India
| | - Geetha Venkatesan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea..
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore - 641004, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal - 795004, Manipur, India..
| |
Collapse
|
3
|
Paari-Molnar E, Kardos K, Told R, Simon I, Sahai N, Szabo P, Bovari-Biri J, Steinerbrunner-Nagy A, Pongracz JE, Rendeki S, Maroti P. Comprehensive Study of Mechanical, Electrical and Biological Properties of Conductive Polymer Composites for Medical Applications through Additive Manufacturing. Polymers (Basel) 2024; 16:2625. [PMID: 39339089 PMCID: PMC11435950 DOI: 10.3390/polym16182625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Conductive polymer composites are commonly present in flexible electrodes for neural interfaces, implantable sensors, and aerospace applications. Fused filament fabrication (FFF) is a widely used additive manufacturing technology, where conductive filaments frequently contain carbon-based fillers. In this study, the static and dynamic mechanical properties and the electrical properties (resistance, signal transmission, resistance measurements during cyclic tensile, bending and temperature tests) were investigated for polylactic acid (PLA)-based, acrylonitrile butadiene styrene (ABS)-based, thermoplastic polyurethane (TPU)-based, and polyamide (PA)-based conductive filaments with carbon-based additives. Scanning electron microscopy (SEM) was implemented to evaluate the results. Cytotoxicity measurements were performed. The conductive ABS specimens have a high gauge factor between 0.2% and 1.0% strain. All tested materials, except the PA-based conductive composite, are suitable for low-voltage applications such as 3D-printed EEG and EMG sensors. ABS-based and TPU-based conductive composites are promising raw materials suitable for temperature measuring and medical applications.
Collapse
Affiliation(s)
- Emese Paari-Molnar
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Kinga Kardos
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Roland Told
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Imre Simon
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Nitin Sahai
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Peter Szabo
- Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pecs, Ifjusag Str. 6, H-7624 Pecs, Hungary
- Environmental Analytical and Geoanalytical Research Group, Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rokus Str. 2, H-7624 Pecs, Hungary
| | - Alexandra Steinerbrunner-Nagy
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rokus Str. 2, H-7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Rokus Str. 2, H-7624 Pecs, Hungary
| | - Szilard Rendeki
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Peter Maroti
- 3D Printing and Visualization Centre, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| |
Collapse
|
4
|
Vyas J, Singh S, Shah I, Prajapati BG. Potential Applications and Additive Manufacturing Technology-Based Considerations of Mesoporous Silica: A Review. AAPS PharmSciTech 2023; 25:6. [PMID: 38129697 DOI: 10.1208/s12249-023-02720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Nanoporous materials are categorized as microporous (pore sizes 0.2-2 nm), mesoporous (pore sizes 2-50 nm), and macroporous (pore sizes 50-1000 nm). Mesoporous silica (MS) has gained a significant interest due to its notable characteristics, including organized pore networks, specific surface areas, and the ability to be integrated in a variety of morphologies. Recently, MS has been widely accepted by range of manufacturer and as drug carrier. Moreover, silica nanoparticles containing mesopores, also known as mesoporous silica nanoparticles (MSNs), have attracted widespread attention in additive manufacturing (AM). AM commonly known as three-dimensional printing is the formalized rapid prototyping (RP) technology. AM techniques, in comparison to conventional methods, aid in reducing the necessity for tooling and allow versatility in product and design customization. There are generally several types of AM processes reported including VAT polymerization (VP), powder bed fusion (PBF), sheet lamination (SL), material extrusion (ME), binder jetting (BJ), direct energy deposition (DED), and material jetting (MJ). Furthermore, AM techniques are utilized in fabrication of various classified fields such as architectural modeling, fuel cell manufacturing, lightweight machines, medical, and fabrication of drug delivery systems. The review concisely elaborates on applications of mesoporous silica as versatile material in fabrication of various AM-based pharmaceutical products with an elaboration on various AM techniques to reduce the knowledge gap.
Collapse
Affiliation(s)
- Jigar Vyas
- Sigma Institute of Pharmacy, Vadodara, Gujarat, 390019, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang mai University, Chiang Mai, 50200, Thailand.
| | - Isha Shah
- Sigma Institute of Pharmacy, Vadodara, Gujarat, 390019, India
| | - Bhupendra G Prajapati
- Office of Research Administration, Chiang mai University, Chiang Mai, 50200, Thailand.
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
| |
Collapse
|
5
|
Ashwani PV, Gopika G, Arun Krishna KV, Jose J, John F, George J. Stimuli-Responsive and Multifunctional Nanogels in Drug Delivery. Chem Biodivers 2023; 20:e202301009. [PMID: 37718283 DOI: 10.1002/cbdv.202301009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
Nanogels represent promising drug delivery systems in the biomedical field, designed to overcome challenges associated with standard treatment approaches. Stimuli-responsive nanogels, often referred to as intelligent materials, have garnered significant attention for their potential to enhance control over properties such as drug release and targeting. Furthermore, researchers have recently explored the application of nanogels in diverse sectors beyond biomedicine including sensing materials, catalysts, or adsorbents for environmental applications. However, to fully harness their potential as practical delivery systems, further research is required to better understand their pharmacokinetic behaviour, interactions between nanogels and bio distributions, as well as toxicities. One promising future application of stimuli-responsive multifunctional nanogels is their use as delivery agents in cancer treatment, offering an alternative to overcome the challenges with conventional approaches. This review discusses various synthetic methods employed in developing nanogels as efficient carriers for drug delivery in cancer treatment. The investigations explore, the key aspects of nanogels, including their multifunctionality and stimuli-responsive properties, as well as associated toxicity concerns. The discussions presented herein aim to provide the readers a comprehensive understanding of the potential of nanogels as smart drug delivery systems in the context of cancer therapy.
Collapse
Affiliation(s)
- P V Ashwani
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - G Gopika
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - K V Arun Krishna
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Josena Jose
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
6
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
7
|
Sharma PK, Choudhury D, Karanwad T, Mohapatra P, Murty US, Banerjee S. Curcumin nanoparticles as a multipurpose additive to achieve high-fidelity SLA-3D printing and controlled delivery. BIOMATERIALS ADVANCES 2023; 153:213527. [PMID: 37418935 DOI: 10.1016/j.bioadv.2023.213527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Light-based three-dimensional (3D) printing has been under use extensively to fabricate complex geometrical constructs which find a vast application in the fields of drug delivery and tissue engineering fields due to its ability to recapitulate the intricate biological architecture and thus provides avenues to achieve previously unachievable biomedical devices. The inherent problem associated with light-based 3D printing (from a biomedical perspective) is that of light scattering causing inaccurate and defective prints which results in erroneous drug loading in 3D printed dosage forms and can also render the environment of the polymers toxic for the biological cells and tissues. In this regard, an innovative additive comprising of a nature-derived drug-cum-photoabsorber (curcumin) entrapped in naturally derived protein (bovine serum albumin) is envisaged to act as a photoabsorbing system that can improve the printing quality of 3D printed drug delivery formulations (macroporous pills) as well as provide stimuli-responsive release of the same upon oral ingestion. The delivery system was designed to endure the chemically and mechanically hostile gastric environment and deliver the drug in the small intestine to improve absorption. A 3 × 3 grid macroporous pill was designed (specifically to withstand the mechanically hostile gastric environment) and 3D printed using Stereolithography comprising of a resin system including acrylic Acid, PEGDA and PEG 400 along with curcumin loaded BSA nanoparticles (Cu-BSA NPs) as a multifunctional additive and TPO as the photoinitiator. The 3D printed macroporous pills were found to show excellent fidelity to CAD design as evident from the resolution studies. The mechanical performance of the macroporous pills was found to be extremely superior to monolithic pills. The pills found to release curcumin in pH responsive manner with slower release at acidic pH but faster release at intestinal pH due to its similar swelling behavior. Finally, the pills were found to be cytocompatible to mammalian kidney and colon cell lines.
Collapse
Affiliation(s)
- Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | - Dinesh Choudhury
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | - Tukaram Karanwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Purusottam Mohapatra
- NIPER-Guwahati, Changsari, Assam, India; Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India..
| |
Collapse
|
8
|
Patel P, Dhal K, Gupta R, Tappa K, Rybicki FJ, Ravi P. Medical 3D Printing Using Desktop Inverted Vat Photopolymerization: Background, Clinical Applications, and Challenges. Bioengineering (Basel) 2023; 10:782. [PMID: 37508810 PMCID: PMC10376892 DOI: 10.3390/bioengineering10070782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Medical 3D printing is a complex, highly interdisciplinary, and revolutionary technology that is positively transforming the care of patients. The technology is being increasingly adopted at the Point of Care (PoC) as a consequence of the strong value offered to medical practitioners. One of the key technologies within the medical 3D printing portfolio enabling this transition is desktop inverted Vat Photopolymerization (VP) owing to its accessibility, high quality, and versatility of materials. Several reports in the peer-reviewed literature have detailed the medical impact of 3D printing technologies as a whole. This review focuses on the multitude of clinical applications of desktop inverted VP 3D printing which have grown substantially in the last decade. The principles, advantages, and challenges of this technology are reviewed from a medical standpoint. This review serves as a primer for the continually growing exciting applications of desktop-inverted VP 3D printing in healthcare.
Collapse
Affiliation(s)
- Parimal Patel
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kashish Dhal
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Rajul Gupta
- Department of Orthopedic Surgery, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
9
|
Pariskar A, Sharma PK, Murty US, Banerjee S. Effect of Tartrazine as Photoabsorber for Improved Printing Resolution of 3D Printed "Ghost Tablets": Non-Erodible Inert Matrices. J Pharm Sci 2023; 112:1020-1031. [PMID: 36410417 DOI: 10.1016/j.xphs.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Stereolithography (SLA) 3D printing of pharmaceuticals suffers from the problem of light scattering, which leads to over-curing, resulting in the printing of objects that are non-compliant with design dimensions and the overloading of drugs. To minimize this problem, photoabsorbers such as tartrazine (food grade) can be used to absorb the stray light produced by scattering, leading to unintended photopolymerization. Ghost tablets (i.e., non-erodible inert matrices) were additively manufactured using SLA with varying ratios of polyethylene glycol diacrylate (PEGDA): polyethylene glycol (PEG) 300, along with tartrazine concentrations. The 3D printed ghost tablets containing maximum (0.03%) tartrazine were extremely precise in size and adhered to the nominal value of the metformin hydrochloride content. Resolution analysis reinstated the influence of tartrazine in achieving highly precise objects of even 0.07 mm2 area. Furthermore, 3D printed ghost tablets were characterized using analytical means, and swelling studies. Additionally, ghost tablets were tested for their mechanical robustness using dynamic mechanical and texture analysis, and were able to withstand strains of up to 5.0% without structural failure. The printed ghost tablets displayed a fast metformin hydrochloride release profile, with 93.14% release after 12 h when the PEG 300 ratio was at its maximum. Ghost tablets were also subjected to in vivo X-ray imaging, and the tablets remained intact even after four hours of administration and were eventually excreted in an intact form through fecal excretion.
Collapse
Affiliation(s)
- Amit Pariskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India.
| |
Collapse
|
10
|
Ngomi N, Khayeka-Wandabwa C, Egondi T, Marinda PA, Haregu TN. Determinants of inequality in health care seeking for childhood illnesses: insights from Nairobi informal settlements. GLOBAL HEALTH JOURNAL 2022. [DOI: 10.1016/j.glohj.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. GLOBAL HEALTH JOURNAL 2022. [DOI: 10.1016/j.glohj.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Idumah CI. Recently emerging advancements in polymeric nanogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2124256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
13
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
14
|
Mazarura KR, Kumar P, Choonara YE. Customised 3D printed multi-drug systems: An effective and efficient approach to polypharmacy. Expert Opin Drug Deliv 2022; 19:1149-1163. [PMID: 36059243 DOI: 10.1080/17425247.2022.2121816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Combination therapies continue to improve therapeutic outcomes as currently achieved by polypharmacy. Since the introduction of the polypill, there has been a significant improvement in adherence and patient outcomes. However, the mass production of polypills presents a number of technical, formulation, and clinical challenges. The current one-size-fits-all approach ignores the unique clinical demands of patients, necessitating the adoption of a more versatile tool. That will be the novel, but not so novel, 3D printing. AREAS COVERED : The present review investigates this promising paradigm shift from one medication for all, to customised medicines, providing an overview of the current state of 3D-printed multi-active pharmaceutical forms, techniques applied and printing materials. Details on cost implications, as well as potential limitations and challenges are also elaborated. EXPERT OPINION : 3D printing of multi-active systems, is not only beneficial but also essential. With growing interest in this field, a shift in manufacturing, prescribing, and administration patterns is at this point, unavoidable. Addressing limitations and challenges, as well as data presentation on clinical trial results, will aid in the acceleration of this technology's implementation. However, it is clear that 3D printing is not the end of it, as evidenced by the emerging 4D printing technology.
Collapse
Affiliation(s)
- Kundai R Mazarura
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
15
|
Papadimitriou P, Andriotis EG, Fatouros D, Tzetzis D. Design and Prototype Fabrication of a Cost-Effective Microneedle Drug Delivery Apparatus Using Fused Filament Fabrication, Liquid Crystal Display and Semi-Solid Extrusion 3D Printing Technologies. MICROMACHINES 2022; 13:1319. [PMID: 36014241 PMCID: PMC9415897 DOI: 10.3390/mi13081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The current study describes the design of a cost-effective drug delivery apparatus that can be manufactured, assembled, and utilized as easily and quickly as possible, minimizing the time and expense of the supply chain. This apparatus could become a realistic alternative method of providing a vaccine or drug in harsh circumstances, including humanitarian disasters or a lack of medical and nursing staff, conditions that are frequently observed in developing countries. Simultaneously, with the use of microneedles (MNs), the apparatus can benefit from the numerous advantages offered by them during administration. The hollow microneedles in particular are internally perforated and are capable of delivering the active substance to the skin. The apparatus was designed with appropriate details in computer aided design software, and various 3D printing technologies were utilized in order to fabricate the prototype. The parts that required minimum accuracy, such as the main body of the apparatus, were fabricated with fused filament fabrication. The internal parts and the hollow microneedles were fabricated with liquid crystal display, and the substance for the drug loading carrier, which was an alginate gel cylinder, was fabricated with semi-solid extrusion 3D printing.
Collapse
Affiliation(s)
- Petros Papadimitriou
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, GR-57001 Thessaloniki, Greece
| | - Eleftherios G. Andriotis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, GR-57001 Thessaloniki, Greece
| |
Collapse
|