1
|
Pinhal D, Gonçalves LDB, Campos VF, Patton JG. Decoding microRNA arm switching: a key to evolutionary innovation and gene regulation. Cell Mol Life Sci 2025; 82:197. [PMID: 40347284 PMCID: PMC12065703 DOI: 10.1007/s00018-025-05663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 05/12/2025]
Abstract
miRNA arm switching is a pivotal regulatory mechanism that allows organisms to fine-tune gene expression by selectively utilizing either the 5p or 3p strand of a miRNA duplex. This process, conserved across species, facilitates adaptive responses to developmental cues, environmental changes, and disease states. By dynamically altering strand selection, arm switching reshapes gene regulatory networks, contributing to phenotypic diversity and evolutionary innovation. Despite its growing recognition, the mechanisms driving arm switching-such as thermodynamic properties and enzyme-mediated processing-remain incompletely understood. This review synthesizes current findings, highlighting arm switching as a highly conserved mechanism with profound implications for the evolution of regulatory networks. We explore how this phenomenon expands miRNA functionality, drives phenotypic plasticity, and co-evolves with miRNA gene duplications to fuel the diversification of biological functions across taxa.
Collapse
Affiliation(s)
- Danillo Pinhal
- Genomics and Molecular Evolution Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, DCQB, IBB, UNESP, Botucatu, SP, CEP 18618-689, Brazil.
| | - Leandro de B Gonçalves
- Genomics and Molecular Evolution Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, DCQB, IBB, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| | - Vinícius F Campos
- Structural Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
2
|
Baumann V, Athanasiou AT, Faridani OR, Schwerdtfeger AR, Wallner B, Steinborn R. Identification of extremely GC-rich micro RNAs for RT-qPCR data normalization in human plasma. Front Genet 2023; 13:1058668. [PMID: 36685854 PMCID: PMC9846067 DOI: 10.3389/fgene.2022.1058668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
We aimed at extending the repertoire of high-quality miRNA normalizers for reverse transcription-quantitative PCR (RT-qPCR) of human plasma with special emphasis on the extremely guanine-cytosine-rich portion of the miRNome. For high-throughput selection of stable candidates, microarray technology was preferred over small-RNA sequencing (sRNA-seq) since the latter underrepresented miRNAs with a guanine-cytosine (GC) content of at least 75% (p = 0.0002, n = 2). miRNA abundances measured on the microarray were ranked for consistency and uniformity using nine normalization approaches. The eleven most stable sequences included miRNAs of moderate, but also extreme GC content (45%-65%: miR-320d, miR-425-5p, miR-185-5p, miR-486-5p; 80%-95%: miR-1915-3p, miR-3656-5p, miR-3665-5p, miR-3960-5p, miR-4488-5p, miR-4497 and miR-4787-5p). In contrast, the seven extremely GC-rich miRNAs were not found in the two plasma miRNomes screened by sRNA-seq. Stem-loop RT-qPCR was employed for stability verification in 32 plasma samples of healthy male Caucasians (age range: 18-55 years). In general, inter-individual variance of miRNA abundance was low or very low as indicated by coefficient of variation (CV) values of 0.6%-8.2%. miR-3665 and miR-1915-3p outperformed in this analysis (CVs: 0.6 and 2.4%, respectively). The eight most stable sequences included four extremely GC-rich miRNAs (miR-1915-3p, miR-3665, miR-4787-5p and miR-4497). The best-performing duo normalization factor (NF) for the condition of human plasma, miR-320d and miR-4787-5p, also included a GC-extreme miRNA. In summary, the identification of extremely guanine-cytosine-rich plasma normalizers will help to increase accuracy of PCR-based miRNA quantification, thus raise the potential that miRNAs become markers for psychological stress reactions or early and precise diagnosis of clinical phenotypes. The novel miRNAs might also be useful for orthologous contexts considering their conservation in related animal genomes.
Collapse
Affiliation(s)
- Volker Baumann
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | | | - Omid R. Faridani
- Garvan Institute of Medical Research, Sydney, NSW, Australia,Lowy Cancer Research Centre, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria,Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria,*Correspondence: Ralf Steinborn,
| |
Collapse
|
3
|
Moradi A, Whatmore P, Farashi S, Barrero RA, Batra J. IsomiR-eQTL: A Cancer-Specific Expression Quantitative Trait Loci Database of miRNAs and Their Isoforms. Int J Mol Sci 2022; 23:ijms232012493. [PMID: 36293349 PMCID: PMC9604134 DOI: 10.3390/ijms232012493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of expression quantitative trait loci (eQTL) is an important component in efforts to understand how genetic variants influence disease risk. MicroRNAs (miRNAs) are short noncoding RNA molecules capable of regulating the expression of several genes simultaneously. Recently, several novel isomers of miRNAs (isomiRs) that differ slightly in length and sequence composition compared to their canonical miRNAs have been reported. Here we present isomiR-eQTL, a user-friendly database designed to help researchers find single nucleotide polymorphisms (SNPs) that can impact miRNA (miR-eQTL) and isomiR expression (isomiR-eQTL) in 30 cancer types. The isomiR-eQTL includes a total of 152,671 miR-eQTLs and 2,390,805 isomiR-eQTLs at a false discovery rate (FDR) of 0.05. It also includes 65,733 miR-eQTLs overlapping known cancer-associated loci identified through genome-wide association studies (GWAS). To the best of our knowledge, this is the first study investigating the impact of SNPs on isomiR expression at the genome-wide level. This database may pave the way for researchers toward finding a model for personalised medicine in which miRNAs, isomiRs, and genotypes are utilised.
Collapse
Affiliation(s)
- Afshin Moradi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia
| | - Paul Whatmore
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane 4000, Australia
| | - Samaneh Farashi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia
| | - Roberto A. Barrero
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane 4000, Australia
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
- Correspondence:
| |
Collapse
|
4
|
Niedra H, Peculis R, Konrade I, Balcere I, Romanovs M, Steina L, Stukens J, Sokolovska J, Klovins J, Rovite V. Case Report: Micro-RNAs in Plasma From Bilateral Inferior Petrosal Sinus Sampling and Peripheral Blood From Corticotroph Pituitary Neuroendocrine Tumors. Front Endocrinol (Lausanne) 2022; 13:748152. [PMID: 35528014 PMCID: PMC9072666 DOI: 10.3389/fendo.2022.748152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/17/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Circulating miRNAs are found in bodily fluids including plasma and can serve as biomarkers for diseases. The aim of this study was to provide the first insight into the landscape of circulating miRNAs in close proximity to the adrenocorticotropic hormone (ACTH) secreting PitNET. To achieve this objective next-generation sequencing of miRNAs in plasma from bilateral inferior petrosal sinus sampling (BIPSS) - a gold standard in diagnosing ACTH-secreting PitNETs was carried out and selected miRNA candidates were further tested by RT-qPCR in independent patient cohorts. Methods Sinistral (left) and dextral (right) BIPSS blood samples of the patient were collected in three time points: before the administration of corticotropin-releasing hormone, 5 and 15 minutes after stimulation. In differential expression analysis, sinistral plasma was compared with dextral. The selected miRNA candidates were tested in plasma by RT-qPCR in two patient groups: 1) in five ACTH secreting PitNET patients with plasma samples taken before and 24 hours after surgery, 2) in 12 ACTH secreting PitNET patients vs. 9 non-functioning PitNET patients. Results BIPSS concluded that the highest amount of ACTH was released in the sinistral side at the 5th minute mark indicating a presence of a tumor. The highest amount of differentially expressed miRNAs was observed 5 minutes after stimulation (20 upregulated, 14 downregulated). At the 5th minute mark in sinistral plasma, two miRNAs were identified: hsa-miR-7-5p and hsa-miR-375-3p that were highly upregulated compared to other BIPSS samples and peripheral plasma samples. Further testing by qPCR revealed significant reduction of miR-7-5p in plasma 24 hours after surgery and upregulation in plasma of ACTH secreting PitNET patients compared to non-functioning PitNET patients (P =0.0013). Conclusions By stimulating the ACTH secreting PitNET with CRH a rapid increase of two miRNAs (hsa-mir-7-5p, hsa-mir-375-3p) and ACTH can be observed in sinistral inferior petrosal (tumor side). A decrease of miR-7-5p in plasma after surgery and upregulation in plasma of ACTH secreting PitNET patients was discovered implying that further studies of this miRNA as diagnostic marker is needed.
Collapse
Affiliation(s)
- Helvijs Niedra
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Raitis Peculis
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilze Konrade
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Inga Balcere
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Mihails Romanovs
- Department of Endocrinology, Riga East Clinical University Hospital, Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, Riga, Latvia
| | - Liva Steina
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Stukens
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | | | - Janis Klovins
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Department of Molecular and Functional Genomics, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
5
|
Francisco S, Martinho V, Ferreira M, Reis A, Moura G, Soares AR, Santos MAS. The Role of MicroRNAs in Proteostasis Decline and Protein Aggregation during Brain and Skeletal Muscle Aging. Int J Mol Sci 2022; 23:ijms23063232. [PMID: 35328652 PMCID: PMC8955204 DOI: 10.3390/ijms23063232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 01/14/2023] Open
Abstract
Aging can be defined as the progressive deterioration of cellular, tissue, and organismal function over time. Alterations in protein homeostasis, also known as proteostasis, are a hallmark of aging that lead to proteome imbalances and protein aggregation, phenomena that also occur in age-related diseases. Among the various proteostasis regulators, microRNAs (miRNAs) have been reported to play important roles in the post-transcriptional control of genes involved in maintaining proteostasis during the lifespan in several organismal tissues. In this review, we consolidate recently published reports that demonstrate how miRNAs regulate fundamental proteostasis-related processes relevant to tissue aging, with emphasis on the two most studied tissues, brain tissue and skeletal muscle. We also explore an emerging perspective on the role of miRNA regulatory networks in age-related protein aggregation, a known hallmark of aging and age-related diseases, to elucidate potential miRNA candidates for anti-aging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Stephany Francisco
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Vera Martinho
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Margarida Ferreira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Andreia Reis
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Gabriela Moura
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Ana Raquel Soares
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
- Correspondence: (A.R.S.); (M.A.S.S.)
| | - Manuel A. S. Santos
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
- Multidisciplinary Institute of Aging, MIA-Portugal, Faculty of Medicine, University of Coimbra, Rua Largo 2, 3º, 3000-370 Coimbra, Portugal
- Correspondence: (A.R.S.); (M.A.S.S.)
| |
Collapse
|
6
|
Lukosevicius R, Juzenas S, Salteniene V, Kulokiene U, Arstikyte J, Hemmrich-Stanisak G, Franke A, Link A, Ruzgys P, Satkauskas S, Pauzas H, Latkauskas T, Kiudelis G, Balaguer F, Kupcinskas J, Skieceviciene J. miRNome Profiling and Functional Analysis Reveal Involvement of hsa-miR-1246 in Colon Adenoma-Carcinoma Transition by Targeting AXIN2 and CFTR. Int J Mol Sci 2022; 23:2107. [PMID: 35216222 PMCID: PMC8876010 DOI: 10.3390/ijms23042107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Regulatory changes occurring early in colorectal cancer development remain poorly investigated. Since the majority of cases develop from polyps in the adenoma-carcinoma transition, a search of early molecular features, such as aberrations in miRNA expression occurring prior to cancer development, would enable identification of potentially causal, rather than consequential, candidates in the progression of polyp to cancer. In the current study, by employing small RNA-seq profiling of colon biopsy samples, we described differentially expressed miRNAs and their isoforms in the adenoma-carcinoma transition. Analysis of healthy-adenoma-carcinoma sequence in an independent validation group enabled us to identify early deregulated miRNAs including hsa-miR-1246 and hsa-miR-215-5p, the expressions of which are, respectively, gradually increasing and decreasing. Loss-of-function experiments revealed that inhibition of hsa-miR-1246 lead to reduced cell viability, colony formation, and migration rate, thereby indicating an oncogenic effect of this miRNA in vitro. Subsequent western blot and luciferase reporter assay provided evidence of hsa-miR-1246 being involved in the regulation of target AXIN2 and CFTR genes' expression. To conclude, the present study revealed possible involvement of hsa-miR-1246 in early colorectal cancer development and regulation of tumor suppressors AXIN2 and CFTR.
Collapse
Affiliation(s)
- Rokas Lukosevicius
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.L.); (S.J.); (V.S.); (U.K.); (J.A.)
| | - Simonas Juzenas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.L.); (S.J.); (V.S.); (U.K.); (J.A.)
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (G.H.-S.); (A.F.)
| | - Violeta Salteniene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.L.); (S.J.); (V.S.); (U.K.); (J.A.)
| | - Ugne Kulokiene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.L.); (S.J.); (V.S.); (U.K.); (J.A.)
| | - Justina Arstikyte
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.L.); (S.J.); (V.S.); (U.K.); (J.A.)
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (G.H.-S.); (A.F.)
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (G.H.-S.); (A.F.)
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, 39106 Magdeburg, Germany;
| | - Paulius Ruzgys
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, 44248 Kaunas, Lithuania; (P.R.); (S.S.)
| | - Saulius Satkauskas
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, 44248 Kaunas, Lithuania; (P.R.); (S.S.)
| | - Henrikas Pauzas
- Department of Surgery, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (H.P.); (T.L.)
| | - Tadas Latkauskas
- Department of Surgery, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (H.P.); (T.L.)
| | - Gediminas Kiudelis
- Department of Gastroenterology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, 08036 Barcelona, Spain;
| | - Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.L.); (S.J.); (V.S.); (U.K.); (J.A.)
- Department of Gastroenterology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.L.); (S.J.); (V.S.); (U.K.); (J.A.)
| |
Collapse
|
7
|
Schofield AL, Brown JP, Brown J, Wilczynska A, Bell C, Glaab WE, Hackl M, Howell L, Lee S, Dear JW, Remes M, Reeves P, Zhang E, Allmer J, Norris A, Falciani F, Takeshita LY, Seyed Forootan S, Sutton R, Park BK, Goldring C. Systems analysis of miRNA biomarkers to inform drug safety. Arch Toxicol 2021; 95:3475-3495. [PMID: 34510227 PMCID: PMC8492583 DOI: 10.1007/s00204-021-03150-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems.
Collapse
Affiliation(s)
- Amy L Schofield
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, L69 3GE, UK
| | - Joseph P Brown
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, L69 3GE, UK
| | - Jack Brown
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, L69 3GE, UK
| | - Ania Wilczynska
- bit.bio, Babraham Research Campus, The Dorothy Hodgkin Building, Cambridge, CB22 3FH, UK
| | - Catherine Bell
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Warren E Glaab
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, 19486, USA
| | | | - Lawrence Howell
- GlaxoSmithKline (GSK), Stevenage, Greater Cambridge Area, UK
| | - Stephen Lee
- ABHI, 1 Duchess St, 4th Floor, Suite 2, London, W1W 6AN, UK
| | - James W Dear
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mika Remes
- Genomics EMEA, QIAGEN Aarhus, Prismet, Silkeborgvej 2, 8000, Aarhus C, Denmark
| | - Paul Reeves
- Arcis Biotechnology Limited, Suite S07, Techspace One, Sci-tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AB, UK
| | - Eunice Zhang
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Jens Allmer
- Applied Bioinformatics, Bioscience, Wageningen University and Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
| | - Alan Norris
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, L69 3GE, UK
| | - Francesco Falciani
- Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Louise Y Takeshita
- Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Shiva Seyed Forootan
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, L69 3GE, UK
| | - Robert Sutton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, L69 3GE, UK
| | - Chris Goldring
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
8
|
LaBelle J, Bowser M, Brown A, Farnam L, Kho A, Li J, McGeachie M, Chase R, Piehl S, Allen K, Hobbs BD, Weiss ST, Hersh C, Tantisira K, Amr SS. Commercially Available Blocking Oligonucleotides Effectively Suppress Unwanted Hemolysis-Related miRNAs in a Large Whole-Blood RNA Cohort. J Mol Diagn 2021; 23:671-682. [PMID: 33872788 DOI: 10.1016/j.jmoldx.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
When sequencing small RNA libraries derived from whole blood, the most abundant microRNAs (miRs) detected are often miR-486-5p, miR-451a, and miR-92a-3p. These highly expressed erythropoietic miRs are released into the sample from red blood cell hemolysis. Next-generation sequencing of these unwanted miRs leads to a waste in sequencing cost and diminished detection of lowly expressed miRNAs, including many potential miRNA biomarkers. Previous work has developed a method to reduce targeted miRNAs using oligonucleotides that bind their target miRNA and prevent its ligation during library construction, although the extent to which oligonucleotides can be multiplexed and their effect on larger cohorts has not been thoroughly explored. We present a method for suppressing detection of three highly abundant heme miRs in a single multiplexed blocking oligonucleotide reaction. In a small paired-sample pilot (n = 8) and a large cohort of samples (n = 901), multiplexed oligos reduced detection of their target miRNAs by approximately 70%, allowing for an approximately 10-fold increase in reads mapping to nonheme miRs and increased detection of very lowly expressed miRs, with minimal off-target effects. By removing all three highly expressed erythropoietic miRNAs from next-generational sequencing libraries, this commercially available multiplexed blocking oligonucleotide method allows for greater detection of lowly expressed biomarkers, improving the efficacy, cost-efficiency, and sensitivity of biomarker studies and diagnostic tests.
Collapse
Affiliation(s)
- Jenna LaBelle
- Mass General Brigham Personalized Medicine, Partners Healthcare, Cambridge, Massachusetts
| | - Mark Bowser
- Mass General Brigham Personalized Medicine, Partners Healthcare, Cambridge, Massachusetts
| | - Alison Brown
- Mass General Brigham Personalized Medicine, Partners Healthcare, Cambridge, Massachusetts
| | - Leanna Farnam
- School of Health Sciences, Lasell University, Auburndale, Massachusetts
| | - Alvin Kho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jiang Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Brian D Hobbs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Scott T Weiss
- Mass General Brigham Personalized Medicine, Partners Healthcare, Cambridge, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Craig Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kelan Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sami S Amr
- Mass General Brigham Personalized Medicine, Partners Healthcare, Cambridge, Massachusetts; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
A critical approach for successful use of circulating microRNAs as biomarkers in cardiovascular diseases: the case of hypertrophic cardiomyopathy. Heart Fail Rev 2021; 27:281-294. [PMID: 33656618 DOI: 10.1007/s10741-021-10084-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that act as major regulators of gene expression at the post-transcriptional level. As the potential applications of miRNAs in the diagnosis and treatment of human diseases have become more evident, many studies of hypertrophic cardiomyopathy (HCM) have focused on the systemic identification and quantification of miRNAs in biofluids and myocardial tissues. HCM is a hereditary cardiomyopathy caused by mutations in genes encoding proteins of the sarcomere. Despite overall improvements in survival, progression to heart failure, stroke, and sudden cardiac death remain prominent features of living with HCM. Several miRNAs have been shown to be promising biomarkers of HCM; however, there are many challenges to ensuring the validity, consistency, and reproducibility of these biomarkers for clinical use. In particular, miRNA testing may be limited by pre-analytical and analytical caveats, making our interpretation of results challenging. Such factors that may affect miRNA testing include sample type selection, hemolysis, platelet activation, and renal dysfunction. Therefore, researchers should be careful when developing appropriate standards for the design of miRNA profiling studies in order to ensure that all results provided are both accurate and reliable. In this review, we discuss the application of miRNAs as biomarkers for HCM.
Collapse
|
10
|
Perdiguero P, Rodrigues AS, Chaves I, Costa B, Alves A, de María N, Vélez MD, Díaz-Sala C, Cervera MT, Miguel CM. Comprehensive analysis of the isomiRome in the vegetative organs of the conifer Pinus pinaster under contrasting water availability. PLANT, CELL & ENVIRONMENT 2021; 44:706-728. [PMID: 33314160 DOI: 10.1111/pce.13976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.
Collapse
Affiliation(s)
- Pedro Perdiguero
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Andreia Santos Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Alves
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Célia Maria Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Ricafrente A, Nguyen H, Tran N, Donnelly S. An Evaluation of the Fasciola hepatica miRnome Predicts a Targeted Regulation of Mammalian Innate Immune Responses. Front Immunol 2021; 11:608686. [PMID: 33584684 PMCID: PMC7878377 DOI: 10.3389/fimmu.2020.608686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding mechanisms by which parasitic worms (helminths) control their hosts’ immune responses is critical to the development of effective new disease interventions. Fasciola hepatica, a global scourge of humans and their livestock, suppresses host innate immune responses within hours of infection, ensuring that host protective responses are quickly incapacitated. This allows the parasite to freely migrate from the intestine, through the liver to ultimately reside in the bile duct, where the parasite establishes a chronic infection that is largely tolerated by the host. The recent identification of micro(mi)RNA, small RNAs that regulate gene expression, within the extracellular vesicles secreted by helminths suggest that these non-coding RNAs may have a role in the parasite-host interplay. To date, 77 miRNAs have been identified in F. hepatica comprising primarily of ancient conserved species of miRNAs. We hypothesized that many of these miRNAs are utilized by the parasite to regulate host immune signaling pathways. To test this theory, we first compiled all of the known published F. hepatica miRNAs and critically curated their sequences and annotations. Then with a focus on the miRNAs expressed by the juvenile worms, we predicted gene targets within human innate immune cells. This approach revealed the existence of targets within every immune cell, providing evidence for the universal management of host immunology by this parasite. Notably, there was a high degree of redundancy in the potential for the parasite to regulate the activation of dendritic cells, eosinophils and neutrophils, with multiple miRNAs predicted to act on singular gene targets within these cells. This original exploration of the Fasciola miRnome offers the first molecular insight into mechanisms by which F. hepatica can regulate the host protective immune response.
Collapse
Affiliation(s)
- Alison Ricafrente
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Hieu Nguyen
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Nham Tran
- Faculty of Engineering and Information Technology, School of Biomedical Engineering, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
12
|
Sikora M, Marycz K, Smieszek A. Small and Long Non-coding RNAs as Functional Regulators of Bone Homeostasis, Acting Alone or Cooperatively. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:792-803. [PMID: 32791451 PMCID: PMC7419272 DOI: 10.1016/j.omtn.2020.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
Emerging knowledge indicates that non-coding RNAs, including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have a pivotal role in bone development and the pathogenesis of bone-related disorders. Most recently, miRNAs have started to be regarded as potential biomarkers or targets for various sets of diseases, while lncRNAs have gained attention as a new layer of gene expression control acting through versatile interactions, also with miRNAs. The rapid development of RNA sequencing techniques based on next-generation sequencing (NGS) gives us better insight into molecular pathways regulated by the miRNA-lncRNA network. In this review, we summarize the current knowledge related to the function of miRNAs and lncRNAs as regulators of genes that are crucial for proper bone metabolism and homeostasis. We have characterized important non-coding RNAs and their expression signatures, in relationship to bone. Analysis of the biological function of miRNAs and lncRNAs, as well as their network, will pave the way for a better understanding of the pathogenesis of various bone disorders. We also think that this knowledge may lead to the development of innovative diagnostic tools and therapeutic approaches for bone-related disorders.
Collapse
Affiliation(s)
- Mateusz Sikora
- Department of Experimental Biology, Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B Street, 50-375 Wroclaw, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11 Street, 55-124 Malin, Poland; Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszynski University (UKSW), Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Smieszek
- Department of Experimental Biology, Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Norwida 27B Street, 50-375 Wroclaw, Poland.
| |
Collapse
|
13
|
Chong H, Wei Z, Na M, Sun G, Zheng S, Zhu X, Xue Y, Zhou Q, Guo S, Xu J, Wang H, Cui L, Zhang CY, Jiang X, Wang D. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis. Atherosclerosis 2020; 297:136-145. [PMID: 32120345 DOI: 10.1016/j.atherosclerosis.2020.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/19/2020] [Accepted: 02/07/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is the leading cause of cardiovascular diseases. PGC-1α is a key regulator of cellular energy homeostasis, but its role in AS remains debatable. METHODS AND RESULTS In our study, PGC-1α was shown to be significantly decreased in the media of human atherosclerotic vessels. To explore whether miRNAs might be regulated by PGC-1α in vascular smooth muscle cells (VSMCs), microarray analysis was performed. Microarray and Pearson's correlation analysis showed that PGC-1α and miR-378a were positively correlated in vivo and in vitro. As an upstream co-activator, PGC-1α was found to regulate miR-378a through binding to the transcriptional factor NRF1 in VSMCs. Therefore, the decreased expression of PGC-1α might account for suppression of miR-378a in VSMCs in AS. Furthermore, IGF1 and TLR8, two genes known to be aberrantly up-regulated in atherogenic vessels, were identified as direct targets of miR-378a. In vitro up-regulation of miR-378a markedly inhibited free fatty acid (FFA)-induced VSMC proliferation, migration and inflammation through targeting IGF1 and TLR8. CONCLUSIONS These findings highlight the protective role of the PGC-1α/NRF1/miR-378a regulatory axis in AS progression and suggest miR-378a as potential therapeutic target for AS treatment.
Collapse
Affiliation(s)
- Hoshun Chong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Zhe Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Muhan Na
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Gongrui Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Shasha Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Xiyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China
| | - Yunxing Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China
| | - Qing Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China
| | - Shanjun Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Jinhong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Haoquan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Le Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China.
| | - Dongjin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, China.
| |
Collapse
|