Harun-Ur-Rashid M, Foyez T, Krishna SBN, Poda S, Imran AB. Recent advances of silver nanoparticle-based polymer nanocomposites for biomedical applications.
RSC Adv 2025;
15:8480-8505. [PMID:
40109922 PMCID:
PMC11920860 DOI:
10.1039/d4ra08220f]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Silver nanoparticle-polymer nanocomposites (AgNP-PNCs) represent a transformative advancement in biomedical material science, integrating the potent antimicrobial properties of AgNPs with the structural versatility of polymer matrices. This synergy enables enhanced infection control, mechanical stability, and controlled drug delivery, making these nanocomposites highly suitable for applications such as wound healing, medical coatings, tissue engineering, and biosensors. Recent progress in synthesis and functionalization has led to greater control over particle morphology, dispersion, and stability, optimizing AgNP-PNCs for clinical and translational applications. However, challenges related to cytotoxicity, long-term stability, immune response, and scalability persist, necessitating systematic improvements in surface functionalization, hybridization strategies, and biocompatibility assessments. This review critically evaluates the latest advancements in AgNP-PNC development, focusing on their functionalization techniques, regulatory considerations, and emerging strategies to overcome biomedical challenges. Additionally, it discusses preclinical and translational aspects, including commercialization barriers and regulatory frameworks such as FDA and EMA guidelines, ensuring a comprehensive outlook on their clinical feasibility. By bridging the gap between innovation and practical application, this review investigates the transformative potential of AgNP-PNCs in advancing next-generation biomedical materials.
Collapse