1
|
Liu L, Ai Z, Zhang X, Tang K, Pei Y. Flexible and robust polyaniline/cross-linked collagen sponge with fibrils network structure as a piezoresistive sensing material. Int J Biol Macromol 2024; 279:135305. [PMID: 39236961 DOI: 10.1016/j.ijbiomac.2024.135305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The polyaniline/cross-linked collagen sponge (PANI/CCS) was synthesized by polymerizing PANI onto the collagen skeleton using mesoscopic collagen fibrils (CFs) as building blocks, serving as a piezoresistive sensing material. The structure and morphology of PANI/CCS were characterized using scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TA). The mechanical properties of PANI/CCS could be controlled by adjusting the CFs content and polymerization conditions. PANI/CCS treated with pure water exhibited exceptional compressive elasticity under 1000 compression cycles, demonstrating a wide strain range (0-85 %), rapid response time (200 ms), recovery time (90 ms), and high sensitivity (6.72 at 40-50 % strain). The treatment of the ionic liquid further improved the elasticity and the strain sensing range (0-95 %). The presence of PANI nanoparticles and mesoscopic collagen fibrils imparted antibacterial properties, stability in solvents, and biodegradability to PANI/CCS. Utilizing PANI/CCS as a piezoresistive sensing material enabled monitoring human movement behavior through the assembled sensor, showing significant potential for flexible wearable devices.
Collapse
Affiliation(s)
- Lele Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zihao Ai
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyuan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Andonegi M, Correia DM, Pereira N, Costa CM, Lanceros-Mendez S, de la Caba K, Guerrero P. Sustainable Collagen Composites with Graphene Oxide for Bending Resistive Sensing. Polymers (Basel) 2023; 15:3855. [PMID: 37835904 PMCID: PMC10575369 DOI: 10.3390/polym15193855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
This work reports on the development of collagen films with graphene oxide nanoparticles (GO NPs), aiming toward the development of a new generation of functional sustainable sensors. For this purpose, different GO NP contents up to 3 wt % were incorporated into a collagen matrix, and morphological, thermal, mechanical and electrical properties were evaluated. Independently of the GO NP content, all films display an increase in thermal stability as a result of the increase in the structural order of collagen, as revealed by XRD analysis. Further, the inclusion of GO NPs into collagen promotes an increase in the intensity of oxygen characteristic absorption bands in FTIR spectra, due to the abundant oxygen-containing functional groups, which lead to an increase in the hydrophilic character of the surface. GO NPs also influence the mechanical properties of the composites, increasing the tensile strength from 33.2 ± 2.4 MPa (collagen) to 44.1 ± 1.0 MPa (collagen with 3 wt % GO NPs). Finally, the electrical conductivity also increases slightly with GO NP content, allowing the development of resistive bending sensors.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, Escuela de Ingeniería de Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; (M.A.); (P.G.)
| | | | - Nelson Pereira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; (N.P.); (C.M.C.)
| | - Carlos M. Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; (N.P.); (C.M.C.)
- Laboratory of Physics for Materials and Emergent Technologies (LapMET), University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; (N.P.); (C.M.C.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Koro de la Caba
- BIOMAT Research Group, Escuela de Ingeniería de Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; (M.A.); (P.G.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, Escuela de Ingeniería de Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; (M.A.); (P.G.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Pradhan S, Brooks A, Yadavalli V. Nature-derived materials for the fabrication of functional biodevices. Mater Today Bio 2020; 7:100065. [PMID: 32613186 PMCID: PMC7317235 DOI: 10.1016/j.mtbio.2020.100065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Nature provides an incredible source of inspiration, structural concepts, and materials toward applications to improve the lives of people around the world, while preserving ecosystems, and addressing environmental sustainability. In particular, materials derived from animal and plant sources can provide low-cost, renewable building blocks for such applications. Nature-derived materials are of interest for their properties of biodegradability, bioconformability, biorecognition, self-repair, and stimuli response. While long used in tissue engineering and regenerative medicine, their use in functional devices such as (bio)electronics, sensors, and optical systems for healthcare and biomonitoring is finding increasing attention. The objective of this review is to cover the varied nature derived and sourced materials currently used in active biodevices and components that possess electrical or electronic behavior. We discuss materials ranging from proteins and polypeptides such as silk and collagen, polysaccharides including chitin and cellulose, to seaweed derived biomaterials, and DNA. These materials may be used as passive substrates or support architectures and often, as the functional elements either by themselves or as biocomposites. We further discuss natural pigments such as melanin and indigo that serve as active elements in devices. Increasingly, combinations of different biomaterials are being used to address the challenges of fabrication and performance in human monitoring or medicine. Finally, this review gives perspectives on the sourcing, processing, degradation, and biocompatibility of these materials. This rapidly growing multidisciplinary area of research will be advanced by a systematic understanding of nature-inspired materials and design concepts in (bio)electronic devices.
Collapse
Affiliation(s)
- S. Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - A.K. Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - V.K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
4
|
Li Y, Jiang C, Han W. Extending the pressure sensing range of porous polypyrrole with multiscale microstructures. NANOSCALE 2020; 12:2081-2088. [PMID: 31912843 DOI: 10.1039/c9nr08632c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polymer-based piezoresistive sensors that combine the flexibility and stretchability of organic polymers have received considerable attention in flexible and wearable sensing systems. Generally, highly sensitive pressure sensors have a limited pressure sensing range, while pressure sensors with a wide pressure response range usually have limited pressure resolution. Herein, we used a polypyrrole (PPy) sponge with multiscale porous structures to extend the pressure sensing range of PPy-based piezoresistive sensors. The multiscale microstructures with different sizes will sink in sequence after increasing the external pressure and therefore exhibit a wide pressure response range. Our results show that the piezoresistive composite has a superior sensitivity of 28 kPa-1 and a broad stress range of 0-60 kPa. Moreover, the composite displays a stable, repeatable and durable performance over 16 000 cycles. It can be used to monitor diverse body part motions, including vocalization, pulse beating and joint bending. This work provides an effective strategy to extend the pressure sensing range of polymer-based piezoresistive sensors in the manner of structure design rather than modifying the intrinsic properties of active materials.
Collapse
Affiliation(s)
- Yunxia Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | | | | |
Collapse
|