1
|
Kuroshima S, Nakao S, Horikoshi Y, Ito K, Ishii A, Shirakawa A, Kondo Y, Irie T, Ishitsuka Y, Nakagata N, Takeo T. Efficient breeding system of infertile Niemann-Pick disease type C model mice by in vitro fertilization and embryo transfer. Lab Anim 2024:236772231194112. [PMID: 39102515 DOI: 10.1177/00236772231194112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Niemann-Pick disease type C (NPC) is a lethal genetic disease with mutations in NPC1 or NPC2 gene. Npc1-deficient (Npc1-/-) mice have been used as a model for NPC pathogenesis to develop novel therapies for NPC. However, Npc1-/- mice are infertile; thus, securing sufficient numbers for translational research is difficult. Hence, we attempted reproductive engineering techniques such as in vitro fertilization (IVF) and sperm cryopreservation. For the first time, we succeeded in producing fertilized oocytes via IVF using male and female Npc1-/- mice. Fertilized oocytes were also obtained via IVF using cryopreserved sperm from Npc1-/- mice. The obtained fertilized oocytes normally developed into live pups via embryo transfer, and they eventually exhibited NPC pathogenesis. These findings are useful for generating an efficient breeding system that overcomes the reproductive challenges of Npc1-/- mice and will contribute to developing novel therapeutic methods using NPC model mice.
Collapse
Affiliation(s)
- Serina Kuroshima
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
| | - Yuka Horikoshi
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
| | - Kotono Ito
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development, Kumamoto University, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
| |
Collapse
|
2
|
Kageyama A, Tsuchiya M, Terakawa J, Ito J, Kashiwazaki N. A combined treatment with progesterone, anti-inhibin serum, and equine chorionic gonadotropin improves number of ovulated oocytes in young C57BL/6J mice. J Reprod Dev 2023; 69:223-226. [PMID: 37331813 PMCID: PMC10435527 DOI: 10.1262/jrd.2023-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Superovulation procedures are routinely and widely used in mouse reproductive technology. Previous studies have shown that a large number of oocytes can be obtained from adult mice (> 10 weeks old) using a combined treatment with progesterone (P4) and anti-inhibin serum (AIS). However, these effects have not been fully investigated in young (4 weeks) C57BL/6J mice. Here, we found that a modified superovulation protocol (combined treatment with P4, AIS, eCG (equine chorionic gonadotropin), and hCG (human chorionic gonadotropin); P4D2-Ae-h) improved the number of oocytes compared to the control (eCG and hCG) (39.7 vs. 21.3 oocytes/mouse). After in vitro fertilization, pronuclear formation rates were 69.3% (P4D2-Ae-h group) and 66.2% (control group). After embryo transfer, 46.4% (116/250) of the embryos in the P4D2-Ae-h group successfully developed to term, which was comparable to the control group (42.9%; 123/287 embryos). In conclusion, our protocol (P4D2-Ae-h) was effective for superovulation in young C57BL/6J mice.
Collapse
Affiliation(s)
- Atsuko Kageyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Mizuho Tsuchiya
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Jumpei Terakawa
- Laboratory of Toxicology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
3
|
Sari GP, Hilario PLL, Yuri S, Honda A, Isotani A. Scheduled simple production method of pseudopregnant female mice for embryo transfer using the luteinizing hormone-releasing hormone agonist. Sci Rep 2022; 12:21985. [PMID: 36539541 PMCID: PMC9767918 DOI: 10.1038/s41598-022-26425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The use of mice as experimental animal models has been a practice since the development of genetically engineered mouse models (GEMMs) in the early 1980s. New technologies, including genome editing, have helped in the time- and cost-efficient generation of GEMMs. However, methods for preparing pseudopregnant females, essential for the generation of GEMMs, remain less advanced. This study proposes a new method to achieve simple production of pseudopregnant female mice using a luteinizing hormone-releasing hormone agonist (LHRHa). A 20 µg LHRHa/mouse was identified as the best dose for inducing estrus synchronization. However, the frequency of copulation was 40% on a single injection. With sequential injections of 20 µg LHRHa/mouse on Days-1 and -2, followed by pairing on Day-5, 74% of LHRHa-treated females copulated with male mice. Moreover, LHRHa treatment did not affect fetal and postnatal development. Eventually, successful generation of offspring via embryo transfer was attained using LHRHa-treated pseudopregnant females. LHRHa administration method is efficient in producing pseudopregnant female mice for the generation of GEMMs, and we expect that it will contribute towards advancing the clinical research.
Collapse
Affiliation(s)
- Gema Puspa Sari
- grid.260493.a0000 0000 9227 2257Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 Japan
| | - Patrick Louis Lagman Hilario
- grid.260493.a0000 0000 9227 2257Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 Japan
| | - Shunsuke Yuri
- grid.260493.a0000 0000 9227 2257Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 Japan
| | - Arata Honda
- grid.410804.90000000123090000Center for Development of Advanced Medical Technology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi-Ken 329-0498 Japan
| | - Ayako Isotani
- grid.260493.a0000 0000 9227 2257Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192 Japan
| |
Collapse
|
4
|
Takeo T, Nakao S, Mikoda N, Yamaga K, Maeda R, Tsuchiyama S, Nakatsukasa E, Nakagata N. Optimized protocols for sperm cryopreservation and in vitro fertilization in the rat. Lab Anim (NY) 2022; 51:256-274. [DOI: 10.1038/s41684-022-01053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/15/2022] [Indexed: 11/05/2022]
|
5
|
Fertility preservation in pig using ovarian tissues by vitrification method. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
Asian Mouse Mutagenesis Resource Association (AMMRA): mouse genetics and laboratory animal resources in the Asia Pacific. Mamm Genome 2021; 33:192-202. [PMID: 34482437 PMCID: PMC8418786 DOI: 10.1007/s00335-021-09912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
The Asian Mouse Mutagenesis Resource Association (AMMRA) is a non-profit organization consisting of major resource and research institutions with rodent expertise from within the Asia Pacific region. For more than a decade, aiming to support biomedical research and stimulate international collaboration, AMMRA has always been a friendly and passionate ally of Asian and Australian member institutions devoted to sharing knowledge, exchanging resources, and promoting biomedical research. AMMRA is also missioned to global connection by working closely with the consortiums such as the International Mouse Phenotyping Consortium and the International Mouse Strain Resource. This review discusses the emergence of AMMRA and outlines its many roles and responsibilities in promoting, assisting, enriching research, and ultimately enhancing global life science research quality.
Collapse
|
7
|
Hart-Johnson S, Mankelow K. Archiving genetically altered animals: a review of cryopreservation and recovery methods for genome edited animals. Lab Anim 2021; 56:26-34. [PMID: 33847177 DOI: 10.1177/00236772211007306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the ever-expanding numbers of genetically altered (GA) animals created in this new age of CRISPR/Cas, tools for helping the management of this vast and valuable resource are essential. Cryopreservation of embryos and germplasm of GA animals has been a widely used tool for many years now, allowing for the archiving, distribution and colony management of stock. However, each year brings an array of advances, improving survival rates of embryos, success rates of in-vitro fertilisation and the ability to better share lines and refine the methods to preserve them. This article will focus on the mouse field, referencing the latest developments and assessing their efficacy and ease of implementation, with a brief note on other common genetically altered species (rat, zebrafish, Xenopus, avian species and non-human Primates).
Collapse
|