1
|
Salama EAA, Kambale R, Gnanapanditha Mohan SV, Premnath A, Fathy Yousef A, Moursy ARA, Abdelsalam NR, Abd El Moneim D, Muthurajan R, Manikanda Boopathi N. Empowering rice breeding with NextGen genomics tools for rapid enhancement nitrogen use efficiency. Gene 2024; 927:148715. [PMID: 38909967 DOI: 10.1016/j.gene.2024.148715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
As rice has no physiological capacity of fixing nitrogen in the soil, its production had always been reliant on the external application of nitrogen (N) to ensure enhanced productivity. In the light of improving nitrogen use efficiency (NUE) in rice, several advanced agronomic strategies have been proposed. However, the soared increase of the prices of N fertilizers and subsequent environmental downfalls caused by the excessive use of N fertilizers, reinforces the prerequisite adaptation of other sustainable, affordable, and globally acceptable strategies. An appropriate alternative approach would be to develop rice cultivars with better NUE. Conventional breeding techniques, however, have had only sporadic success in improving NUE, and hence, this paper proposes a new schema that employs the wholesome benefits of the recent advancements in omics technologies. The suggested approach promotes multidisciplinary research, since such cooperation enables the synthesis of many viewpoints, approaches, and data that result in a comprehensive understanding of NUE in rice. Such collaboration also encourages innovation that leads to developing rice varieties that use nitrogen more effectively, facilitate smart technology transfer, and promotes the adoption of NUE practices by farmers and stakeholders to minimize ecological impact and contribute to a sustainable agricultural future.
Collapse
Affiliation(s)
- Ehab A A Salama
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt.
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Shobhana V Gnanapanditha Mohan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Ameena Premnath
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut 71524, Egypt.
| | - Ali R A Moursy
- Soil and Water Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt.
| | - Nader R Abdelsalam
- Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt.
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt.
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
2
|
Sisharmini A, Wihardjaka A, Enggarini W, Apriana A, Hairmansis A, Amirhusin B. Field performance and nitrous oxide emissions of transgenic nitrogen use efficient rice lines cultivated in tropical paddy fields. Transgenic Res 2024; 33:445-452. [PMID: 39266882 DOI: 10.1007/s11248-024-00410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
Nitrogen (N) fertilizers make up the majority of the input used in rice production, and their excess application leads to significant environmental pollution. Developing rice varieties with improved nitrogen use efficiency (NUE) is essential to maintain the sustainability of rice production. This study aims to evaluate the performance of transgenic Oryza sativa japonica cv. Kitaake expressing the barley (Hordeum vulgare) alanine aminotransferase (HvAlaAT) gene in response to different levels of N fertilizer application under tropical paddy field conditions. Results from this study demonstrate that transgenic nitrogen use efficient Kitaake rice (Kitaake NUE) displays a grain yield increase of up to 41% compared to Kitaake null. Transgenic Kitaake NUE expressing the HvAlaAT gene displays a higher N uptake and achieves a higher nitrogen use efficiency compared to control plants while maintaining lower nitrous oxide (N2O) fluxes. The reduction in N2O emissions in Kitaake NUE compared to Kitaake null ranges from 37.5 to 96.3%. The transgenic Kitaake NUE used in this study has potential as a donor to improve the nitrogen use efficiency of indica rice for better adaptability to tropical conditions.
Collapse
Affiliation(s)
- Atmitri Sisharmini
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Anicetus Wihardjaka
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Wening Enggarini
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Aniversari Apriana
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Aris Hairmansis
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia
| | - Bahagiawati Amirhusin
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, Indonesia.
| |
Collapse
|
3
|
Alam I, Zhang H, Du H, Rehman NU, Manghwar H, Lei X, Batool K, Ge L. Bioengineering Techniques to Improve Nitrogen Transformation and Utilization: Implications for Nitrogen Use Efficiency and Future Sustainable Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3921-3938. [PMID: 36842151 DOI: 10.1021/acs.jafc.2c08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is crucial for plant growth and development, especially in physiological and biochemical processes such as component of different proteins, enzymes, nucleic acids, and plant growth regulators. Six categories, such as transporters, nitrate absorption, signal molecules, amino acid biosynthesis, transcription factors, and miscellaneous genes, broadly encompass the genes regulating NUE in various cereal crops. Herein, we outline detailed research on bioengineering modifications of N metabolism to improve the different crop yields and biomass. We emphasize effective and precise molecular approaches and technologies, including N transporters, transgenics, omics, etc., which are opening up fascinating opportunities for a complete analysis of the molecular elements that contribute to NUE. Moreover, the detection of various types of N compounds and associated signaling pathways within plant organs have been discussed. Finally, we highlight the broader impacts of increasing NUE in crops, crucial for better agricultural yield and in the greater context of global climate change.
Collapse
Affiliation(s)
- Intikhab Alam
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- College of Life Sciences, SCAU, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Hanyin Zhang
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Huan Du
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- College of Life Sciences, SCAU, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Naveed Ur Rehman
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Hakim Manghwar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, SCAU, Guangzhou 510642, China
| | - Xiao Lei
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Khadija Batool
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| |
Collapse
|
4
|
Hoffman NE. USDA's revised biotechnology regulation's contribution to increasing agricultural sustainability and responding to climate change. FRONTIERS IN PLANT SCIENCE 2022; 13:1055529. [PMID: 36507369 PMCID: PMC9726801 DOI: 10.3389/fpls.2022.1055529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Biotechnology can provide a valuable tool to meet UN Sustainable Development Goals and U.S. initiatives to find climate solutions and improve agricultural sustainability. The literature contains hundreds of examples of crops that may serve this purpose, yet most remain un-launched due to high regulatory barriers. Recently the USDA revised its biotechnology regulations to make them more risk-proportionate, science-based, and streamlined. Here, we review some of the promising leads that may enable agriculture to contribute to UN sustainability goals. We further describe and discuss how the revised biotechnology regulation would hypothetically apply to these cases.
Collapse
|
5
|
Han M, Xu X, Li X, Xu M, Hu M, Xiong Y, Feng J, Wu H, Zhu H, Su T. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. Int J Mol Sci 2022; 23:ijms23126368. [PMID: 35742809 PMCID: PMC9224274 DOI: 10.3390/ijms23126368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Integrating amino acid metabolic pathways into plant defense and immune systems provides the building block for stress acclimation and host-pathogen interactions. Recent progress in L-aspartate (Asp) and its deployed metabolic pathways highlighted profound roles in plant growth and defense modulation. Nevertheless, much remains unknown concerning the multiple isoenzyme families involved in Asp metabolic pathways in Populus trichocarpa, a model tree species. Here, we present comprehensive features of 11 critical isoenzyme families, representing biological significance in plant development and stress adaptation. The in silico prediction of the molecular and genetic patterns, including phylogenies, genomic structures, and chromosomal distribution, identify 44 putative isoenzymes in the Populus genome. Inspection of the tissue-specific expression demonstrated that approximately 26 isogenes were expressed, predominantly in roots. Based on the transcriptomic atlas in time-course experiments, the dynamic changes of the genes transcript were explored in Populus roots challenged with soil-borne pathogenic Fusarium solani (Fs). Quantitative expression evaluation prompted 12 isoenzyme genes (PtGS2/6, PtGOGAT2/3, PtAspAT2/5/10, PtAS2, PtAspg2, PtAlaAT1, PtAK1, and PtAlaAT4) to show significant induction responding to the Fs infection. Using high-performance liquid chromatography (HPLC) and non-target metabolomics assay, the concurrent perturbation on levels of Asp-related metabolites led to findings of free amino acids and derivatives (e.g., Glutamate, Asp, Asparagine, Alanine, Proline, and α-/γ-aminobutyric acid), showing marked differences. The multi-omics integration of the responsive isoenzymes and differential amino acids examined facilitates Asp as a cross-talk mediator involved in metabolite biosynthesis and defense regulation. Our research provides theoretical clues for the in-depth unveiling of the defense mechanisms underlying the synergistic effect of fine-tuned Asp pathway enzymes and the linked metabolite flux in Populus.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Hao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|
6
|
Javed T, I I, Singhal RK, Shabbir R, Shah AN, Kumar P, Jinger D, Dharmappa PM, Shad MA, Saha D, Anuragi H, Adamski R, Siuta D. Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:877544. [PMID: 35574130 PMCID: PMC9106419 DOI: 10.3389/fpls.2022.877544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 05/05/2023]
Abstract
The efficiency with which plants use nutrients to create biomass and/or grain is determined by the interaction of environmental and plant intrinsic factors. The major macronutrients, especially nitrogen (N), limit plant growth and development (1.5-2% of dry biomass) and have a direct impact on global food supply, fertilizer demand, and concern with environmental health. In the present time, the global consumption of N fertilizer is nearly 120 MT (million tons), and the N efficiency ranges from 25 to 50% of applied N. The dynamic range of ideal internal N concentrations is extremely large, necessitating stringent management to ensure that its requirements are met across various categories of developmental and environmental situations. Furthermore, approximately 60 percent of arable land is mineral deficient and/or mineral toxic around the world. The use of chemical fertilizers adds to the cost of production for the farmers and also increases environmental pollution. Therefore, the present study focused on the advancement in fertilizer approaches, comprising the use of biochar, zeolite, and customized nano and bio-fertilizers which had shown to be effective in improving nitrogen use efficiency (NUE) with lower soil degradation. Consequently, adopting precision farming, crop modeling, and the use of remote sensing technologies such as chlorophyll meters, leaf color charts, etc. assist in reducing the application of N fertilizer. This study also discussed the role of crucial plant attributes such as root structure architecture in improving the uptake and transport of N efficiency. The crosstalk of N with other soil nutrients plays a crucial role in nutrient homeostasis, which is also discussed thoroughly in this analysis. At the end, this review highlights the more efficient and accurate molecular strategies and techniques such as N transporters, transgenes, and omics, which are opening up intriguing possibilities for the detailed investigation of the molecular components that contribute to nitrogen utilization efficiency, thus expanding our knowledge of plant nutrition for future global food security.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Indu I
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rajesh Kumar Singhal
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, Seed Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Pawan Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Arid Horticulture, Bikaner, India
| | - Dinesh Jinger
- Research Centre, Indian Council of Agricultural Research (ICAR)-Indian Institute of Soil and Water Conservation, Anand, India
| | - Prathibha M. Dharmappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Horticultural Research, Bengaluru, India
| | - Munsif Ali Shad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene, Hubei Hongshan Laboratory, Wuhan, China
| | - Debanjana Saha
- Centurion University of Technology and Management, Jatni, India
| | - Hirdayesh Anuragi
- Indian Council of Agricultural Research (ICAR)- Central Agroforestry Research Institute, Jhansi, India
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| |
Collapse
|
7
|
Lebedev VG, Popova AA, Shestibratov KA. Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells 2021; 10:cells10123303. [PMID: 34943810 PMCID: PMC8699818 DOI: 10.3390/cells10123303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Low nitrogen availability is one of the main limiting factors for plant growth and development, and high doses of N fertilizers are necessary to achieve high yields in agriculture. However, most N is not used by plants and pollutes the environment. This situation can be improved by enhancing the nitrogen use efficiency (NUE) in plants. NUE is a complex trait driven by multiple interactions between genetic and environmental factors, and its improvement requires a fundamental understanding of the key steps in plant N metabolism—uptake, assimilation, and remobilization. This review summarizes two decades of research into bioengineering modification of N metabolism to increase the biomass accumulation and yield in crops. The expression of structural and regulatory genes was most often altered using overexpression strategies, although RNAi and genome editing techniques were also used. Particular attention was paid to woody plants, which have great economic importance, play a crucial role in the ecosystems and have fundamental differences from herbaceous species. The review also considers the issue of unintended effects of transgenic plants with modified N metabolism, e.g., early flowering—a research topic which is currently receiving little attention. The future prospects of improving NUE in crops, essential for the development of sustainable agriculture, using various approaches and in the context of global climate change, are discussed.
Collapse
Affiliation(s)
- Vadim G. Lebedev
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Correspondence:
| | - Anna A. Popova
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| | - Konstantin A. Shestibratov
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| |
Collapse
|
8
|
Fiaz S, Wang X, Khan SA, Ahmar S, Noor MA, Riaz A, Ali K, Abbas F, Mora-Poblete F, Figueroa CR, Alharthi B. Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review. GM CROPS & FOOD 2021; 12:627-646. [PMID: 34034628 PMCID: PMC9208628 DOI: 10.1080/21645698.2021.1921545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, there has been a remarkable increase in rice production owing to genetic improvement and increase in application of synthetic fertilizers. For sustainable agriculture, there is dire need to maintain a balance between profitability and input cost. To meet the steady growing demands of the farming community, researchers are utilizing all available resources to identify nutrient use efficient germplasm, but with very little success. Therefore, it is essential to understand the underlying genetic mechanism controlling nutrients efficiency, with the nitrogen use efficiency (NUE) being the most important trait. Information regarding genetic factors controlling nitrogen (N) transporters, assimilators, and remobilizers can help to identify candidate germplasms via high-throughput technologies. Large-scale field trials have provided morphological, physiological, and biochemical trait data for the detection of genomic regions controlling NUE. The functional aspects of these attributes are time-consuming, costly, labor-intensive, and less accurate. Therefore, the application of novel plant breeding techniques (NPBTs) with context to genome engineering has opened new avenues of research for crop improvement programs. Most recently, genome editing technologies (GETs) have undergone enormous development with various versions from Cas9, Cpf1, base, and prime editing. These GETs have been vigorously adapted in plant sciences for novel trait development to insure food quantity and quality. Base editing has been successfully applied to improve NUE in rice, demonstrating the potential of GETs to develop germplasms with improved resource use efficiency. NPBTs continue to face regulatory setbacks in some countries due to genome editing being categorized in the same category as genetically modified (GM) crops. Therefore, it is essential to involve all stakeholders in a detailed discussion on NPBTs and to formulate uniform policies tackling biosafety, social, ethical, and environmental concerns. In the current review, we have discussed the genetic mechanism of NUE and NPBTs for crop improvement programs with proof of concepts, transgenic and GET application for the development of NUE germplasms, and regulatory aspects of genome edited crops with future directions considering NUE.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur 22620, Khyber, Pakhtunkhwa, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Sher Aslam Khan
- Department of Plant Breeding and Genetics, The University of Haripur 22620, Khyber, Pakhtunkhwa, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca, Chile
| | - Mehmood Ali Noor
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, China
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Kazim Ali
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Farhat Abbas
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca, Chile
| | - Carlos R Figueroa
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca, Chile
| | - Badr Alharthi
- College of Khurma, Taif University, Taif, Saudi Arabia.,College of Science and Engineering, Flinders University, Adelaide, South Australia
| |
Collapse
|
9
|
Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
High nitrogen application aimed at increasing crop yield is offset by higher production costs and negative environmental consequences. For wheat, only one third of the applied nitrogen is utilized, which indicates there is scope for increasing Nitrogen Use Efficiency (NUE). However, achieving greater NUE is challenged by the complexity of the trait, which comprises processes associated with nitrogen uptake, transport, reduction, assimilation, translocation and remobilization. Thus, knowledge of the genetic regulation of these processes is critical in increasing NUE. Although primary nitrogen uptake and metabolism-related genes have been well studied, the relative influence of each towards NUE is not fully understood. Recent attention has focused on engineering transcription factors and identification of miRNAs acting on expression of specific genes related to NUE. Knowledge obtained from model species needs to be translated into wheat using recently-released whole genome sequences, and by exploring genetic variations of NUE-related traits in wild relatives and ancient germplasm. Recent findings indicate the genetic basis of NUE is complex. Pyramiding various genes will be the most effective approach to achieve a satisfactory level of NUE in the field.
Collapse
Affiliation(s)
- Shahidul Islam
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Yun Zhao
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
10
|
Dellero Y. Manipulating Amino Acid Metabolism to Improve Crop Nitrogen Use Efficiency for a Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:602548. [PMID: 33329673 PMCID: PMC7733991 DOI: 10.3389/fpls.2020.602548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/06/2023]
Abstract
In a context of a growing worldwide food demand coupled to the need to develop a sustainable agriculture, it is crucial to improve crop nitrogen use efficiency (NUE) while reducing field N inputs. Classical genetic approaches based on natural allelic variations existing within crops have led to the discovery of quantitative trait loci controlling NUE under low nitrogen conditions; however, the identification of candidate genes from mapping studies is still challenging. Amino acid metabolism is the cornerstone of plant N management, which involves N uptake, assimilation, and remobilization efficiencies, and it is finely regulated during acclimation to low N conditions and other abiotic stresses. Over the last two decades, biotechnological engineering of amino acid metabolism has led to promising results for the improvement of crop NUE, and more recently under low N conditions. This review summarizes current work carried out in crops and provides perspectives on the identification of new candidate genes and future strategies for crop improvement.
Collapse
|