1
|
Massafret O, Barragán M, Álvarez-González L, Aran B, Martín-Mur B, Esteve-Codina A, Ruiz-Herrera A, Ibáñez E, Santaló J. The pluripotency state of human embryonic stem cells derived from single blastomeres of eight-cell embryos. Cells Dev 2024; 179:203935. [PMID: 38914137 DOI: 10.1016/j.cdev.2024.203935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Human embryonic stem cells (hESCs) derived from blastocyst stage embryos present a primed state of pluripotency, whereas mouse ESCs (mESCs) display naïve pluripotency. Their unique characteristics make naïve hESCs more suitable for particular applications in biomedical research. This work aimed to derive hESCs from single blastomeres and determine their pluripotency state, which is currently unclear. We derived hESC lines from single blastomeres of 8-cell embryos and from whole blastocysts, and analysed several naïve pluripotency indicators, their transcriptomic profile and their trilineage differentiation potential. No significant differences were observed between blastomere-derived hESCs (bm-hESCs) and blastocyst-derived hESCs (bc-hESCs) for most naïve pluripotency indicators, including TFE3 localization, mitochondrial activity, and global DNA methylation and hydroxymethylation, nor for their trilineage differentiation potential. Nevertheless, bm-hESCs showed an increased single-cell clonogenicity and a higher expression of naïve pluripotency markers at early passages than bc-hESCs. Furthermore, RNA-seq revealed that bc-hESCs overexpressed a set of genes related to the post-implantational epiblast. Altogether, these results suggest that bm-hESCs, although displaying primed pluripotency, would be slightly closer to the naïve end of the pluripotency continuum than bc-hESCs.
Collapse
Affiliation(s)
- Ot Massafret
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Montserrat Barragán
- Basic Research Laboratory, Eugin Group, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Lucía Álvarez-González
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Begoña Aran
- Stem Cell Bank, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Josep Santaló
- Genome Integrity and Reproductive Biology Group, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Hajizadeh-Tafti F, Golzadeh J, Farashahi-Yazd E, Heidarian-Meimandi H, Aflatoonian B. Established Yazd human foreskin fibroblast lines (#8, #17, and #18) displaying similar characteristics to mesenchymal stromal cells: A lab resources report. Int J Reprod Biomed 2022; 20:519-528. [PMID: 36187737 PMCID: PMC9446445 DOI: 10.18502/ijrm.v20i7.11554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Fibroblasts from different parts of the human body have been used in cell biology, drug discovery and cell therapy studies. One of the most available sources of human fibroblasts is neonatal foreskin. Not only do these cells have wound-healing applications, but they are also the most popular source for pluripotent stem cell biotechnology. Moreover, several studies have indicated that different sources of fibroblasts display similar features to mesenchymal stem cells. OBJECTIVE Generation and establishment of new human foreskin fibroblast cell lines called Yazd human foreskin fibroblasts (YhFFs). MATERIALS AND METHODS In this lab resources study, the production of 3 YhFF cell lines (YhFF#8, YhFF#17, and YhFF#18) is reported. Their biological features were characterized using immunofluorescence, polymerase chain reaction, and flow-cytometry for mesenchymal markers such as fibronectin, vimentin, CD44, CD73, CD90, CD105, and hematopoietic markers CD34 and CD45. RESULTS The YhFF cell lines were passaged more than 40 times and their normal karyotype was checked using G-binding. Similarly to previous reports, the flow cytometry analysis revealed that the YhFF cell lines displayed mesenchymal stromal cell characteristics. CONCLUSION This study will contribute to the development of clinical-grade cell-based products such as micro-vesicles and exosomes for future therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Fatemeh Hajizadeh-Tafti
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jalal Golzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi-Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Heidarian-Meimandi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies in Medical Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Understanding the regulatory mechanisms of endometrial cells on activities of endometrial mesenchymal stem-like cells during menstruation. Stem Cell Res Ther 2020; 11:239. [PMID: 32552749 PMCID: PMC7302161 DOI: 10.1186/s13287-020-01750-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The identification of endometrial stem/progenitor cells in a high turnover rate tissue suggests that a well-orchestrated underlying network controls the behaviour of these stem cells. The thickness of the endometrium can grow from 0.5-1 mm to 5-7 mm within a week indicating the need of stem cells for self-renewal and differentiation during this period. The cyclical regeneration of the endometrium suggests specific signals can activate the stem cells during or shortly after menstruation. METHODS Endometrial mesenchymal stem-like cells (eMSCs) were cocultured with endometrial epithelial or stromal cells from different phases of the menstrual cycle; the clonogenicity and the phenotypic expression of eMSC markers (CD140b and CD146) were assessed. The functional role of WNT/β-catenin signalling on eMSC was determined by western blot analysis, immunofluorescent staining, flow cytometry, quantitative real-time PCR and small interfering RNA. The cytokine levels in the conditioned medium of epithelial or stromal cells cocultured with eMSCs were evaluated by enzyme-linked immunosorbent assays. RESULTS Coculture of endometrial cells (epithelial or stromal) from the menstrual phase enhanced the clonogenicity and self-renewal activities of eMSCs. Such phenomenon was not observed in niche cells from the proliferative phase. Coculture with endometrial cells from the menstrual phase confirmed an increase in expression of active β-catenin in the eMSCs. Treatment with IWP-2, a WNT inhibitor, suppressed the observed effects. Anti-R-spondin-1 antibody reduced the stimulatory action of endometrial niche cells on WNT/β-catenin activation in the T cell factor/lymphoid enhancer-binding factor luciferase reporter assay. Moreover, the mRNA level and protein immunoreactivities of leucine-rich repeat-containing G-protein coupled receptor 5 were higher in eMSCs than unfractionated stromal cells. Conditioned media of endometrial niche cells cocultured with eMSCs contained increased levels of C-X-C motif ligand 1 (CXCL1), CXCL5 and interleukin 6. Treatment with these cytokines increased the clonogenic activity and phenotypic expression of eMSCs. CONCLUSIONS Our findings indicate a role of WNT/β-catenin signalling in regulating activities of endometrial stem/progenitor cells during menstruation. Certain cytokines at menstruation can stimulate the proliferation and self-renewal activities of eMSCs. Understanding the mechanism in the regulation of eMSCs may contribute to treatments of endometrial proliferative disorders such as Asherman's syndrome.
Collapse
|
4
|
Oliveira T, Costa I, Marinho V, Carvalho V, Uchôa K, Ayres C, Teixeira S, Vasconcelos DFP. Human foreskin fibroblasts: from waste bag to important biomedical applications. JOURNAL OF CLINICAL UROLOGY 2018. [DOI: 10.1177/2051415818761526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circumcision is one of the most performed surgical procedures worldwide, and it is estimated that one in three men worldwide is circumcised, which makes the preputial skin removed after surgery an abundant material for possible applications. In particular, it is possible efficiently to isolate the cells of the foreskin, with fibroblasts being the most abundant cells of the dermis and the most used in biomedical research. This work aimed to review the knowledge and obtain a broad view of the main applications of human foreskin fibroblast cell culture. A literature search was conducted, including clinical trials, preclinical basic research studies, reviews and experimental studies. Several medical and laboratory applications of human foreskin fibroblast cell culture have been described, especially when it comes to the use of human foreskin fibroblasts as feeder cells for the cultivation of human embryonic stem cells, in addition to co-culture with other cell types. The culture of foreskin fibroblasts has also been used to: obtain induced pluripotent stem cells; the diagnosis of Clostridium difficile; to test the toxicity and effect of substances on normal cells, especially the toxicity of possible antineoplastic drugs; in viral culture, mainly of the human cytomegalovirus, study of the pathogenesis of other microorganisms; varied studies of cellular physiology and cellular interactions. Fibroblasts are important for cell models for varied application cultures, demonstrating how the preputial material can be reused, making possible new applications. Level of evidence: Not applicable for this multicentre audit.
Collapse
Affiliation(s)
- Thomaz Oliveira
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Ilana Costa
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Victor Marinho
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Valécia Carvalho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Karla Uchôa
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Carla Ayres
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
| | | |
Collapse
|
5
|
Vila-Cejudo M, Ibañez E, Santalo J. Derivation of Stem Cell Lines from Mouse Preimplantation Embryos. J Vis Exp 2017. [PMID: 28872141 DOI: 10.3791/56171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mouse embryonic stem cell (mESC) derivation is the process by which pluripotent cell lines are established from preimplantation embryos. These lines retain the ability to either self-renew or differentiate under specific conditions. Due to these properties, mESC are a useful tool in regenerative medicine, disease modeling, and tissue engineering studies. This article describes a simple protocol to obtain mESC lines with high derivation efficiencies (60-80%) by culturing blastocysts from permissive mouse strains on feeder cells in defined medium supplemented with leukemia inhibitory factor. The protocol can also be applied to efficiently derive mESC lines from non-permissive mouse strains, by the simple addition of a cocktail of two small-molecule inhibitors to the derivation medium (2i medium). Detailed procedures on the preparation and culture of feeder cells, collection and culture of mouse embryos, and derivation and culture of mESC lines are provided. This protocol does not require specialized equipment and can be carried out in any laboratory with basic mammalian cell culture expertise.
Collapse
Affiliation(s)
- Marta Vila-Cejudo
- Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona
| | - Elena Ibañez
- Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona
| | - Josep Santalo
- Unitat de Biologia Cellular, Facultat de Biociències, Universitat Autònoma de Barcelona;
| |
Collapse
|
6
|
Zhao Z, Ma Y, Chen Z, Liu Q, Li Q, Kong D, Yuan K, Hu L, Wang T, Chen X, Peng Y, Jiang W, Yu Y, Liu X. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells. Front Cell Neurosci 2016; 10:291. [PMID: 28066186 PMCID: PMC5168467 DOI: 10.3389/fncel.2016.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 01/30/2023] Open
Abstract
Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs = 1:1) and HFFs feeder, respectively, and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2, PITX3, NURR1, and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, First Affiliated Hospital, Hainan Medical UniversityHaikou, China
| | - Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical UniversityHaikou, China
| | - Zhibin Chen
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Southern Medical University Nanjing, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Deyan Kong
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, Affiliated Ruikang Hospital, Guangxi Traditional Chinese Medical UniversityNanning, China
| | - Kunxiong Yuan
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, Central HospitalShenzhen, China
| | - Lan Hu
- Department of Laboratory Medicines, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Xiaowu Chen
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Yanan Peng
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Weimin Jiang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Southern Medical University Nanjing, China
| |
Collapse
|
7
|
Assou S, Pourret E, Péquignot M, Rigau V, Kalatzis V, Aït-Ahmed O, Hamamah S. Cultured Cells from the Human Oocyte Cumulus Niche Are Efficient Feeders to Propagate Pluripotent Stem Cells. Stem Cells Dev 2015; 24:2317-27. [PMID: 26153797 DOI: 10.1089/scd.2015.0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pluripotency is at the crossroads of stem cell research and biology of reproduction. The mature metaphase II oocyte contains the key factors for pluripotency induction and maintenance as assessed by its capacity to reprogram somatic nuclei. The cumulus cells (CCs) niche that surrounds the oocyte is crucial for its maturation and presumably for the oocyte to acquire its competence to confer pluripotency. In this study, we examined whether cells cultured from the human mature metaphase II oocyte CC niche (hCC) could be used as feeders for the propagation of human induced pluripotent stem cells. The induced pluripotent (iPS) cells cultured on hCC (hCC-iPS) were assessed for their pluripotency potential by their expression of pluripotency-associated genes such as Oct4, Nanog, and TRA1-60 and their competence to differentiate into the three germ layers in vitro (embryoid bodies) as well as in vivo (teratoma formation). We show that not only the hCC-iPS cells maintained their pluripotency potential, but they also exhibited much better self-renewal performance in terms of proliferation rate compared to the same cells cultured on human foreskin fibroblast (hFF) feeders (hFF-iPS). A comparative gene expression profile study of hCC and hFF revealed significant differences (P < 0.05) in expression of cellular matrix components and an upregulation in hCC of genes known to be important players in cell proliferation such as interleukin 6 gene (IL6).
Collapse
Affiliation(s)
- Said Assou
- 1 Université Montpellier , UFR de Médecine, Montpellier, France .,2 Institute for Regenerative Medicine and Biotherapy, INSERM U1203, CHRU Montpellier, Hôpital Saint-Eloi , Montpellier, France
| | - Emilie Pourret
- 2 Institute for Regenerative Medicine and Biotherapy, INSERM U1203, CHRU Montpellier, Hôpital Saint-Eloi , Montpellier, France
| | - Marie Péquignot
- 3 Institut des Neurosciences de Montpellier, INSERM U1051, Hôpital Saint-Eloi , Montpellier, France
| | - Valérie Rigau
- 4 Pathology Department, University Hospital Gui de Chauliac , Montpellier, France
| | - Vasiliki Kalatzis
- 3 Institut des Neurosciences de Montpellier, INSERM U1051, Hôpital Saint-Eloi , Montpellier, France
| | - Ounissa Aït-Ahmed
- 2 Institute for Regenerative Medicine and Biotherapy, INSERM U1203, CHRU Montpellier, Hôpital Saint-Eloi , Montpellier, France
| | - Samir Hamamah
- 1 Université Montpellier , UFR de Médecine, Montpellier, France .,2 Institute for Regenerative Medicine and Biotherapy, INSERM U1203, CHRU Montpellier, Hôpital Saint-Eloi , Montpellier, France .,5 ART-PGD Department, CHU Montpellier, Hôpital Arnaud de Villeneuve , Montpellier, France
| |
Collapse
|