1
|
Sousa P, Lopes B, Sousa AC, Coelho A, de Sousa Moreira A, Rêma A, Gonçalves-Maia M, Amorim I, Alvites R, Alves N, Geuna S, Maurício AC. Isolation, Expansion, and Characterization of Rat Hair Follicle Stem Cells and Their Secretome: Insights into Wound Healing Potential. Biomedicines 2024; 12:2854. [PMID: 39767760 PMCID: PMC11672956 DOI: 10.3390/biomedicines12122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Stem cells are capable of self-renewal and differentiation into various specialized cells, making them a potential therapeutic option in regenerative medicine. This study establishes a comprehensive methodology for isolating, culturing, and characterizing rat hair follicle stem cells. Methods and Results: Hair follicles were harvested from Sprague-Dawley rats and subjected to two different isolation techniques. Immunohistochemical analysis and real-time PCR confirm the expression of specific surface markers and genes, validating the cells' identity. Growth kinetics, colony formation units (CFU), and tri-differentiation capacity were also assessed. Additionally, the cells' secretome was analyzed, regarding its content in biofactors with wound healing properties. Conclusions: These findings highlight the potential of these cells as a valuable cell source for skin regeneration applications. They contribute to advancing our understanding of stem cell applications in regenerative medicine and hold promise for therapeutic interventions in various clinical contexts, aligning with broader research on the diverse capabilities of hair follicle stem cells.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia de Sousa Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Gonçalves-Maia
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Maia & Muller-Biotech, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Pandamooz S, Chavoshinezhad S, Mostaghel M, Rasekh A, Ghorbani N, Dara M, Pandamooz T, Tanideh N, Salehi MS. Directing Rat Hair Follicle Stem Cells Toward Neuronal Lineage With Enhanced Trophic Factor Expression. Adv Biomed Res 2024; 13:84. [PMID: 39512401 PMCID: PMC11542700 DOI: 10.4103/abr.abr_111_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 11/15/2024] Open
Abstract
Background Hair follicle stem cells (HFSCs) are promising candidates for cell-based therapies in neurodegenerative diseases because of their ability to differentiate into neural lineages and exert paracrine effects in damaged tissues. However, their clinical application faces challenges, particularly in efficiently guiding them toward neural lineages. This study explores using chick embryo extract (CEE) to enhance HFSCs' secretory capacity and neuronal differentiation. Materials and Methods HFSCs from rat whisker pads were cultured in growth medium supplemented with either 20% FBS or a combination of 10% FBS and 10% CEE, transitioning to 20% FBS after the first subculture. We conducted gene expression profiling of lineage commitment markers and neurotrophic factors in both experimental groups, alongside morphological assessments and protein expression analyses. Results CEE supplementation during migration increased neuronal differentiation, evidenced by more cells with neurites and higher MAP2 expression at both the gene and protein levels. CEE also inhibited the expression of PDGFR-α, indicating a suppression of differentiation toward Schwann cells. Furthermore, we observed increased levels of trophic factors such as BDNF and VEGF at passage 3 induced by CEE supplementation. Conclusions Enhancing the neuronal lineage commitment of hair follicle stem cells (HFSCs) and boosting the expression of trophic and angiogenic factors through short-term CEE preconditioning during their migratory stage presents a compelling approach. This strategy holds great promise in enhancing the effectiveness of stem cell-based therapies for neurological disorders.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mandana Mostaghel
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armita Rasekh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Ghorbani
- Department of Nursing, College of Nursing, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahoura Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Yang Y, Ma B, Chen J, Liu D, Ma J, Li B, Hao J, Zhou X. Epigenetic regulation and factors that influence the effect of iPSCs-derived neural stem/progenitor cells (NS/PCs) in the treatment of spinal cord injury. Clin Epigenetics 2024; 16:30. [PMID: 38383473 PMCID: PMC10880347 DOI: 10.1186/s13148-024-01639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that causes neurological impairment and disability. Neural stem/progenitor cells (NS/PCs) derived from induced pluripotent stem cells (iPSCs) represent a promising cell therapy strategy for spinal cord regeneration and repair. However, iPSC-derived NS/PCs face many challenges and issues in SCI therapy; one of the most significant challenges is epigenetic regulation and that factors that influence this mechanism. Epigenetics refers to the regulation of gene expression and function by DNA methylation, histone modification, and chromatin structure without changing the DNA sequence. Previous research has shown that epigenetics plays a crucial role in the generation, differentiation, and transplantation of iPSCs, and can influence the quality, safety, and outcome of transplanted cells. In this study, we review the effects of epigenetic regulation and various influencing factors on the role of iPSC-derived NS/PCs in SCI therapy at multiple levels, including epigenetic reprogramming, regulation, and the adaptation of iPSCs during generation, differentiation, and transplantation, as well as the impact of other therapeutic tools (e.g., drugs, electrical stimulation, and scaffolds) on the epigenetic status of transplanted cells. We summarize our main findings and insights in this field and identify future challenges and directions that need to be addressed and explored.
Collapse
Affiliation(s)
- Yubiao Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
4
|
Radoszkiewicz K, Bzinkowska A, Chodkowska M, Rybkowska P, Sypecka M, Zembrzuska-Kaska I, Sarnowska A. Deciphering the impact of cerebrospinal fluid on stem cell fate as a new mechanism to enhance clinical therapy development. Front Neurosci 2024; 17:1332751. [PMID: 38282622 PMCID: PMC10811009 DOI: 10.3389/fnins.2023.1332751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neural stem cells (NSCs) hold a very significant promise as candidates for cell therapy due to their robust neuroprotective and regenerative properties. Preclinical studies using NSCs have shown enough encouraging results to perform deeper investigations into more potential clinical applications. Nevertheless, our knowledge regarding neurogenesis and its underlying mechanisms remains incomplete. To understand them better, it seems necessary to characterize all components of neural stem cell niche and discover their role in physiology and pathology. Using NSCs in vivo brings challenges including limited cell survival and still inadequate integration within host tissue. Identifying overlooked factors that might influence these outcomes becomes pivotal. In this review, we take a deeper examination of the influence of a fundamental element that is present in the brain, the cerebrospinal fluid (CSF), which still remains relatively unexplored. Its role in neurogenesis could be instrumental to help find novel therapeutic solutions for neurological disorders, eventually advancing our knowledge on central nervous system (CNS) regeneration and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Pandamooz S, Salehi MS, Jurek B, Meinung CP, Azarpira N, Dianatpour M, Neumann ID. Oxytocin Receptor Expression in Hair Follicle Stem Cells: A Promising Model for Biological and Therapeutic Discovery in Neuropsychiatric Disorders. Stem Cell Rev Rep 2023; 19:2510-2524. [PMID: 37548806 DOI: 10.1007/s12015-023-10603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The intricate nature of the human brain and the limitations of existing model systems to study molecular and cellular causes of neuropsychiatric disorders represent a major challenge for basic research. The promising progress in patient-derived stem cell technology and in our knowledge on the role of the brain oxytocin (OXT) system in health and disease offer new possibilities in that direction. In this study, the rat hair follicle stem cells (HFSCs) were isolated and expanded in vitro. The expression of oxytocin receptors (OXTR) was evaluated in these cells. The cellular viability was assessed 12 h post stimulation with OXT. The activation of OXTR-coupled intracellular signaling cascades, following OXT treatment was determined. Also, the influence of OXT on neurite outgrowth and cytoskeletal rearrangement were defined. The assessment of OXTR protein expression revealed this receptor is expressed abundantly in HFSCs. As evidenced by the cell viability assay, no adverse or cytotoxic effects were detected following 12 h treatment with different concentrations of OXT. Moreover, OXTR stimulation by OXT resulted in ERK1/2, CREB, and eEF2 activation, neurite length alterations, and cytoskeletal rearrangements that reveal the functionality of this receptor in HFSCs. Here, we introduced the rat HFSCs as an easy-to-obtain stem cell model that express functional OXTR. This cell-based model can contribute to our understanding of the progression and treatment of neuropsychiatric disorders with oxytocinergic system deficiency.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
| | - Mohammad Saied Salehi
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany.
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Benjamin Jurek
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carl-Philipp Meinung
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Inga D Neumann
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
6
|
Pandamooz S, Jurek B, Dianatpour M, Haerteis S, Limm K, Oefner PJ, Dargahi L, Borhani-Haghighi A, Miyan JA, Salehi MS. The beneficial effects of chick embryo extract preconditioning on hair follicle stem cells: A promising strategy to generate Schwann cells. Cell Prolif 2023:e13397. [PMID: 36631409 DOI: 10.1111/cpr.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.,Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Pandamooz S, Salehi MS, Dianatpour M, Miyan JA. Could Embryonic Cerebrospinal Fluid Direct the Fate of Hair Follicle Stem Cells towards Dopaminergic Neurons to Treat Parkinson's Disease? Stem Cell Rev Rep 2022; 18:3115-3117. [PMID: 35941272 DOI: 10.1007/s12015-022-10440-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
8
|
Salehi MS, Safari A, Pandamooz S, Jurek B, Hooshmandi E, Owjfard M, Bayat M, Zafarmand SS, Miyan JA, Borhani-Haghighi A. The Beneficial Potential of Genetically Modified Stem Cells in the Treatment of Stroke: a Review. Stem Cell Rev Rep 2022; 18:412-440. [PMID: 34033001 PMCID: PMC8144279 DOI: 10.1007/s12015-021-10175-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
The last two decades have witnessed a surge in investigations proposing stem cells as a promising strategy to treat stroke. Since growth factor release is considered as one of the most important aspects of cell-based therapy, stem cells over-expressing growth factors are hypothesized to yield higher levels of therapeutic efficiency. In pre-clinical studies of the last 15 years that were investigating the efficiency of stem cell therapy for stroke, a variety of stem cell types were genetically modified to over-express various factors. In this review we summarize the current knowledge on the therapeutic efficiency of stem cell-derived growth factors, encompassing techniques employed and time points to evaluate. In addition, we discuss several types of stem cells, including the recently developed model of epidermal neural crest stem cells, and genetically modified stem cells over-expressing specific factors, which could elevate the restorative potential of naive stem cells. The restorative potential is based on enhanced survival/differentiation potential of transplanted cells, apoptosis inhibition, infarct volume reduction, neovascularization or functional improvement. Since the majority of studies have focused on the short-term curative effects of genetically engineered stem cells, we emphasize the need to address their long-term impact.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | | |
Collapse
|
9
|
The Implementation of Preconditioned Epidermal Neural Crest Stem Cells to Combat Ischemic Stroke. Comment on Othman, F.A.; Tan, S.C. Preconditioning Strategies to Enhance Neural Stem Cell-Based Therapy for Ischemic Stroke. Brain Sci. 2020, 10, 893. Brain Sci 2021; 11:brainsci11050653. [PMID: 34067592 PMCID: PMC8155980 DOI: 10.3390/brainsci11050653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
In the recent review published in Brain Sciences, Othman and Tan suggested several preconditioning strategies to improve stem cell therapy after ischemic brain injury [...].
Collapse
|
10
|
Ahmadi S, Nabiuni M, Tahmaseb M, Amini E. Enhanced Neural Differentiation of Epidermal Neural Crest Stem Cell by Synergistic Effect of Lithium carbonate and Crocin on BDNF and GDNF Expression as Neurotrophic Factors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:95-106. [PMID: 34567149 PMCID: PMC8457715 DOI: 10.22037/ijpr.2019.15561.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration of nerve cells. Due to the complexity of conditions in neurodegenerative diseases, combination therapy, including cell and drug therapy is important as a new therapeutic strategy. Epidermal neural crest stem cells (EPI-NCSCs) are among the best choices in cell therapy for various neurological diseases. In this study, the effect of Lithium carbonate and Crocin, considering their effects on cellular signaling pathways and neuroprotective properties were investigated on the expression of neurotrophic factors BDNF and GDNF in EPI-NCSCs. EPI-NCSCs were isolated from the hair follicle and treated with different concentrations of drugs [Lithium, Crocin, and lithium + Crocin] for 72h. Then, trial concentrations were selected by MTT assay. The cells were treated with selected concentrations (Lithium 1 mM, Crocin 1.5 mM, and for co-treatment Lithium 1 mM and Crocin 1 mM) for 7 days. The Real-Time PCR results indicated an increasing in expression of BDNF and GDNF in treated cells as compared with control (* p < 0.05, ** p < 0.01 and *** p < 0.001). The results in this study confirmed and supported the neuroprotective/neurogenesis effects of Lithium and Crocin. It also showed that the proposed protocol could be used to increase EPI-NCSCs differentiation potential into neural cells in cell therapy and combination therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mohammad Nabiuni
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mohammad Tahmaseb
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
11
|
Goudarzi G, Hamidabadi HG, Bojnordi MN, Hedayatpour A, Niapour A, Zahiri M, Absalan F, Darabi S. Role of cerebrospinal fluid in differentiation of human dental pulp stem cells into neuron-like cells. Anat Cell Biol 2020; 53:292-300. [PMID: 32993279 PMCID: PMC7527124 DOI: 10.5115/acb.19.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) could be differentiated into neuron like-cells under particular microenvironments. It has been reported that a wide range of factors, presented in cerebrospinal fluid (CSF), playing part in neuronal differentiation during embryonic stages, we herein introduce a novel culture media complex to differentiate hDPSCs into neuron-like cells. The hDPSCs were initially isolated and characterized. The CSF was prepared from the Cisterna magna of 19-day-old Wistar rat embryos, embryonic cerebrospinal fluid (E-CSF). The hDPSCs were treated by 5% E-CSF for 2 days, then neurospheres were cultured in DMEM/F12 supplemented with 10-6 μm retinoic acid (RA), glial-derived neurotrophic factor and brain-derived neurotrophic factor for 6 days. The cells which were cultured in basic culture medium were considered as control group. Morphology of differentiated cells as well as process elongation were examined by an inverted microscope. In addition, the neural differentiation markers (Nestin and MAP2) were studied employing immunocytochemistry. Neuronal-like processes appeared 8 days after treatment. Neural progenitor marker (Nestin) and a mature neural marker (MAP2) were expressed in treated group. Moreover Nissl bodies were found in the cytoplasm of treated group. Taking these together, we have designed a simple protocol for generating neuron-like cells using CSF from the hDPSCs, applicable for cell therapy in several neurodegenerative disorders including Alzheimer's disease.
Collapse
Affiliation(s)
- Ghazaleh Goudarzi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maria Zahiri
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
12
|
Pournajaf S, Valian N, Mohaghegh Shalmani L, Khodabakhsh P, Jorjani M, Dargahi L. Fingolimod increases oligodendrocytes markers expression in epidermal neural crest stem cells. Eur J Pharmacol 2020; 885:173502. [PMID: 32860811 DOI: 10.1016/j.ejphar.2020.173502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
Epidermal neural crest stem cells (EPI-NCSCs) are propitious candidates for cell replacement therapy and supplying neurotrophic factors in the neurological disorders. Considering the potential remyelinating and regenerative effects of fingolimod, in this study, we evaluated its effects on EPI-NCSCs viability and the expression of neurotrophic and oligodendrocyte differentiation factors. EPI-NCSCs, extracted from the bulge of rat hair follicles, were characterized and treated with fingolimod (0, 50, 100, 200, 400, 600, 1000, and 5000 nM). The cell viability was evaluated by MTT assay at 6, 24 and 72 h. The expression of neurotrophic and differentiation factors in the cells treated with 100 and 400 nM fingolimod were measured at 24 and 120 h. Fingolimod at 50-600 nM increased the cells viability after 6 h, with no change at the higher concentrations. The highest concentration (5000nM) induced toxicity at 24 and 72 h. NGF and GDNF genes expression were decreased at 120 h, but on the contrary, brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) were increased by both concentrations at both time points. Oligodendrocyte markers including platelet-derived growth factor receptor A (PDGFRα), neuron-glial antigen 2 (NG2) and growth associated protein 43 (GAP43) were elevated at 120 h, which was accompanied with reduce in stemness markers (Nestin and early growth response 1 (EGR1)). Fingolimod increased the expression of neurotrophic factors in EPI-NCSCs, and guided them to oligodendrocyte fate. Therefore, fingolimod in combination with EPI-NCSCs, can be considered as a promising approach for demyelinating neurological disorders.
Collapse
Affiliation(s)
- Safura Pournajaf
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Salehi MS, Pandamooz S, Safari A, Jurek B, Tamadon A, Namavar MR, Dianatpour M, Dargahi L, Azarpira N, Fattahi S, Shid Moosavi SM, Keshavarz S, Khodabandeh Z, Zare S, Nazari S, Heidari M, Izadi S, Poursadeghfard M, Borhani-Haghighi A. Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke. CNS Neurosci Ther 2020; 26:670-681. [PMID: 32281225 PMCID: PMC7298983 DOI: 10.1111/cns.13370] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Cell‐based therapy is considered as promising strategy to cure stroke. However, employing appropriate type of stem cell to fulfill many therapeutic needs of cerebral ischemia is still challenging. In this regard, the current study was designed to elucidate therapeutic potential of epidermal neural crest stem cells (EPI‐NCSCs) compared to bone marrow mesenchymal stem cells (BM‐MSCs) in rat model of ischemic stroke. Methods Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) for 45 minutes. Immediately after reperfusion, EPI‐NCSCs or BM‐MSCs were transplanted via intra‐arterial or intravenous route. A test for neurological function was performed before ischemia and 1, 3, and 7 days after MCAO. Also, infarct volume ratio and relative expression of 15 selected target genes were evaluated 7 days after transplantation. Results EPI‐NCSCs transplantation (both intra‐arterial and intravenous) and BM‐MSCs transplantation (only intra‐arterial) tended to result in a better functional outcome, compared to the MCAO group; however, this difference was not statistically significant. The infarct volume ratio significantly decreased in NCSC‐intra‐arterial, NCSC‐intravenous and MSC‐intra‐arterial groups compared to the control. EPI‐NCSCs interventions led to higher expression levels of Bdnf, nestin, Sox10, doublecortin, β‐III tubulin, Gfap, and interleukin‐6, whereas neurotrophin‐3 and interleukin‐10 were decreased. On the other hand, BM‐MSCs therapy resulted in upregulation of Gdnf, β‐III tubulin, and Gfap and down‐regulation of neurotrophin‐3, interleukin‐1, and interleukin‐10. Conclusion These findings highlight the therapeutic effects of EPI‐NCSCs transplantation, probably through simultaneous induction of neuronal and glial formation, as well as Bdnf over‐expression in a rat model of ischemic stroke.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahid Safari
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Department of Behavioral and Molecular Neurobiology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Somaye Keshavarz
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Izadi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Poursadeghfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
14
|
Baharvand Z, Nabiuni M, Tahmaseb M, Amini E, Pandamooz S. Investigating the synergic effects of valproic acid and crocin on BDNF and GDNF expression in epidermal neural crest stem cells. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Pandamooz S, Jafari A, Salehi MS, Jurek B, Ahmadiani A, Safari A, Hassanajili S, Borhani-Haghighi A, Dianatpour M, Niknejad H, Azarpira N, Dargahi L. Substrate stiffness affects the morphology and gene expression of epidermal neural crest stem cells in a short term culture. Biotechnol Bioeng 2019; 117:305-317. [PMID: 31654402 DOI: 10.1002/bit.27208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
According to the intrinsic plasticity of stem cells, controlling their fate is a critical issue in cell-based therapies. Recently, a growing body of evidence has suggested that substrate stiffness can affect the fate decisions of various stem cells. Epidermal neural crest stem cells as one of the main neural crest cell derivatives hold great promise for cell therapies due to presenting a high level of plasticity. This study was conducted to define the influence of substrate stiffness on the lineage commitment of these cells. Here, four different polyacrylamide hydrogels with elastic modulus in the range of 0.7-30 kPa were synthesized and coated with collagen and stem cells were seeded on them for 24 hr. The obtained data showed that cells can attach faster to hydrogels compared with culture plate and cells on <1 kPa stiffness show more neuronal-like morphology as they presented several branches and extended longer neurites over time. Moreover, the transcription of actin downregulated on all hydrogels, while the expression of Nestin, Tubulin, and PDGFR-α increased on all of them and SOX-10 and doublecortin gene expression were higher only on <1 kPa. Also, it was revealed that soft hydrogels can enhance the expression of glial cell line-derived neurotrophic factor, neurotrophin-3, and vascular endothelial growth factor in these stem cells. On the basis of the results, these cells can respond to the substrate stiffness in the short term culture and soft hydrogels can alter their morphology and gene expression. These findings suggested that employing proper substrate stiffness might result in cells with more natural profiles similar to the nervous system and superior usefulness in therapeutic applications.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arman Jafari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad S Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Department of Behavioral and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shadi Hassanajili
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Saffarian A, Tarokh A, Reza Haghshenas M, Taghipour M, Chenari N, Ghaderi A, Razmkhah M. Proteomics Study of Mesenchymal Stem Cell-Like Cells Isolated from Cerebrospinal Fluid of Patients with Meningioma. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190204161453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Cerebrospinal fluid (CSF) contains pro-growth factors that can affect proliferation, migration and differentiation of Mesenchymal Stem Cells (MSCs).Objective:This study aimed to isolate MSC like cells from CSF of patients with meningioma and psudotumorcerebri (PTC) and identify differentially expressed proteins in these cells.Methods:Five patients with newly diagnosed intracranial meningioma and five patients with PTC were recruited in this comparative proteomics study. MSCs were isolated from CSF and validated by mesenchyml and non-mesenchyml fluorochrome antibodies, and flow cytometer analysis. Two- Dimensional Gel Electrophoresis (2-DE) coupled with Mass Spectrometry (MS) was performed to identify differentially expressed proteins.Results:Microscopic views of the isolated cells as well as flow cytometer analysis were found to be compatible with MSC-like cells. Eight distinct protein spots were differentially and reproducibly expressed among the stained gels of two studied groups. The identified proteins were Phosphoglycerate Mutase 1 (PGAM1), LIM and SH3 domain protein (LASP1), peroxiredoxin-6 (PRDX-6), type I cytoskeletal 9 (KRT9), Superoxide Dismutase (SOD), endoplasmin, Stathmin 1 (STMN1), and glutathione S-transferase (GST).Conclusion:This study provides new insights into the plausible role of CSF derived MSCs in cancer progression, and reveals a promising therapeutic opportunity for targeting of MSC proteins in patients with meningioma.
Collapse
Affiliation(s)
- Arash Saffarian
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tarokh
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mousa Taghipour
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nooshafarin Chenari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Pandamooz S, Salehi MS, Safari A, Azarpira N, Heravi M, Ahmadiani A, Dargahi L. Enhancing the expression of neurotrophic factors in epidermal neural crest stem cells by valproic acid: A potential candidate for combinatorial treatment. Neurosci Lett 2019; 704:8-14. [PMID: 30904572 DOI: 10.1016/j.neulet.2019.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Effective delivery of trophic factors to cure neurological disorders and traumatic injuries is a major challenge. With promising therapeutic effects of epidermal neural crest stem cells (EPI-NCSCs) in preclinical spinal cord injury, there is an implication that these stem cells might provide supportive role through releasing various trophic agents. Hence, the present study was designed to assess the influence of valproic acid (VPA), a well-known histone deacetylases inhibitor, on mRNA expression of selected trophic factors. In this study, following stem cell migration from explanted hair bulges, immunostaining against Nestin, SOX-10, DCX, β-III tubulin and GFAP was carried out. Then, cells were treated with various clinically relevant concentrations of VPA and the survival rate was defined by MTT assay. Finally, stem cells were treated with 0.1 and 1 mM VPA and the drug impact on the transcription level of BDNF, GDNF, VEGF, NGF and NT3 at 6, 24, 72, 168 h was assessed by quantitative real-time PCR. The examined proteins expressions in the population of migrated cells confirmed the identity of stem cells as EPI-NCSCs. In addition, MTT assay showed that all three tested concentrations of VPA were suitable to treat these cells. Trophic factors assessment, following treatment revealed the mRNA expression level of BDNF, GDNF and VEGF could be significantly up- regulated at various time points, mainly by 1 mM VPA. However, NGF and NT3 transcripts were enhanced at few limited time points. Our findings showed that EPI-NCSCs due to secretion of various trophic factors are potential candidate to deliver the required trophic agents and their potential can be enhanced by 1 mM VPA, predominantly following 168 h treatment. Hence, these cells can be utilized to modulate destructive context of neurological disorders and injuries.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saied Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Heravi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19615-1178, Velenjak, Iran.
| |
Collapse
|
18
|
Salehi MS, Borhani-Haghighi A, Pandamooz S, Safari A, Dargahi L, Dianatpour M, Tanideh N. Dimethyl fumarate up-regulates expression of major neurotrophic factors in the epidermal neural crest stem cells. Tissue Cell 2019; 56:114-120. [PMID: 30736899 DOI: 10.1016/j.tice.2019.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
There is an agreement that combining treatments can lead to substantial improvement, therefore the present study assessed the effects of different concentrations of dimethyl fumarate (DMF) on viability of epidermal neural crest stem cells (EPI-NCSCs). In addition, this investigation was designed to evaluate the effects of DMF on relative expression of major trophic factors mainly the ones with neurotrophic effects, expressed in EPI-NCSCs in order to enhance their therapeutic potential. To determine the appropriate concentration of DMF for EPI-NCSCs treatment, the MTT assay was employed and based on the obtained data, EPI-NCSCs treated with 10μM DMF for 6, 24, 72 or 168 h. In each time point, quantitative RT-PCR technique was used to evaluate NGF, NT-3, BDNF, GDNF and VEGF transcripts. The acquired data showed that 10μM DMF significantly increased the mRNA expression of NGF, NT-3 and BDNF, 72 h following treatment; however, DMF inhibitory effect on GDNF mRNA expression was observed in various time points. No significant changes were detected for VEGF transcript. Our findings reveled that expression of major neurotrophic factors were up-regulated by dimethyl fumarate treatment. Therefore, combining EPI-NCSCs with DMF treatment might be a valuable strategy to improve their therapeutic functions in vivo.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Neurospheres from neural stem/neural progenitor cells (NSPCs) of non-hydrocephalic HTx rats produce neurons, astrocytes and multiciliated ependyma: the cerebrospinal fluid of normal and hydrocephalic rats supports such a differentiation. Cell Tissue Res 2018; 373:421-438. [PMID: 29651556 DOI: 10.1007/s00441-018-2828-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
Abstract
Fetal onset hydrocephalus and abnormal neurogenesis are two inseparable phenomena turned on by a cell junction pathology first affecting neural stem/progenitor cells (NSPCs) and later the multiciliated ependyma. The neurological impairment of children born with hydrocephalus is not reverted by derivative surgery. NSPCs and neurosphere (NE) grafting into the cerebrospinal fluid (CSF) of hydrocephalic fetuses thus appears as a promising therapeutic procedure. There is little information about the cell lineages actually forming the NE as they grow throughout their days in vitro (DIV). Furthermore, there is no information on how good a host the CSF is for grafted NE. Here, we use the HTx rat, a model with hereditary hydrocephalus, with the mutation expressed in about 30% of the litter (hyHTx), while the littermates develop normally (nHTx). The investigation was designed (i) to establish the nature of the cells forming 4 and 6-DIV NE grown from NSPCs collected from PN1/nHTx rats and (ii) to study the effects on these NEs of CSF collected from nHTx and hyHTx. Immunofluorescence analyses showed that 90% of cells forming 4-DIV NEs were non-committed multipotential NSPCs, while in 6-DIV NE, 40% of the NSPCs were already committed into neuronal, glial and ependymal lineages. Six-DIV NE further cultured for 3 weeks in the presence of fetal bovine serum, CSF from nHTx or CSF from hyHTx, differentiated into neurons, astrocytes and βIV-tubulin+ multiciliated ependymal cells that were joined together by adherent junctions and displayed synchronized cilia beating. This supports the possibility that ependymal cells are born from subpopulations of NSC with their own time table of differentiation. As a whole, the findings indicate that the CSF is a supportive medium to host NE and that NE grafted into the CSF have the potential to produce neurons, glia and ependyma.
Collapse
|
20
|
Ren C, Yin P, Ren N, Wang Z, Wang J, Zhang C, Ge W, Geng D, Wang X. Cerebrospinal fluid-stem cell interactions may pave the path for cell-based therapy in neurological diseases. Stem Cell Res Ther 2018. [PMID: 29523182 PMCID: PMC5845187 DOI: 10.1186/s13287-018-0807-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recent studies have suggested that the regulation of endogenous neural stem cells (NSCs) or transplanting of exogenous nerve cells are the newest and most promising methods for the treatment of dementia and other neurological diseases. The special location and limited number of endogenous NSCs, however, restrict their clinical application. The success in directional differentiation of exogenous stem cells from other tissue sources into neural cells has provided a novel source for NSCs. Study on the relative mechanisms is still at the preliminary stage. Currently the induction methods include: 1) cell growth factor induction; 2) chemical induction; 3) combined growth factor-chemical induction; or 4) other induction methods such as traumatic brain tissue homogenate, gene transfection, traditional Chinese medicine, and coculture induction. Cerebrospinal fluid (CSF), as a natural medium under physiological conditions, contains a variety of progrowth peptide factors that can promote the proliferation and differentiation of mesenchymal stromal cells (MSCs) into neural cells through the corresponding receptors on the cell surface. This suggests that CSF can not only nourish the nerve cells, but also become an effective and suitable inducer to increase the yield of NSCs. However, some other studies believed that CSF contained certain inhibitory components against the differentiation of primary stem cells into mature neural cells. Based on the above background, here we review the relative literature on the influence of the CSF on stem cells in order to provide a more comprehensive reference for the wide clinical application of NSCs in the future.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Peiyuan Yin
- Department of Blood Supply, Yantai Center Blood Station, Yantai, 264000, China
| | - Neng Ren
- Department of Inervention Therapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhe Wang
- Department of Clinical Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Jiahui Wang
- Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Caiyi Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Ge
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiaotong Wang
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| |
Collapse
|
21
|
Pandamooz S, Salehi MS, Zibaii MI, Ahmadiani A, Nabiuni M, Dargahi L. Epidermal neural crest stem cell-derived glia enhance neurotrophic elements in an ex vivo model of spinal cord injury. J Cell Biochem 2018; 119:3486-3496. [PMID: 29143997 DOI: 10.1002/jcb.26520] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023]
Abstract
Growing evidence that cell-based therapies can improve recovery outcome in spinal cord injury (SCI) models substantiates their application for treatment of human with SCI. To address the effectiveness of these stem cells, potential candidates should be evaluated in proper SCI platform that allows direct real-time monitoring. In this study, the role of epidermal neural crest stem cells (EPI-NCSCs) was elucidated in an ex vivo model of SCI, and valproic acid (VPA) was administered to ameliorate the inhospitable context of injury for grafted EPI-NCSCs. Here the contusion was induced in organotypic spinal cord slice culture at day seven in vitro using a weight drop device and one hour post injury the GFP- expressing EPI-NCSCs were grafted followed by VPA administration. The evaluation of treated slices seven days after injury revealed that grafted stem cells survived on the injured slices and expressed GFAP, whereas they did not express any detectable levels of the neural progenitor marker doublecortin (DCX), which was expressed prior to transplantation. Immunoblotting data demonstrated that the expression of GFAP, BDNF, neurotrophin-3 (NT3), and Bcl2 increased significantly in stem cell treated slices. This study illustrated that the fate of transplanted stem cells has been directed to the glial lineage in the ex vivo context of injury and EPI-NCSCs may ameliorate the SCI condition through releasing neurotrophic factors directly and/or via inducing resident spinal cord cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad S Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad I Zibaii
- Laser and Plasma Research institute, Shahid Beheshti University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Li Y, Yao D, Zhang J, Liu B, Zhang L, Feng H, Li B. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats. Front Mol Neurosci 2017; 10:133. [PMID: 28588447 PMCID: PMC5438963 DOI: 10.3389/fnmol.2017.00133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs). epidermal neural crest stems cells (EPI-NCSCs) are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM) and poly (lactide-co-glycolide) (PLGA). Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs) were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT), sciatic function index (SFI), gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13) was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α) compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.
Collapse
Affiliation(s)
- Yue Li
- Department of Neurosurgery, Southwest Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Dongdong Yao
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China.,School of Life Sciences/Key Laboratory of Freshwater Fish Reproduction and Development of Education Ministry, Southwest UniversityChongqing, China
| | - Jieyuan Zhang
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Bin Liu
- School of Life Sciences/Key Laboratory of Freshwater Fish Reproduction and Development of Education Ministry, Southwest UniversityChongqing, China
| | - Lu Zhang
- Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical UniversityChongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Bingcang Li
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| |
Collapse
|
23
|
Omidi A, Akbari M, Mortezaee K, Eqlimi E, Beyer C, Zendedel A, Ragerdi Kashani I. Prenatal transplantation of epidermal neural crest stem cells in malformation of cortical development mouse model. Microsc Res Tech 2017; 80:394-405. [DOI: 10.1002/jemt.22809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/18/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022]
Abstract
AbstractPrenatal interventions may offer an immense opportunity in therapeutic protocols of malformations of cortical development (MCD). Epidermal neural crest stem cells (EPI‐NCSCs) of the hair follicle bulge exhibit features of both embryonic and adult stem cells; these cells maintain their neurologic differentiation capability because of their neural crest origin. However, it is unknown if prenatal use of EPI‐NCSCs could be beneficial in targeting methylazoxymethanol (MAM)‐induced MCD, which further addressed in the present work. EPI‐NCSCs were prenatally infused to the MAM‐exposed mice. Thicknesses of various cerebral cortex areas as well as corpus callosum was measured; there were markedly decrease in MAM group (p < .001 vs. untreated), but a significant increase in EPI‐NCSC group (p < .05 vs. MAM), except for corpus callosum. Real‐time PCR analysis showed high expressions for absent, small, or homeotic 2‐like protein, nestin, doublecortin (DCX), neuronal specific nuclei protein (NeuN), and glial fibrillary acidic protein (GFAP) in MAM group (p < .001 vs. untreated), except for G‐protein‐coupled C‐X‐C chemokine receptor type 4 (CXCR4) and CXC motif ligand 12 (CXCL12), whereas there were low expressions in EPI‐NCSCs group (p < .01 vs. MAM). Immunohistochemistry of NeuN, GFAP, ionized calcium‐binding adapter molecule (Iba1), and oligodendrocyte lineage transcription factor 2 (Olig2) was also revealed the same pattern as real‐time PCR (p < .001 MAM vs. untreated, and p < .05 EPI‐NCSCs vs. MAM). Our findings suggest prenatal use of EPI‐NCSCs as a possible candidate for cell‐based therapy of cortical injury through affecting neural markers and their relationship with glial.
Collapse
Affiliation(s)
- Ameneh Omidi
- Department of Anatomy, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| | - Ehsan Eqlimi
- Department of Medical Physics and Biomedical Engineering, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, School of Medicine RWTH Aachen University 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, School of Medicine RWTH Aachen University 52074 Aachen, Germany
- JARA‐Brain RWTH Aachen University 52074 Aachen, Germany
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
24
|
Pandamooz S, Salehi MS, Nabiuni M, Dargahi L, Pourghasem M. Evaluation of Epidermal Neural Crest Stem Cells in Organotypic Spinal Cord Slice Culture Platform. Folia Biol (Praha) 2016; 62:263-267. [PMID: 28189150 DOI: 10.14712/fb2016062060263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Among various strategies employed for spinal cord injury, stem cell therapy is a potential treatment. So far, a variety of stem cells have been evaluated in animal models and humans with spinal cord injury, and epidermal neural crest stem cells represent one of the attractive types in this area. Although these multipotent stem cells have been assessed in several spinal cord injury models by independent laboratories, extensive work remains to be done to ascertain whether these cells can safely improve the outcome following human spinal cord injury. Among the models that closely mimic human spinal cord injury, the in vitro model of injury in organotypic spinal cord slice culture has been identified as one of the faithful platforms for injury-related investigations. In this study, green fluorescent protein-expressing stem cells were grafted into injured organotypic spinal cord slice culture and their survival was examined by confocal microscope seven days after transplantation. Data obtained from this preliminary study showed that these stem cells can survive on top of the surface of injured slices, as observed on day seven following their transplantation. This result revealed that this in vitro model of injury can be considered as a suitable context for further evaluation of epidermal neural crest stem cells before their application in large animals.
Collapse
Affiliation(s)
- S Pandamooz
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - M S Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - L Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Pourghasem
- Department of Anatomy and Embryology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
25
|
Zhang J, Liu Z, Chen H, Duan Z, Zhang L, Chen L, Li B. Synergic effects of EPI-NCSCs and OECs on the donor cells migration, the expression of neurotrophic factors, and locomotor recovery of contused spinal cord of rats. J Mol Neurosci 2014; 55:760-9. [PMID: 25239519 DOI: 10.1007/s12031-014-0416-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/27/2014] [Indexed: 01/19/2023]
Abstract
Cell-based therapy is a promising strategy for the repair of spinal cord injury (SCI), and the synergic effects of donor cells are emphasized in recent years. In this study, epidermal neural crest stem cells (EPI-NCSCs) and olfactory ensheathing cells (OECs) were transplanted into the contused spinal cord of rats separately or jointly at 1 week after injury. At 3 and 9 weeks posttransplantation, migration of the donor cells, expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) and functional recovery of the contused cord were determined by techniques of histopathology, quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry and Basso-Beattie-Bresnahan (BBB) score. The results showed that the migration and distribution of EPI-NCSCs in vivo were promoted by OECs at 3 weeks after transplantation, but they vanished at 9 weeks. The expression of BDNF and GDNF was significantly increased by co-transplantation at molecular and protein level. Although the expression of both factors in EPI-NCSCs- and OECs-injected group was lower than in co-injected group, it was higher than in control groups. Similarly, the best locomotor recovery of the contused cord was acquired from co-injected animals. As we know, this is the first time to study the synergic effects of EPI-NCSCs and OECs, and the data indicates that donor cells migration, expression of neurotrophic factors (NTFs), and recovery of motor function can be improved by EPI-NCSCs and OECs synergistically.
Collapse
Affiliation(s)
- Jieyuan Zhang
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, 400042, Chongqing, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
26
|
Kipanyula MJ, Kimaro WH, Yepnjio FN, Aldebasi YH, Farahna M, Nwabo Kamdje AH, Abdel-Magied EM, Seke Etet PF. Signaling pathways bridging fate determination of neural crest cells to glial lineages in the developing peripheral nervous system. Cell Signal 2014; 26:673-682. [PMID: 24378534 DOI: 10.1016/j.cellsig.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 11/29/2022]
Abstract
Fate determination of neural crest cells is an essential step for the development of different crest cell derivatives. Peripheral glia development is marked by the choice of the neural crest cells to differentiate along glial lineages. The molecular mechanism underlying fate acquisition is poorly understood. However, recent advances have identified different transcription factors and genes required for the complex instructive signaling process that comprise both local environmental and cell intrinsic cues. Among others, at least the roles of Sox10, Notch, and neuregulin 1 have been documented in both in vivo and in vitro models. Cooperative interactions of such factors appear to be necessary for the switch from multipotent neural crest cells to glial lineage precursors in the peripheral nervous system. This review summarizes recent advances in the understanding of fate determination of neural crest cells into different glia subtypes, together with the potential implications in regenerative medicine.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania.
| | - Wahabu Hamisi Kimaro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | - Faustin N Yepnjio
- Neurology Department, Yaoundé Central Hospital, Department of Internal Medicine and Specialties, University of Yaoundé I, P.O. Box 1937, Yaoundé, Cameroon
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Mohammed Farahna
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | | | - Eltuhami M Abdel-Magied
- Department of Anatomy and Histology, College of Medicine, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia.
| |
Collapse
|