1
|
Kaibagarova I, Saparbaev S, Aringazina R, Zhumabaev M, Nurgaliyeva Z. The role of fetal pancreatic islet cell transplantation in the treatment of type 2 diabetes mellitus. J Diabetes Metab Disord 2024; 23:1949-1957. [PMID: 39610528 PMCID: PMC11599508 DOI: 10.1007/s40200-024-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 11/30/2024]
Abstract
Objectives Diabetes mellitus has a negative impact on patients' lives and is a significant medical and social problem. Due to the high prevalence of diabetes mellitus, shortage of donor materials, immune rejection of the pancreas and limited efficacy of existing treatment methods, the study of promising and more effective approaches to the treatment of this disease, such as transplantation of fetal pancreatic islet cells, becomes relevant. The aim of the study is to determine the efficacy and necessity of fetal pancreatic islet cell transplantation in the treatment of type 2 diabetes mellitus. Methods The study was carried out with the help of analytical-synthetic method, literature review and analysis of medical databases corresponding to the topic of work, clinical and experimental studies conducted by other authors were considered. Results As a result of this work, it was found that the use of fetal stem cell transplantation is an effective method in the treatment of diabetes. Studies confirm that this method reduces hyperglycaemia and NOMA index, increases c-peptide values without serious side effects on the background of treatment. Conclusions Fetal islet cells have advantages in cell culture, relatively low immunogenicity, effective engraftment, although they may produce less insulin relative to adult somatic stem cells. Transplanted islet cells are able to replace and renew the function of the recipient's own pancreatic β-cells, and prevent their destruction. Fetal pancreatic islet cell transplantation is a promising treatment option for type 2 diabetes that can complement or replace existing therapies, improving patients' glucose control.
Collapse
Affiliation(s)
- Indira Kaibagarova
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str, Aktobe, 030012 Republic of Kazakhstan
| | - Samat Saparbaev
- Medical Center Al-Jami, 23 Mailin Str, Astana, 010000 Republic of Kazakhstan
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030012 Aktobe, Republic of Kazakhstan
| | - Marat Zhumabaev
- Department of Surgical Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str., 030012 Aktobe, Republic of Kazakhstan
| | - Zhansulu Nurgaliyeva
- Department of Pharmacology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Str, Aktobe, 030012 Republic of Kazakhstan
| |
Collapse
|
2
|
Rohban R, Martins CP, Esni F. Advanced therapy to cure diabetes: mission impossible is now possible? Front Cell Dev Biol 2024; 12:1484859. [PMID: 39629270 PMCID: PMC11611888 DOI: 10.3389/fcell.2024.1484859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Cell and Gene therapy are referred to as advanced therapies that represent overlapping fields of regenerative medicine. They have similar therapeutic goals such as to modify cellular identity, improve cell function, or fight a disease. These two therapeutic avenues, however, possess major differences. While cell therapy involves introduction of new cells, gene therapy entails introduction or modification of genes. Furthermore, the aim of cell therapy is often to replace, or repair damaged tissue, whereas gene therapy is used typically as a preventive approach. Diabetes mellitus severely affects the quality of life of afflicted individuals and has various side effects including cardiovascular, ophthalmic disorders, and neuropathy while putting enormous economic pressure on both the healthcare system and the patient. In recent years, great effort has been made to develop cutting-edge therapeutic interventions for diabetes treatment, among which cell and gene therapies stand out. This review aims to highlight various cell- and gene-based therapeutic approaches leading to the generation of new insulin-producing cells as a topmost "panacea" for treating diabetes, while deliberately avoiding a detailed molecular description of these approaches. By doing so, we aim to target readers who are new to the field and wish to get a broad helicopter overview of the historical and current trends of cell- and gene-based approaches in β-cell regeneration.
Collapse
Affiliation(s)
- Rokhsareh Rohban
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Christina P. Martins
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- McGowan Institute for regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Rout S, Amirtham SM, Prasad M, Cherian AG, B SR, Sudhakar Y, Prince N. In Vitro Human Fetal Pancreatic Islets to Redefine Pancreatic Research. Cureus 2023; 15:e43244. [PMID: 37692623 PMCID: PMC10491859 DOI: 10.7759/cureus.43244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND In vitro studies with human fetal islets of different gestational ages (GA) would be a great tool to generate information on the developmental process of the islets as this would help to recontextualize diabetes research and clinical practice. Pancreatic islets from human cadavers and other animal species are extensively researched to explore their suitability for islet transplantation procedure, one of the upcoming treatment strategies for insulin-dependent diabetes mellitus. Although human fetal islets are also considered for islet transplantation, ethical issues and limited knowledge constraints their use. The fetal islets could be explored to address the information lacunae on the maturity process of pancreatic islets and the endocrine-exocrine signaling mechanisms. AIM This study aimed to assess the feasibility of isolating viable islets and study the cytoarchitecture of the fetal pancreas of GA 22-29 weeks, not reported otherwise. METHODOLOGY Pancreas obtained from the aborted fetuses of GA 22-29 weeks were subjected to collagenase digestion and were further cultured to determine the viability in vitro. Parameters assessed were expression of markers for endocrine cell lineages and insulin release to glucose challenge. RESULTS Islets were viable in vitro and islets were shown to maintain cues for post-digestion re-aggregation and expansion in culture. The immunofluorescent staining showed islets of varying sizes, homogenous cell clusters aggregating to form heterogenous cell clusters, otherwise not reported for this GA. On stimulation with different concentrations of glucose (2.8 and 28 mM), the fetal islets in the culture exhibited insulin release, and this response confirmed their viability in vitro. CONCLUSION Our findings showed that viable islets could be isolated and cultured in vitro for further in-depth studies to explore their proliferative potential as well as for the identification of pancreatic progenitors, a good strategy to take forward.
Collapse
Affiliation(s)
- Sipra Rout
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, IND
| | | | - Mythraeyee Prasad
- Anatomy, Velammal Medical College Hospital and Research Institute, Madurai, IND
| | | | - Sandya Rani B
- Research, Christian Medical College and Hospital, Vellore, IND
| | - Yesudas Sudhakar
- Biochemistry, Christian Medical College and Hospital, Vellore, IND
| | - Neetu Prince
- Physiology, Christian Medical College and Hospital, Vellore, IND
| |
Collapse
|
4
|
Human Fetal Tissue Regulation. Impact on Pediatric and Adult Respiratory-related Research. Ann Am Thorac Soc 2021; 18:204-208. [PMID: 33252996 DOI: 10.1513/annalsats.202005-460ps] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Fang Q, Zhai M, Wu S, Hu X, Hua Z, Sun H, Guo J, Zhang W, Wang Z. Adipocyte-derived stem cell-based gene therapy upon adipogenic differentiation on microcarriers attenuates type 1 diabetes in mice. Stem Cell Res Ther 2019; 10:36. [PMID: 30670068 PMCID: PMC6341531 DOI: 10.1186/s13287-019-1135-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Insulin replenishment is critical for patients with type 1 diabetes; however, current treatments such as pancreatic islet transplantation and insulin injection are not ideal. In addition to stem cell or gene therapy alone, stem cell combined with gene therapy may provide a new route for insulin replenishment, which could avoid an autoimmune reaction against differentiated β cells or systematic viral vector injection. METHODS In this study, human adipocyte-derived stem cells (ADSCs) were transducted with lentiviral vectors expressing a furin-cleavable insulin gene. The expression levels of insulin were measured before and after adipogenic differentiation in the presence or absence of an adipocyte-specific promoter AP2. In vitro proliferation and in vivo survival of cells were examined on cytodex and cytopore microcarriers. The effect of ADSC-based gene therapy upon adipogenic differentiation on microcarriers was evaluated in the streptozotocin-induced type 1 diabetic mouse model. RESULTS We found that differentiation of ADSCs into adipocytes increased insulin expression under the EF1 promoter, while adipocyte-specific AP2 promoter further increased insulin expression upon differentiation. The microcarriers supported cell attachment and proliferation during in vitro culture and facilitate cell survival after transplantation. Functional cells on the cytopore 1 microcarrier formed tissue-like structures and alleviated hyperglycemia in the type 1 diabetic mice after subcutaneous injection. CONCLUSIONS Our results indicated that differentiation of ADSC and tissue-specific promotors may enhance the expression of therapeutic genes. The use of microcarriers may facilitate cell survival after transplantation and hold potential for long-term cell therapy.
Collapse
Affiliation(s)
- Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Min Zhai
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shan Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.,Research Center for Translational Medicine, Cancer Stem Cell Institute, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Xiaogen Hu
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Zhan Hua
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Huizhuo Sun
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Beijing, 100029, People's Republic of China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
6
|
Coombe L, Kadri A, Martinez JF, Tatachar V, Gallicano GI. Current approaches in regenerative medicine for the treatment of diabetes: introducing CRISPR/CAS9 technology and the case for non-embryonic stem cell therapy. AMERICAN JOURNAL OF STEM CELLS 2018; 7:104-113. [PMID: 30697454 PMCID: PMC6334205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder in which the body destroys its pancreatic β cells. Since these cells are responsible for insulin production, dysfunction or destruction of these cells necessitates blood glucose control through exogenous insulin shots. Curative treatment involves pancreas transplantation, but due to the incidence of transplant rejection and complications associated with immunosuppression, alternatives are being explored. Despite facing clinical challenges and issues with public perception, the field of regenerative stem cell therapy shows great promise for the treatment of diabetes. The idea of harnessing pluripotency to derive cells and tissues with characteristics of choice is astounding but feasible, and this review seeks to determine which method of stem cell derivation is preferable for diabetes treatment. In this report, we outline the methods for deriving human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), and adult stem cells or progenitor cells to generate functional islet cells and related tissues. We discuss the specific uses and advantages of each method, and we comment on the ethics and public perceptions surrounding these methods and how they may affect the future of stem cell research. For the reasons outlined in this paper, we believe that non-embryonic stem cell lines, including iPSCs, somatic cell nuclear transfer lines, and adult tissue derived stem cells, offer the highest therapeutic potential for treating diabetes.
Collapse
Affiliation(s)
- Lauren Coombe
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center 3900 Reservoir Road NW, Washington DC 20007, USA
| | - Aamir Kadri
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center 3900 Reservoir Road NW, Washington DC 20007, USA
| | - Jessica Ferrer Martinez
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center 3900 Reservoir Road NW, Washington DC 20007, USA
| | - Vivas Tatachar
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center 3900 Reservoir Road NW, Washington DC 20007, USA
| | - Gary Ian Gallicano
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center 3900 Reservoir Road NW, Washington DC 20007, USA
| |
Collapse
|
7
|
Jiang Z, Shi D, Tu Y, Tian J, Zhang W, Xing B, Wang J, Liu S, Lou J, Gustafsson JÅ, Hua X, Ma X. Human Proislet Peptide Promotes Pancreatic Progenitor Cells to Ameliorate Diabetes Through FOXO1/Menin-Mediated Epigenetic Regulation. Diabetes 2018; 67:1345-1355. [PMID: 29716892 DOI: 10.2337/db17-0885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022]
Abstract
We investigated how human proislet peptide (HIP) regulates differentiation of human fetus-derived pancreatic progenitor cells (HFPPCs) and explored the potential link between HIP signaling and the menin pathway, which is key to regulating pancreatic islet differentiation. The data show that HIP promoted expression of proislet transcription factors (TFs), including PDX-1, MAFA, and NKX6.1, as well as other maturation markers of β-cells, such as insulin, GLUT2, KIR6.2, SUR1, and VDCC. Moreover, HIP increased insulin content and promoted the ability of HFPPCs to normalize blood glucose in diabetic mice. HIP inhibited the TF FOXO1 by increasing AKT-mediated phosphorylation. HIP-induced repression of FOXO1 suppressed menin expression, leading to reducing menin binding to the promoter of the three key proislet TFs, decreasing recruitment of H3K9 methyltransferase SUV39H1, and thus reducing repressive H3K9me3 at the promoter. These coordinated actions lead to increased expression of the proislet TFs, resulting in induction of HFPPC differentiation. Consistently, constitutive activation of FOXO1 blocks HIP-induced transcription of these TFs. Together, these studies unravel the crucial role of the HIP/AKT/FOXO/menin axis in epigenetically controlling expression of proislet TFs, regulating the differentiation of HFPPCs, and normalizing blood glucose in diabetic mice.
Collapse
Affiliation(s)
- Zongzhe Jiang
- Shenzhen University School of Medicine, Shenzhen, China
| | - Diwen Shi
- Shenzhen University School of Medicine, Shenzhen, China
| | - Yifan Tu
- Shenzhen University School of Medicine, Shenzhen, China
| | - Jingjing Tian
- Shenzhen University School of Medicine, Shenzhen, China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Bowen Xing
- Shenzhen University School of Medicine, Shenzhen, China
| | - Jihua Wang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Suhuan Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry and Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX
| | - Xianxin Hua
- Shenzhen University School of Medicine, Shenzhen, China
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Xiaosong Ma
- Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
8
|
Characterization and Differentiation of Sorted Human Fetal Pancreatic ALDHhi and ALDHhi/CD133+ Cells Toward Insulin-Expressing Cells. Stem Cells Dev 2018; 27:275-286. [DOI: 10.1089/scd.2017.0135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Li J, Xu SQ, Zhang K, Zhang WJ, Liu HL, Xu Z, Li H, Lou JN, Ge LH, Xu BH. Treatment of gingival defects with gingival mesenchymal stem cells derived from human fetal gingival tissue in a rat model. Stem Cell Res Ther 2018; 9:27. [PMID: 29402326 PMCID: PMC5800013 DOI: 10.1186/s13287-017-0751-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Background The study aimed to evaluate the efficacy and safety of gingival mesenchymal stem cells (GMSCs) from human fetal gingival tissue used for treating gingival defects in a rat model. Methods GMSCs were isolated from human fetal gingival tissue and identified by flow cytometry for nestin, Oct4, vimentin, NANOG, CD105, and CD90. The immunogenicity of GMSCs was analyzed by mixed lymphocyte reactions; the tumorigenicity of GMSCs was evaluated by xenotransplanting into nude mice. The gingival defect animal model was established by mechanical resection in rats. GMSCs were transplanted into the defective area, and the regeneration of gingival tissue was observed twice weekly. Four weeks after transplantation, the gingival tissue was surgically cut down, and the graft was analyzed by immunohistochemistry staining for human mitochondrial antigens and rat CD3 and CD20. Results GMSCs from human fetal gingival tissue positively expressed nestin, Oct4, vimentin, NANOG, CD105, and CD90. There was no cell aggregation after mixed lymphocyte reactions, and interleukin-2 did not increase. Inoculation of GMSCs into nude mice for 6 months showed no tumor formation. GMSCs were transplanted into the gingiva defects of rats. One week after transplantation, the defect area was reduced, and after 3 weeks the morphology and color of local gingival tissue was similar to normal gingival tissue, and gingival height was the same as the normal control group. Conclusions Using GMSCs from human fetal gingival tissue to treat gingival defects is a safe and effective innovative treatment method.
Collapse
Affiliation(s)
- Jing Li
- Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shi-Qing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Kai Zhang
- Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wen-Jian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Hong-Lin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Zhen Xu
- Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Hong Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jin-Ning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Li-Hong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Bao-Hua Xu
- Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
10
|
Yu F, Wei R, Yang J, Liu J, Yang K, Wang H, Mu Y, Hong T. FoxO1 inhibition promotes differentiation of human embryonic stem cells into insulin producing cells. Exp Cell Res 2017; 362:227-234. [PMID: 29157981 DOI: 10.1016/j.yexcr.2017.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
Insulin-producing cells (IPCs) derived from human embryonic stem cells (hESCs) hold great potential for cell transplantation therapy in diabetes. Tremendous progress has been made in inducing differentiation of hESCs into IPCs in vitro, of which definitive endoderm (DE) protocol mimicking foetal pancreatic development has been widely used. However, immaturity of the obtained IPCs limits their further applications in treating diabetes. Forkhead box O1 (FoxO1) is involved in the differentiation and functional maintenance of murine pancreatic β cells, but its role in human β cell differentiation is under elucidation. Here, we showed that although FoxO1 expression level remained consistent, cytoplasmic phosphorylated FoxO1 protein level increased during IPC differentiation of hESCs induced by DE protocol. Lentiviral silencing of FoxO1 in pancreatic progenitors upregulated the levels of pancreatic islet differentiation-related genes and improved glucose-stimulated insulin secretion response in their progeny IPCs, whereas overexpression of FoxO1 showed the opposite effects. Notably, treatment with the FoxO1 inhibitor AS1842856 displayed similar effects with FoxO1 knockdown in pancreatic progenitors. These effects were closely associated with the mutually exclusive nucleocytoplasmic shuttling of FoxO1 and Pdx1 in the AS1842856-treated pancreatic progenitors. Our data demonstrated a promising effect of FoxO1 inhibition by the small molecule on gene expression profile during the differentiation, and in turn, on determining IPC maturation via modulating subcellular location of FoxO1 and Pdx1. Therefore, we identify a novel role of FoxO1 inhibition in promoting IPC differentiation of hESCs, which may provide clues for induction of mature β cells from hESCs and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Fei Yu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
11
|
Tritschler S, Theis FJ, Lickert H, Böttcher A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 2017; 6:974-990. [PMID: 28951822 PMCID: PMC5605721 DOI: 10.1016/j.molmet.2017.06.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by loss or dysfunction of insulin-producing β-cells in the pancreas, resulting in failure of blood glucose regulation and devastating secondary complications. Thus, β-cells are currently the prime target for cell-replacement and regenerative therapy. Triggering endogenous repair is a promising strategy to restore β-cell mass and normoglycemia in diabetic patients. Potential strategies include targeting specific β-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells (e.g. α- or δ-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of β-cell maturation, maintenance, and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be targeted for β-cell regeneration in diabetic patients. SCOPE OF REVIEW This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous β-cell regeneration. We discuss new findings on the regulation of postnatal β-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of functional β-cell heterogeneity in animal models and adds new knowledge on the extent of β-cell heterogeneity in humans as well as its role in homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the formation of new β-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types and their implication in diabetes. MAJOR CONCLUSION Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide information on processes and factors that govern β-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and molecular targets for therapy.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
12
|
Jiang Y, Zhang W, Xu S, Lin H, Sui W, Liu H, Peng L, Fang Q, Chen L, Lou J. Transplantation of human fetal pancreatic progenitor cells ameliorates renal injury in streptozotocin-induced diabetic nephropathy. J Transl Med 2017; 15:147. [PMID: 28655312 PMCID: PMC5488369 DOI: 10.1186/s12967-017-1253-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Pancreas or islet transplantation has been reported to prevent the development of DN lesions and ameliorate or reverse existing glomerular lesions in animal models. Shortage of pancreas donor is a severe problem. Islets derived from stem cells may offer a potential solution to this problem. Objective To evaluate the effect of stem cell-derived islet transplantation on DN in a rat model of streptozotocin-induced DM. Methods Pancreatic progenitor cells were isolated from aborted fetuses of 8 weeks of gestation. And islets were prepared by suspension culture after a differentiation of progenitor cells in medium containing glucagon-like peptide-1 (Glp-1) and nicotinamide. Then islets were transplanted into the liver of diabetic rats via portal vein. Blood glucose, urinary volume, 24 h urinary protein and urinary albumin were measured once biweekly for 16 weeks. Graft survival was evaluated by monitoring human C-peptide level in rat sera and by immunohistochemical staining for human mitochondrial antigen and human C-peptide in liver tissue. The effect of progenitor-derived islets on filtration membrane was examined by electron microscopy and real-time polymerase chain reaction (PCR). Immunohistochemical staining, real-time PCR and western blot were employed for detecting fibronectin, protein kinase C beta (PKCβ), protein kinase A (PKA), inducible nitric oxide synthase (iNOS) and superoxide dismutase (SOD). Results Islet-like clusters derived from 8th gestational-week human fetal pancreatic progenitors survived in rat liver. And elevated serum level of human C-peptide was detected. Blood glucose, 24 h urinary protein and urinary albumin were lower in progenitor cell group than those in DN or insulin treatment group. Glomerular basement membrane thickness and fibronectin accumulation decreased significantly while podocytes improved morphologically in progenitor cell group. Furthermore, receptor of advanced glycation end products and PKCβ became down-regulated whereas PKA up-regulated by progenitor cell-derived islets. And iNOS rose while SOD declined. Conclusions DN may be reversed by transplantation of human fetal pancreatic progenitor cell-derived islets. And fetal pancreatic progenitor cells offer potential resources for cell replacement therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1253-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongwei Jiang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Hua Lin
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Weiguo Sui
- First Kidney Transplantation Hemopurification Center of Chinese PLA, 181st Hospital of Chinese People's Liberation Army, Guilin, 541002, China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
13
|
Jiang Z, Tian J, Zhang W, Yan H, Liu L, Huang Z, Lou J, Ma X. Forkhead Protein FoxO1 Acts as a Repressor to Inhibit Cell Differentiation in Human Fetal Pancreatic Progenitor Cells. J Diabetes Res 2017; 2017:6726901. [PMID: 28349071 PMCID: PMC5350409 DOI: 10.1155/2017/6726901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/27/2016] [Accepted: 01/29/2017] [Indexed: 01/24/2023] Open
Abstract
Our colleagues have reported previously that human pancreatic progenitor cells can readily differentiate into insulin-containing cells. Particularly, transplantation of these cell clusters upon in vitro induction for 3-4 w partially restores hyperglycemia in diabetic nude mice. In this study, we used human fetal pancreatic progenitor cells to identify the forkhead protein FoxO1 as the key regulator for cell differentiation. Thus, induction of human fetal pancreatic progenitor cells for 1 week led to increase of the pancreatic β cell markers such as Ngn3, but decrease of stem cell markers including Oct4, Nanog, and CK19. Of note, FoxO1 knockdown or FoxO1 inhibitor significantly upregulated Ngn3 and insulin as well as the markers such as Glut2, Kir6.2, SUR1, and VDCC, which are designated for mature β cells. On the contrary, overexpression of FoxO1 suppressed the induction and reduced expression of these β cell markers. Taken together, these results suggest that FoxO1 may act as a repressor to inhibit cell differentiation in human fetal pancreatic progenitor cells.
Collapse
Affiliation(s)
- Zongzhe Jiang
- Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen 518060, China
| | - Jingjing Tian
- Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen 518060, China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hao Yan
- Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen 518060, China
| | - Liping Liu
- Shenzhen Hightide Biopharmaceutical Ltd., Shenzhen 518000, China
| | - Zhenhe Huang
- Department of Aging Medicine, The Sixth Hospital of Shenzhen Municipality, Shenzhen 518060, China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, Shenzhen University, Shenzhen 518060, China
- *Xiaosong Ma:
| |
Collapse
|
14
|
Xin Y, Jiang X, Wang Y, Su X, Sun M, Zhang L, Tan Y, Wintergerst KA, Li Y, Li Y. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia. PLoS One 2016; 11:e0145838. [PMID: 26756576 PMCID: PMC4710504 DOI: 10.1371/journal.pone.0145838] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) into insulin-producing cells (IPCs) for autologous transplantation may alleviate those limitations. METHODS hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6) differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ)-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice. RESULTS The differentiated IPCs were characterized by Dithizone (DTZ) positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo. CONCLUSIONS IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.
Collapse
Affiliation(s)
- Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xuejin Su
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Meiyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yi Tan
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Kupper A. Wintergerst
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Yan Li
- Department of Orthopedic Surgery, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (Yan Li); (Yulin Li)
| | - Yulin Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- * E-mail: (Yan Li); (Yulin Li)
| |
Collapse
|
15
|
Gupta AK, Jadhav SH, Tripathy NK, Nityanand S. Fetal Kidney Cells Can Ameliorate Ischemic Acute Renal Failure in Rats through Their Anti-Inflammatory, Anti-Apoptotic and Anti-Oxidative Effects. PLoS One 2015; 10:e0131057. [PMID: 26086475 PMCID: PMC4472721 DOI: 10.1371/journal.pone.0131057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
Abstract
Fetal kidney cells may contain multiple populations of kidney stem cells and thus appear to be a suitable cellular therapy for the treatment of acute renal failure (ARF) but their biological characteristics and therapeutic potential have not been adequately explored. We have culture expanded fetal kidney cells derived from rat fetal kidneys, characterized them and evaluated their therapeutic effect in an ischemia reperfusion (IR) induced rat model of ARF. The fetal kidney cells grew in culture as adherent spindle shaped/polygonal cells and expressed CD29, CD44, CD73, CD90, CD105, CD24 and CD133 markers. Administration of PKH26 labeled fetal kidney cells in ARF rats resulted in a significant decrease in the levels of blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin and decreased tubular necrosis in the kidney tissues (p<0.05 for all). The injected fetal kidney cells were observed to engraft around injured tubular cells, and there was increased proliferation and decreased apoptosis of tubular cells in the kidneys (p<0.05 for both). In addition, the kidney tissues of ARF rats treated with fetal kidney cells had a higher gene expression of renotropic growth factors (VEGF-A, IGF-1, BMP-7 and bFGF) and anti-inflammatory cytokine (IL10); up regulation of anti-oxidative markers (HO-1 and NQO-1); and a lower Bax/Bcl2 ratio as compared to saline treated rats (p<0.05 for all). Our data shows that culture expanded fetal kidney cells express mesenchymal and renal progenitor markers, and ameliorate ischemic ARF predominantly by their anti-apoptotic, anti-inflammatory and anti-oxidative effects.
Collapse
Affiliation(s)
- Ashwani Kumar Gupta
- Stem Cell Research Facility (SCRF), Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India
| | - Sachin H Jadhav
- Stem Cell Research Facility (SCRF), Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India
| | - Naresh Kumar Tripathy
- Stem Cell Research Facility (SCRF), Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India
| | - Soniya Nityanand
- Stem Cell Research Facility (SCRF), Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|
16
|
Tan TE, Peh GSL, George BL, Cajucom-Uy HY, Dong D, Finkelstein EA, Mehta JS. A cost-minimization analysis of tissue-engineered constructs for corneal endothelial transplantation. PLoS One 2014; 9:e100563. [PMID: 24949869 PMCID: PMC4065108 DOI: 10.1371/journal.pone.0100563] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses.
Collapse
Affiliation(s)
- Tien-En Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore National Eye Centre, Singapore
- * E-mail:
| | - Gary S. L. Peh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | - Benjamin L. George
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
| | | | - Di Dong
- Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore
| | - Eric A. Finkelstein
- Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore
- Lien Centre for Palliative Care, Singapore
| | - Jodhbir S. Mehta
- Singapore National Eye Centre, Singapore
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
- Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
17
|
Human fetal pancreatic islet-like structures as source material to treat type 1 diabetes. Stem Cell Res Ther 2014; 4:159. [PMID: 24377429 PMCID: PMC4054946 DOI: 10.1186/scrt389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The incidence of type 1 diabetes is increasing worldwide. Current therapy continues to be suboptimal. An exciting therapeutic advance in the short term is closed loop technology development and application. However, cell and tissue therapy continues to be an unmet need for the disorder. Human islets isolated from deceased donors will be clinically available to treat type 1 diabetes within the next 1 to 2 years. Other approaches such as xenotransplantation and islet products derived from human embryonic stem cells and induced pluripotent stem cells are currently being pursued. The current commentary provides context and discusses future endeavors for transplantation of islet-like structures derived from fetal pancreas.
Collapse
|