1
|
Tian M, Zhou Y, Guo Y, Xia Q, Wang Z, Zheng X, Shen J, Guo J, Duan S, Wang L. MicroRNAs in adipose tissue fibrosis: Mechanisms and therapeutic potential. Genes Dis 2025; 12:101287. [PMID: 40242037 PMCID: PMC12002615 DOI: 10.1016/j.gendis.2024.101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2025] Open
Abstract
Adipose tissue fibrosis, characterized by abnormal extracellular matrix deposition within adipose tissue, signifies a crucial indicator of adipose tissue malfunction, potentially leading to organ tissue dysfunction. Various factors, including a high-fat diet, non-alcoholic fatty liver disease, and insulin resistance, coincide with adipose tissue fibrosis. MicroRNAs (miRNAs) represent a class of small non-coding RNAs with significant influence on tissue fibrosis through diverse signaling pathways. For instance, in response to a high-fat diet, miRNAs can modulate signaling pathways such as TGF-β/Smad, PI3K/AKT, and PPAR-γ to impact adipose tissue fibrosis. Furthermore, miRNAs play roles in inhibiting fibrosis in different contexts: suppressing corneal fibrosis via the TGF-β/Smad pathway, mitigating cardiac fibrosis through the VEGF signaling pathway, reducing wound fibrosis via regulation of the MAPK signaling pathway, and diminishing fibrosis post-fat transplantation via involvement in the PDGFR-β signaling pathway. Notably, the secretome released by miRNA-transfected adipose-derived stem cells facilitates targeted delivery of miRNAs to evade host immune rejection, enhancing their anti-fibrotic efficacy. Hence, this study endeavors to elucidate the role and mechanism of miRNAs in adipose tissue fibrosis and explore the mechanisms and advantages of the secretome released by miRNA-transfected adipose-derived stem cells in combating fibrotic diseases.
Collapse
Affiliation(s)
- Mei Tian
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yang Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yitong Guo
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qing Xia
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinying Zheng
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Junping Guo
- Rainbowfish Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Lijun Wang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Zhou L, Huang C, HuangFu C, Shen P, Hu Y, Wang N, Li G, Deng H, Xia T, Zhou Y, Li J, Bai Z, Zhou W, Gao Y. Low-dose radiation-induced SUMOylation of NICD1 negatively regulates osteogenic differentiation in BMSCs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116655. [PMID: 38968871 DOI: 10.1016/j.ecoenv.2024.116655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.
Collapse
Affiliation(s)
- Lei Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Congshu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chaoji HuangFu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yangyi Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Huifang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tiantian Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongqiang Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jiamiao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
3
|
Wan XX, Hu XM, Xiong K. Multiple pretreatments can effectively improve the functionality of mesenchymal stem cells. World J Stem Cells 2024; 16:58-63. [PMID: 38455107 PMCID: PMC10915953 DOI: 10.4252/wjsc.v16.i2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024] Open
Abstract
In this editorial, we offer our perspective on the groundbreaking study entitled "Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells", recently published in World Journal of Stem Cells. Despite over three decades of research on the clinical application of mesenchymal stem cells (MSCs), only a few therapeutic products have made it to clinical use, due to multiple preclinical and clinical challenges yet to be addressed. The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics, which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs. As we delve deeper into the intricacies of pretreatment methodologies, we anticipate a transformative shift in the landscape of MSC-based therapies, ultimately contributing to improved patient outcomes and advancing the field as a whole.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
4
|
Chen X, Zhang L, Chai W, Tian P, Kim J, Ding J, Zhang H, Liu C, Wang D, Cui X, Pan H. Hypoxic Microenvironment Reconstruction with Synergistic Biofunctional Ions Promotes Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2301984. [PMID: 37740829 DOI: 10.1002/adhm.202301984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Chronic hypoxia and ischemia make diabetic wounds non-healing. Cellular functions of diabetic chronic wounds are inhibited under a pathological environment. Therefore, this work develops a composite hydrogel system to promote diabetic wound healing. The composite hydrogel system consists of ε-poly-lysine (EPL), calcium peroxide (CP), and borosilicate glass (BG). The hydrogel supplies continuous dissolved oxygen molecules to the wound that can penetrate the skin tissue to restore normal cellular function and promote vascular regeneration. Biofunctional ions released from BGs can recruit more macrophages through neovascularization and modulate macrophage phenotypic transformation. Combining oxygen-mediated vascular regeneration and ion-mediated inflammatory regulation significantly accelerated diabetic wound healing. These findings indicate that this composite hydrogel system holds promise as a novel tissue engineering material.
Collapse
Affiliation(s)
- Xiaochen Chen
- School of materials science and engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Liyan Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wenwen Chai
- School of materials science and engineering, Tongji University, Shanghai, 201804, P. R. China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Pengfei Tian
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jua Kim
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jingxin Ding
- School of materials science and engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Hao Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Deping Wang
- School of materials science and engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen, 518071, P. R. China
| |
Collapse
|
5
|
Ma M, Shen W, Li B, Sun M, Lin D, Meng L. Optimization of a concentrated growth factor/mesoporous bioactive glass composite scaffold and its application in rabbit mandible defect regeneration. Biomater Sci 2023; 11:6357-6372. [PMID: 37584200 DOI: 10.1039/d3bm00805c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Maxillofacial bone defect repair and regeneration remains a tremendous challenge in the field of stomatology. However, the limited osteoinductivity of artificial materials and the high cost of bioactive agents restrain their clinical translation. This study aimed to construct an economical and efficient concentrated growth factor/mesoporous bioactive glass (CGF/MBG) composite scaffold for bone regeneration. The biochemical composition and biological effects of different forms of CGFs were systematically compared, and the results showed that CGF-conditioned medium effectively promoted proliferation, migration and osteogenesis of allogenic BMSCs. Gel phase CGF (gpCGF) exhibited superior bioactivity and osteoinductivity to liquid phase CGF (lpCGF) and liquid/gel mixed phase CGF (lgpCGF), and was further applied to construct CGF/MBG scaffolds. In vitro studies demonstrated that co-culture with gpCGF-conditioned medium further enhanced the biocompatibility of MBG, increasing cell adhesion and proliferation on the scaffold. On this basis, two compositing approaches to construct the scaffold by fibrin gel formation (CGF/FG/MBG) and freeze-drying (fdCGF/MBG) were applied, and the biological efficacy of CGFs was compared in vivo. In a rabbit mandibular defect model, higher osteogenic efficiency in in situ bone regeneration of CGF/FG/MBG composite scaffolds was proved, compared with fdCGF/MBG. Taken together, the CGF/FG/MBG composite scaffold is expected to be an efficient bone repairing therapy for clinical translation, and the CGF-composited scaffold using gpCGF and the fibrin gel formation method is a promising way to enhance the bioactivity and osteoinductivity of current clinical bone repairing materials, providing new thoughts on the development of future orthopedic biomaterials.
Collapse
Affiliation(s)
- Mengran Ma
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Wenjing Shen
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Beibei Li
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Mengwen Sun
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Dan Lin
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Lingqiang Meng
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
6
|
Wang H, Shi J, Wang J, Hu Y. MicroRNA‑378: An important player in cardiovascular diseases (Review). Mol Med Rep 2023; 28:172. [PMID: 37503766 PMCID: PMC10436248 DOI: 10.3892/mmr.2023.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/31/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is a common chronic clinical condition and is the main cause of death in humans worldwide. Understanding the genetic and molecular mechanisms involved in the development of CVD is essential to develop effective prevention strategies and therapeutic measures. An increasing number of CVD‑related genetic studies have been conducted, including those on the potential roles of microRNAs (miRs). These studies have demonstrated that miR‑378 is involved in the pathological processes of CVD, including those of myocardial infarction, heart failure and coronary heart disease. Despite the potential importance of miR‑378 CVD, a comprehensive summary of the related literature is lacking. Thus, the present review aimed to summarize the findings of previous studies on the roles and mechanisms of miR‑378 in a variety of CVDs and provide an up‑to date basis for further r research targeting the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jingjing Shi
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jiuchong Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Yuanhui Hu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
7
|
Arrigo A, Regua AT, Najjar MK, Lo HW. Tumor Suppressor Candidate 2 (TUSC2): Discovery, Functions, and Cancer Therapy. Cancers (Basel) 2023; 15:2455. [PMID: 37173921 PMCID: PMC10177220 DOI: 10.3390/cancers15092455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor Suppressor Candidate 2 (TUSC2) was first discovered as a potential tumor suppressor gene residing in the frequently deleted 3p21.3 chromosomal region. Since its discovery, TUSC2 has been found to play vital roles in normal immune function, and TUSC2 loss is associated with the development of autoimmune diseases as well as impaired responses within the innate immune system. TUSC2 also plays a vital role in regulating normal cellular mitochondrial calcium movement and homeostasis. Moreover, TUSC2 serves as an important factor in premature aging. In addition to TUSC2's normal cellular functions, TUSC2 has been studied as a tumor suppressor gene that is frequently deleted or lost in a multitude of cancers, including glioma, sarcoma, and cancers of the lung, breast, ovaries, and thyroid. TUSC2 is frequently lost in cancer due to somatic deletion within the 3p21.3 region, transcriptional inactivation via TUSC2 promoter methylation, post-transcriptional regulation via microRNAs, and post-translational regulation via polyubiquitination and proteasomal degradation. Additionally, restoration of TUSC2 expression promotes tumor suppression, eventuating in decreased cell proliferation, stemness, and tumor growth, as well as increased apoptosis. Consequently, TUSC2 gene therapy has been tested in patients with non-small cell lung cancer. This review will focus on the current understanding of TUSC2 functions in both normal and cancerous tissues, mechanisms of TUSC2 loss, TUSC2 cancer therapeutics, open questions, and future directions.
Collapse
Affiliation(s)
- Austin Arrigo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
- Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Angelina T. Regua
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
| | - Mariana K. Najjar
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
- Graduate School of Arts and Sciences, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA (A.T.R.); (M.K.N.)
| |
Collapse
|
8
|
Sun J, Ge Y, Chao T, Bai R, Wang C. The Role of miRNA in the Regulation of Angiogenesis in Ischemic Heart Disease. Curr Probl Cardiol 2023; 48:101637. [PMID: 36773949 DOI: 10.1016/j.cpcardiol.2023.101637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Despite continued improvements in primary prevention and treatment, ischemic heart disease (IHD) is the most common cause of mortality in both developing and developed countries. Promoting angiogenesis and reconstructing vascular network in ischemic myocardium are critical process of postischemic tissue repair. Effective strategies to promote survival and avoid apoptosis of endothelial cells in the ischemic myocardium can help to achieve long-term cardiac angiogenesis. Therefore, it is of great importance to investigate the molecular pathophysiology of angiogenesis in-depth and to find the key targets that promote angiogenesis. Recently years, many studies have found that microRNAs play important regulatory roles in almost all process of angiogenesis, including vascular sprouting, proliferation, survival and migration of vascular endothelial cells, recruitment of vascular progenitor cells, and control of angiopoietin expression. This review presents detailed information about the regulatory role of miRNAs in the angiogenesis of IHD in recent years, and provides new therapeutic ideas for the treatment of IHD.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Uzhachenko R, Shimamoto A, Chirwa SS, Ivanov SV, Ivanova AV, Shanker A. Mitochondrial Fus1/Tusc2 and cellular Ca2 + homeostasis: tumor suppressor, anti-inflammatory and anti-aging implications. Cancer Gene Ther 2022; 29:1307-1320. [PMID: 35181743 PMCID: PMC9576590 DOI: 10.1038/s41417-022-00434-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
FUS1/TUSC2 (FUSion1/TUmor Suppressor Candidate 2) is a tumor suppressor gene (TSG) originally described as a member of the TSG cluster from human 3p21.3 chromosomal region frequently deleted in lung cancer. Its role as a TSG in lung, breast, bone, and other cancers was demonstrated by several groups, but molecular mechanisms of its activities are starting to unveil lately. They suggest that Fus1-dependent mechanisms are relevant in etiologies of diseases beyond cancer, such as chronic inflammation, bacterial and viral infections, premature aging, and geriatric diseases. Here, we revisit the discovery of FUS1 gene in the context of tumor initiation and progression, and review 20 years of research into FUS1 functions and its molecular, structural, and biological aspects that have led to its use in clinical trials and gene therapy. We present a data-driven view on how interactions of Fus1 with the mitochondrial Ca2+ (mitoCa2+) transport machinery maintain cellular Ca2+ homeostasis and control cell apoptosis and senescence. This Fus1-mediated cellular homeostasis is at the crux of tumor suppressor, anti-inflammatory and anti-aging activities.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sergey V Ivanov
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA.
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Tian Y, Fang J, Zeng F, Chen Y, Pei Y, Gu F, Ding C, Niu G, Gu B. The role of hypoxic mesenchymal stem cells in tumor immunity. Int Immunopharmacol 2022; 112:109172. [PMID: 36087506 DOI: 10.1016/j.intimp.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
The emerging evidence has shown that mesenchymal stem cells (MSCs) not only exert a significant role in the occurrence and development of tumors, but also have immunosuppressive potential in tumor immunity. Hypoxia is a sign of solid tumors, but how functions of hypoxic MSCs alter in the tumor microenvironment (TME) remains less well and comprehensively described. Herein, we mostly describe and investigate recent advances in our comprehension of the emerging effects of different tissue derived MSCs in hypoxia condition on tumor progression and development, as well as bidirectional influence between hypoxic MSCs and immune cells of the TME. Furthermore, we also discuss the potential drug-resistant and therapeutic role of hypoxic MSCs. It can be envisaged that novel and profound insights into the functionality of hypoxic MSCs and the underlying mechanisms in tumor and tumor immunity will promote the meaningful and promising treatment strategies against tumor.
Collapse
Affiliation(s)
- Yiqing Tian
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jian Fang
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, PR China
| | - Fanpeng Zeng
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yongqiang Chen
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yunfeng Pei
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Feng Gu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Chen Ding
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Guoping Niu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
11
|
Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022; 9:842800. [PMID: 35620712 PMCID: PMC9127390 DOI: 10.3389/fmed.2022.842800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Angiogenic Effects and Crosstalk of Adipose-Derived Mesenchymal Stem/Stromal Cells and Their Extracellular Vesicles with Endothelial Cells. Int J Mol Sci 2021; 22:ijms221910890. [PMID: 34639228 PMCID: PMC8509224 DOI: 10.3390/ijms221910890] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived mesenchymal stem/stromal cells (ASCs) are an adult stem cell population able to self-renew and differentiate into numerous cell lineages. ASCs provide a promising future for therapeutic angiogenesis due to their ability to promote blood vessel formation. Specifically, their ability to differentiate into endothelial cells (ECs) and pericyte-like cells and to secrete angiogenesis-promoting growth factors and extracellular vesicles (EVs) makes them an ideal option in cell therapy and in regenerative medicine in conditions including tissue ischemia. In recent angiogenesis research, ASCs have often been co-cultured with an endothelial cell (EC) type in order to form mature vessel-like networks in specific culture conditions. In this review, we introduce co-culture systems and co-transplantation studies between ASCs and ECs. In co-cultures, the cells communicate via direct cell-cell contact or via paracrine signaling. Most often, ASCs are found in the perivascular niche lining the vessels, where they stabilize the vascular structures and express common pericyte surface proteins. In co-cultures, ASCs modulate endothelial cells and induce angiogenesis by promoting tube formation, partly via secretion of EVs. In vivo co-transplantation of ASCs and ECs showed improved formation of functional vessels over a single cell type transplantation. Adipose tissue as a cell source for both mesenchymal stem cells and ECs for co-transplantation serves as a prominent option for therapeutic angiogenesis and blood perfusion in vivo.
Collapse
|
13
|
Liu J, He J, Ge L, Xiao H, Huang Y, Zeng L, Jiang Z, Lu M, Hu Z. Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy. Stem Cell Res Ther 2021; 12:413. [PMID: 34294127 PMCID: PMC8296710 DOI: 10.1186/s13287-021-02480-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a major public health concern, and mesenchymal stem cells (MSCs) hold great potential for treating ICH. However, the quantity and quality of MSCs decline in the cerebral niche, limiting the potential efficacy of MSCs. Hypoxic preconditioning is suggested to enhance the survival of MSCs and augment the therapeutic efficacy of MSCs in ICH. MicroRNAs (miRNAs) are known to mediate cellular senescence. However, the precise mechanism by which miRNAs regulate the senescence of hypoxic MSCs remains to be further studied. In the present study, we evaluated whether hypoxic preconditioning enhances the survival and therapeutic effects of olfactory mucosa MSC (OM-MSC) survival and therapeutic effects in ICH and investigated the mechanisms by which miRNA ameliorates hypoxic OM-MSC senescence. METHODS In the in vivo model, ICH was induced in mice by administration of collagenase IV. At 24 h post-ICH, 5 × 105 normoxia or hypoxia OM-MSCs or saline was administered intracerebrally. The behavioral outcome, neuronal apoptosis, and OM-MSC survival were evaluated. In the in vitro model, OM-MSCs were exposed to hemin. Cellular senescence was examined by evaluating the expressions of P16INK4A, P21, P53, and by β-galactosidase staining. Microarray and bioinformatic analyses were performed to investigate the differences in the miRNA expression profiles between the normoxia and hypoxia OM-MSCs. Autophagy was confirmed using the protein expression levels of LC3, P62, and Beclin-1. RESULTS In the in vivo model, transplanted OM-MSCs with hypoxic preconditioning exhibited increased survival and tissue-protective capability. In the in vitro model, hypoxia preconditioning decreased the senescence of OM-MSCs exposed to hemin. Bioinformatic analysis identified that microRNA-326 (miR-326) expression was significantly increased in the hypoxia OM-MSCs compared with that of normoxia OM-MSCs. Upregulation of miR-326 alleviated normoxia OM-MSC senescence, whereas miR-326 downregulation increased hypoxia OM-MSC senescence. Furthermore, we showed that miR-326 alleviated cellular senescence by upregulating autophagy. Mechanistically, miR-326 promoted the autophagy of OM-MSCs via the PI3K signaling pathway by targeting polypyrimidine tract-binding protein 1 (PTBP1). CONCLUSIONS Our study shows that hypoxic preconditioning delays OM-MSC senescence and augments the therapeutic efficacy of OM-MSCs in ICH by upregulating the miR-326/PTBP1/PI3K-mediated autophagy.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Lu
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China. .,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Nan K, Zhang Y, Zhang X, Li D, Zhao Y, Jing Z, Liu K, Shang D, Geng Z, Fan L. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu). Stem Cell Res Ther 2021; 12:331. [PMID: 34099038 PMCID: PMC8186190 DOI: 10.1186/s13287-021-02390-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Local ischemia and defective osteogenesis are implicated in the progression of glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Recent studies have revealed that exosomes released from adipose-derived stem cells (ASCs) play important roles in ONFH therapy. The present study aimed to investigate whether exosomes derived from miR-378-overexpressing ASCs (miR-378-ASCs-Exos) could promote angiogenesis and osteogenesis in GC-induced ONFH. METHODS In vitro, we investigated the osteogenic potential of miR-378-ASCs-Exos on bone marrow stromal cells (BMSCs) by alkaline phosphatase staining and western blotting. The angiogenic effects of miR-378-ASCs-Exos on human umbilical vein endothelial cells (HUVECs) were examined by evaluating their proliferation, migration, and tube-forming analyses. We identified the underlying mechanisms of miR-378 in osteogenic and angiogenic regulation. In addition, an ONFH rat model was established to explore the effects of miR-378-ASCs-Exos through histological and immunohistochemical staining and micro-CT in vivo. RESULTS Administration of miR-378-ASCs-Exos improved the osteogenic and angiogenic potentials of BMSCs and HUVECs. miR-378 negatively regulated the suppressor of fused (Sufu) and activated Sonic Hedgehog (Shh) signaling pathway, and recombinant Sufu protein reduced the effects triggered by miR-378-ASCs-Exos. In vivo experiments indicated that miR-378-ASCs-Exos markedly accelerated bone regeneration and angiogenesis, which inhibited the progression of ONFH. CONCLUSION Our study indicated that miR-378-ASCs-Exos enhances osteogenesis and angiogenesis by targeting Sufu to upregulate the Shh signaling pathway, thereby attenuating GC-induced ONFH development.
Collapse
Affiliation(s)
- Kai Nan
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Yuankai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Xin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Dong Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Yan Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Zhaopu Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Donglong Shang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Zilong Geng
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| | - Lihong Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi Province People’s Republic of China
| |
Collapse
|
15
|
Zhou H, Li X, Wu RX, He XT, An Y, Xu XY, Sun HH, Wu LA, Chen FM. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling. Cell Prolif 2021; 54:e13026. [PMID: 33759282 PMCID: PMC8088471 DOI: 10.1111/cpr.13026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Previously, our investigations demonstrated robust pro‐angiogenic potentials of extracellular vesicles secreted by periodontitis‐compromised dental pulp stem cells (P‐EVs) when compared to those from healthy DPSCs (H‐EVs), but the underlying mechanism remains unknown. Materials and methods Here, circulating microRNAs (miRNAs) specifically found in P‐EVs (compared with H‐EVs) were identified by Agilent miRNA microarray analysis, and the roles of the candidate miRNA in P‐EV‐enhanced cell angiogenesis were confirmed by cell transfection and RNA interference methods. Next, the direct binding affinity between the candidate miRNA and its target gene was evaluated by luciferase reporter assay. CCK‐8, transwell/scratch wound healing and tube formation assays were established to investigate the proliferation, migration, and tube formation abilities of endothelial cells (ECs). Western blot was employed to measure the protein levels of Hedgehog/Gli1 signalling pathway components and angiogenesis‐related factors. Results The angiogenesis‐related miRNA miR‐378a was found to be enriched in P‐EVs, and its role in P‐EV‐enhanced cell angiogenesis was confirmed, wherein Sufu was identified as a downstream target gene of miR‐378a. Functionally, silencing of Sufu stimulated EC proliferation, migration and tube formation by activating Hedgehog/Gli1 signalling. Further, we found that incubation with P‐EVs enabled the transmission of P‐EV‐contained miR‐378a to ECs. Subsequently, the expressions of Sufu, Gli1 and vascular endothelial growth factor in ECs were significantly influenced by P‐EV‐mediated miR‐378a transmission. Conclusions These data suggest that P‐EVs carrying miR‐378a promote EC angiogenesis by downregulating Sufu to activate the Hedgehog/Gli1 signalling pathway. Our findings reveal a crucial role for EV‐derived miR‐378a in cell angiogenesis and hence offer a new target for modifying stem cells and their secreted EVs to enhance vessel regenerative potential.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, China
| | - Xuan Li
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Rui-Xin Wu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Xiao-Tao He
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Ying An
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Xin-Yue Xu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China.,Shaanxi Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environments, Fourth Military Medical University, Xi'an, China
| | - Hai-Hua Sun
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Li-An Wu
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm 2021; 600:120477. [PMID: 33737099 DOI: 10.1016/j.ijpharm.2021.120477] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as a promising living carrier for targeted drug delivery. A wealth of literature has shown evidence for great advances in MSCs-based drug delivery system (MSCs-DDS) in the treatment of various diseases. Nevertheless, as this field of study rapidly advances, several challenges associated with this delivery strategy have arisen, mainly due to the inherent limitations of MSCs. To this end, several novel technologies are being developed in parallel to improve the efficiency or safety of this system. In this review, we introduce recent advances and summarize the present challenges of MSCs-DDS. We also highlight some potential technologies to improve MSCs-DDS, including nanotechnology, genome engineering technology, and biomimetic technology. Finally, prospects for application of artificially improved MSCs-DDS are addressed. The technologies summarized in this review provide a general guideline for the improvement of MSCs-DDS.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Ding MH, Lozoya EG, Rico RN, Chew SA. The Role of Angiogenesis-Inducing microRNAs in Vascular Tissue Engineering. Tissue Eng Part A 2020; 26:1283-1302. [PMID: 32762306 DOI: 10.1089/ten.tea.2020.0170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is an important process in tissue repair and regeneration as blood vessels are integral to supply nutrients to a functioning tissue. In this review, the application of microRNAs (miRNAs) or anti-miRNAs that can induce angiogenesis to aid in blood vessel formation for vascular tissue engineering in ischemic diseases such as peripheral arterial disease and stroke, cardiac diseases, and skin and bone tissue engineering is discussed. Endothelial cells (ECs) form the endothelium of the blood vessel and are recognized as the primary cell type that drives angiogenesis and studied in the applications that were reviewed. Besides ECs, mesenchymal stem cells can also play a pivotal role in these applications, specifically, by secreting growth factors or cytokines for paracrine signaling and/or as constituent cells in the new blood vessel formed. In addition to delivering miRNAs or cells transfected/transduced with miRNAs for angiogenesis and vascular tissue engineering, the utilization of extracellular vesicles (EVs), such as exosomes, microvesicles, and EVs collectively, has been more recently explored. Proangiogenic miRNAs and anti-miRNAs contribute to angiogenesis by targeting the 3'-untranslated region of targets to upregulate proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor, and hypoxia-inducible factor-1 and increase the transduction of VEGF signaling through the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways such as phosphatase and tensin homolog or regulating the signaling of other pathways important for angiogenesis such as the Notch signaling pathway and the pathway to produce nitric oxide. In conclusion, angiogenesis-inducing miRNAs and anti-miRNAs are promising tools for vascular tissue engineering for several applications; however, future work should emphasize optimizing the delivery and usage of these therapies as miRNAs can also be associated with the negative implications of cancer.
Collapse
Affiliation(s)
- May-Hui Ding
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Eloy G Lozoya
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Rene N Rico
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
18
|
Lazzara F, Trotta MC, Platania CBM, D'Amico M, Petrillo F, Galdiero M, Gesualdo C, Rossi S, Drago F, Bucolo C. Stabilization of HIF-1α in Human Retinal Endothelial Cells Modulates Expression of miRNAs and Proangiogenic Growth Factors. Front Pharmacol 2020; 11:1063. [PMID: 32848728 PMCID: PMC7396674 DOI: 10.3389/fphar.2020.01063] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Retinal hypoxia is one of the causative factors of diabetic retinopathy and is also one of the triggers of VEGF release. We hypothesized that specific dysregulated miRNAs in diabetic retinopathy could be linked to hypoxia-induced damage in human retinal endothelial cells (HRECs). We investigated in HRECs the effects of chemical (CoCl2) hypoxia on the expression of HIF-1α, VEGF, PlGF, and of a focused set of miRNAs. We found that miR-20a-5p, miR-20b-5p, miR-27a-3p, miR-27b-3p, miR-206-3p, miR-381-3p correlated also with expression of TGFβ signaling pathway genes in HRECs, challenged with chemical hypoxic stimuli. In conclusion, our data suggest that retinal angiogenesis would be promoted, at least under HIF-1α activation, by upregulation of PlGF and other factors such as miRNAs, VEGFA, and TGFβ1.
Collapse
Affiliation(s)
- Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Petrillo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Xiong L, Zhou H, Zhao Q, Xue L, Al-Hawwas M, He J, Wu M, Zou Y, Yang M, Dai J, He M, Wang T. Overexpression of miR-124 Protects Against Neurological Dysfunction Induced by Neonatal Hypoxic-Ischemic Brain Injury. Cell Mol Neurobiol 2020; 40:737-750. [PMID: 31916069 PMCID: PMC11448850 DOI: 10.1007/s10571-019-00769-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of lifelong disabilities worldwide, without effective therapies and clear regulatory mechanisms. MicroRNAs (miRNAs) act as a significant regulator in neuroregeneration and neuronal apoptosis, thus holding great potential as therapeutic targets in HIE. In this study, we established the hypoxia-ischemia (HI) model in vivo and oxygen-glucose deprivation (OGD) model in vitro. Zea-longa score and magnetic resonance imaging were applied to verify HI-induced neuronal dysfunction and brain infarction. Subsequently, a miRNA microarray analysis was employed to profile miRNA transcriptomes. Down-regulated miR-124 was found 24 h after HIE, which corresponded to the change in PC12, SHSY5Y, and neurons after OGD. To determine the function of miR-124, mimics and lentivirus-mediated overexpression were used to regulate miR-124 in vivo and in vitro, respectively. Our results showed that miR-124 overexpression obviously promoted cell survival and suppressed neuronal apoptosis. Further, the memory and neurological function of rats was also obviously improved at 1 and 2 months after HI, indicated by the neurological severity score, Y-maze test, open field test, and rotating rod test. Our findings showed that overexpression of miR-124 can be a promising new strategy for HIE therapy in future clinical practice.
Collapse
Affiliation(s)
- Liulin Xiong
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Pharmacy and Medical Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Haoli Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiong Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Lulu Xue
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jingyuan He
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650031, China
| | - Maxiu Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mingan Yang
- Division of Biostatistics and Epidemiology, School of Public Health, San Diego State University, San Diego, 92182, USA
| | - Jing Dai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Manxi He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Tinghua Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
20
|
Chen W, Zhuo Y, Duan D, Lu M. Effects of Hypoxia on Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2020; 15:332-339. [PMID: 31441734 DOI: 10.2174/1574888x14666190823144928] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including
the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of
MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis,
adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary
nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research
topic in recent years. Numerous studies have investigated the differentiation of MSCs into various
types of cells in vitro and their application to numerous fields. However, most studies have cultured
MSCs under atmospheric oxygen tension with an oxygen concentration of 21%, which does not reflect
a normal physiological state, given that the oxygen concentration generally used in vitro is four to ten
times that to which MSCs would be exposed in the body. We therefore review the growing number of
studies exploring the effect of hypoxic preconditioning on the differentiation of MSCs.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, Hunan 410003, China
| |
Collapse
|
21
|
Sadatpoor SO, Salehi Z, Rahban D, Salimi A. Manipulated Mesenchymal Stem Cells Applications in Neurodegenerative Diseases. Int J Stem Cells 2020; 13:24-45. [PMID: 32114741 PMCID: PMC7119211 DOI: 10.15283/ijsc19031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/07/2019] [Accepted: 04/13/2019] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that have multilinear differentiation and self-renewal abilities. These cells are immune-privileged as they express no or low level of class-II major histocompatibility complex (MHC-II) and other costimulatory molecules. Having neuroprotective and regenerative properties, MSCs can be used to ameliorate several intractable neurodegenerative disorders by affecting both innate and adaptive immune systems. Several manipulations like pretreating MSCs with different conditions or agents, and using molecules derived from MSCs or genetically manipulating them, are the common and practical ways that can be used to strengthen MSCs survival and potency. Improved MSCs can have significantly enhanced impacts on diseases compared to MSCs not manipulated. In this review, we describe some of the most important manipulations that have been exerted on MSCs to improve their therapeutic functions and their applications in ameliorating three prevalent neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Seyyed omid Sadatpoor
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dariush Rahban
- Department of Nanomedicine, School of Advanced Medical Technologies, Tehran University of Medical Science, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Wang X, Zhou H, Cheng R, Zhou X, Hou X, Chen J, Qiu J. Role of miR-326 in neonatal hypoxic-ischemic brain damage pathogenesis through targeting of the δ-opioid receptor. Mol Brain 2020; 13:51. [PMID: 32228617 PMCID: PMC7104519 DOI: 10.1186/s13041-020-00579-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxic-ischemic brain damage (HIBD) is a relatively common malignant complication that occurs in newborn infants, but promising therapies remain limited. In this study, we focused on the role of miR-326 and its target gene δ-opioid receptor (DOR) in the pathogenesis of neonatal HIBD. The expression levels of miR-326 and DOR after hypoxic-ischemic injury were examined both in vivo and in vitro. The direct relationship between miR-326 and DOR was confirmed by a dual-luciferase reporter assay. Further, effects of miR-326 on cell viability and apoptosis levels under oxygen glucose deprivation (OGD) were analyzed. The expression levels of miR-326 were significantly lower and DOR levels were significantly higher in the HIBD group than the control group both in vivo and in vitro. Overexpression of miR-326 downregulated the expression of DOR, while suppression of miR-326 upregulated the expression of DOR. The dual-luciferase reporter assay further confirmed that DOR could be directly targeted and regulated by miR-326. MiR-326 knockdown improved cell survival and decreased cell apoptosis by decreasing the expression levels of Caspase-3 and Bax and increasing Bcl-2 expression in PC12 cells after exposure to OGD. Moreover, DOR knockdown rescued the effect of the improved cell survival and suppressed cell apoptosis induced by silencing miR-326. Our findings indicated that inhibition of miR-326 may improve cell survival and decrease cell apoptosis in neonatal HIBD through the target gene DOR.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Han Zhou
- Department of Paediatrics, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Rui Cheng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xiaoguang Zhou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xuewen Hou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jun Chen
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| | - Jie Qiu
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
23
|
MMP9 mediates acute hyperglycemia-induced human cardiac stem cell death by upregulating apoptosis and pyroptosis in vitro. Cell Death Dis 2020; 11:186. [PMID: 32170070 PMCID: PMC7070071 DOI: 10.1038/s41419-020-2367-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Providing a conducive microenvironment is critical to increase survival of transplanted stem cells in regenerative therapy. Hyperglycemia promotes stem cell death impairing cardiac regeneration in the diabetic heart. Understanding the molecular mechanisms of high glucose-induced stem cell death is important for improving cardiac regeneration in diabetic patients. Matrix metalloproteinase-9 (MMP9), a collagenase, is upregulated in the diabetic heart, and ablation of MMP9 decreases infarct size in the non-diabetic myocardial infarction heart. In the present study, we aim to investigate whether MMP9 is a mediator of hyperglycemia-induced cell death in human cardiac stem cells (hCSCs) in vitro. We created MMP9−/− hCSCs to test the hypothesis that MMP9 mediates hyperglycemia-induced oxidative stress and cell death via apoptosis and pyroptosis in hCSCs, which is attenuated by the lack of MMP9. We found that hyperglycemia induced oxidative stress and increased cell death by promoting pyroptosis and apoptosis in hCSCs, which was prevented in MMP9−/− hCSCs. These findings revealed a novel intracellular role of MMP9 in mediating stem cell death and provide a platform to assess whether MMP9 inhibition could improve hCSCs survival in stem cell therapy at least in acute hyperglycemic microenvironment.
Collapse
|
24
|
Iminitoff M, Damani T, Williams E, Brooks AES, Feisst V, Sheppard HM. microRNAs in Ex Vivo Human Adipose Tissue Derived Mesenchymal Stromal Cells (ASC) Undergo Rapid Culture-Induced Changes in Expression, Including miR-378 which Promotes Adipogenesis. Int J Mol Sci 2020; 21:ijms21041492. [PMID: 32098272 PMCID: PMC7073112 DOI: 10.3390/ijms21041492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
There is clinical interest in using human adipose tissue-derived mesenchymal stromal cells (ASC) to treat a range of inflammatory and regenerative conditions. Aspects of ASC biology, including their regenerative potential and paracrine effect, are likely to be modulated, in part, by microRNAs, small RNA molecules that are embedded as regulators of gene-expression in most biological pathways. However, the effect of standard isolation and expansion protocols on microRNA expression in ASC is not well explored. Here, by using an untouched and enriched population of primary human ASC, we demonstrate that there are rapid and significant changes in microRNA expression when ASC are subjected to standard isolation and expansion methods. Functional studies focusing on miR-378 indicate that these changes in expression may have an impact on phenotype and function. Specifically, we found that increased levels of miR-378 significantly promoted adipogenesis in late passage ASC. These results are informative to maximizing the potential of ASC for use in various clinical applications, and they have implications for targeting microRNAs as a therapeutic strategy for obesity or metabolic disease.
Collapse
Affiliation(s)
- Megan Iminitoff
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
| | - Tanvi Damani
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
| | - Eloise Williams
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, 1150 Auckland, New Zealand
| | - Vaughan Feisst
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, 1150 Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Sciences, University of Auckland, 1150 Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, 1150 Auckland, New Zealand
| |
Collapse
|
25
|
microRNA-378a-5p iS a novel positive regulator of melanoma progression. Oncogenesis 2020; 9:22. [PMID: 32060259 PMCID: PMC7021836 DOI: 10.1038/s41389-020-0203-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Evaluating the expression levels of miR-378a-5p both in a large melanoma patient cohort from The Cancer Genome Atlas database and in melanoma patients from our Institute, we found that miR-378a-5p is upregulated in metastatic melanoma specimens. miR-378a-5p expression was also increased in melanoma cells resistant to target therapy, and decreased in response to drug treatment. We also demonstrated that overexpression of miR-378a-5p enhances in vitro cell invasion and migration, and facilitates the ability of melanoma cells to form de novo vasculogenic structures. While performing downstream targeting studies, we confirmed the ability of miR-378a-5p to modulate the expression of known target genes, such as SUFU, FUS-1, and KLF9. Luciferase-3′UTR experiments also identified STAMBP and HOXD10 as new miR-378a-5p target genes. MMP2 and uPAR, two HOXD10 target genes, were positively regulated by miR-378a-5p. Genetic and pharmacologic approaches inhibiting uPAR expression and activity evidenced that the in vitro tumor-promoting functions of miR-378a-5p, were in part mediated by uPAR. Of note miR-378a-5p was also able to increase VEGF, as well as in vitro and in vivo angiogenesis. Finally, genetic and pharmacologic modulation of Bcl-2 evidenced Bcl-2 ability to regulate miR-378a-5p expression. In conclusion, to the best of our knowledge, this is the first study demonstrating that miR-378a-5p acts as an oncogenic microRNA in melanoma.
Collapse
|
26
|
Wen Z, Mai Z, Zhu X, Wu T, Chen Y, Geng D, Wang J. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res Ther 2020; 11:36. [PMID: 31973741 PMCID: PMC6979357 DOI: 10.1186/s13287-020-1563-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background A growing body of evidence suggests that stem cell-derived exosomal microRNAs (miRNAs) could be a promising cardioprotective therapy in the context of hypoxic conditions. The present study aims to explore how miRNA-144 (miR-144), a miRNA contained in bone marrow mesenchymal stem cell (MSC)-derived exosomes, exerts a cardioprotective effect on cardiomyocyte apoptosis in the context of hypoxic conditions and identify the underlying mechanisms. Methods MSCs were cultured using the whole bone marrow adherent method. MSC-derived exosomes were isolated using the total exosome isolation reagent and confirmed by nanoparticle trafficking analysis as well as western blotting using TSG101 and CD63 as markers. The hypoxic growth conditions for the H9C2 cells were established using the AnaeroPack method. Treatment conditions tested included H9C2 cells pre-incubated with exosomes, transfected with miR-144 mimics or inhibitor, or treated with the PTEN inhibitor SF1670, all under hypoxic growth conditions. Cell apoptosis was determined by flow cytometry using 7-ADD and Annexin V together. The expression levels of the miRNAs were detected by real-time PCR, and the expression levels of AKT/p-AKT, Bcl-2, caspase-3, HIF-1α, PTEN, and Rac-1 were measured by both real-time PCR and western blotting. Results Exosomes were readily internalized by H9C2 cells after co-incubation for 12 h. Exosome-mediated protection of H9C2 cells from apoptosis was accompanied by increasing levels of p-AKT. MiR-144 was found to be highly enriched in MSC-derived exosomes. Transfection of cells with a miR-144 inhibitor weakened exosome-mediated protection from apoptosis. Furthermore, treatment of cells grown in hypoxic conditions with miR-144 mimics resulted in decreased PTEN expression, increased p-AKT expression, and prevented H9C2 cell apoptosis, whereas treatment with a miR-144 inhibitor resulted in increased PTEN expression, decreased p-AKT expression, and enhanced H9C2 cell apoptosis in hypoxic conditions. We also validated that PTEN was a target of miR-144 by using luciferase reporter assay. Additionally, cells treated with SF1670, a PTEN-specific inhibitor, resulted in increased p-AKT expression and decreased H9C2 cell apoptosis. Conclusions These findings demonstrate that MSC-derived exosomes inhibit cell apoptotic injury in hypoxic conditions by delivering miR-144 to cells, where it targets the PTEN/AKT pathway. MSC-derived exosomes could be a promising therapeutic vehicle to facilitate delivery of miRNA therapies to ameliorate ischemic conditions. Electronic supplementary material The online version of this article (10.1186/s13287-020-1563-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuzhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang West Road, Guangzhou, 510120, China.,Guandong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zun Mai
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Zhu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang West Road, Guangzhou, 510120, China.,Guandong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang West Road, Guangzhou, 510120, China.,Guandong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang West Road, Guangzhou, 510120, China.,Guandong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dengfeng Geng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang West Road, Guangzhou, 510120, China. .,Guandong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China. .,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang West Road, Guangzhou, 510120, China. .,Guandong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China. .,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Fang J, Zhao X, Li S, Xing X, Wang H, Lazarovici P, Zheng W. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90 rsk-CREB pathway. Stem Cell Res Ther 2019; 10:312. [PMID: 31655619 PMCID: PMC6815409 DOI: 10.1186/s13287-019-1419-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/02/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bone marrow-derived mesenchymal stem cell (BMSC) transplantation is one of the new therapeutic strategies for treating ischemic brain and heart tissues. However, the poor survival rate of transplanted BMSCs in ischemic tissue, due to high levels of reactive oxygen species (ROS), limits the therapeutic efficacy of this approach. Considering that BMSC survival may greatly enhance the effectiveness of transplantation therapy, development of effective therapeutics capable of mitigating oxidative stress-induced BMSC apoptosis is an important unmet clinical need. Methods BMSCs were isolated from the 4-week-old male Sprague Dawley rats by whole bone marrow adherent culturing, and the characteristics were verified by morphology, immunophenotype, adipogenic, and osteogenic differentiation potential. BMSCs were pretreated with artemisinin, and H2O2 was used to induce apoptosis. Cell viability was detected by MTT, FACS, LDH, and Hoechst 33342 staining assays. Mitochondrial membrane potential (ΔΨm) was measured by JC-1 assay. The apoptosis was analyzed by Annexin V-FITC/PI and Caspase 3 Activity Assay kits. ROS level was evaluated by using CellROX® Deep Red Reagent. SOD, CAT, and GPx enzymatic activities were assessed separately using Cu/Zn-SOD and Mn-SOD Assay Kit with WST-8, Catalase Assay Kit, and Total Glutathione Peroxidase Assay Kit. The effects of artemisinin on protein expression of BMSCs including p-Erk1/2, t-Erk1/2, p-c-Raf, p-p90rsk, p-CREB, BCL-2, Bax, p-Akt, t-Akt, β-actin, and GAPDH were measured by western blotting. Results We characterized for the first time the protective effect of artemisinin, an anti-malaria drug, using oxidative stress-induced apoptosis in vitro, in rat BMSC cultures. We found that artemisinin, at clinically relevant concentrations, improved BMSC survival by reduction of ROS production, increase of antioxidant enzyme activities including SOD, CAT, and GPx, in correlation with decreased Caspase 3 activation, lactate dehydrogenase (LDH) release and apoptosis, all induced by H2O2. Artemisinin significantly increased extracellular-signal-regulated kinase 1/2 (Erk1/2) phosphorylation, in a concentration- and time-dependent manner. PD98059, the specific inhibitor of the Erk1/2 pathway, blocked Erk1/2 phosphorylation and artemisinin protection. Similarly, decreased expression of Erk1/2 by siRNA attenuated the protective effect of artemisinin. Additionally, when the upstream activator KRAS was knocked down by siRNA, the protective effect of artemisinin was also blocked. These data strongly indicated the involvement of the Erk1/2 pathway. Consistent with this hypothesis, artemisinin increased the phosphorylation of Erk1/2 upstream kinases proto-oncogene c-RAF serine/threonine-protein kinase (c-Raf) and of Erk1/2 downstream targets p90 ribosomal s6 kinase (p90rsk) and cAMP response element binding protein (CREB). In addition, we found that the expression of anti-apoptotic protein B cell lymphoma 2 protein (BcL-2) was also upregulated by artemisinin. Conclusion These studies demonstrate the proof of concept of artemisinin therapeutic potential to improve survival in vitro of BMSCs exposed to ROS-induced apoptosis and suggest that artemisinin-mediated protection occurs via the activation of c-Raf-Erk1/2-p90rsk-CREB signaling pathway.
Collapse
Affiliation(s)
- Jiankang Fang
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xia Zhao
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shuai Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xingan Xing
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Sothern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
28
|
Müller-Deile J, Dannenberg J, Liu P, Lorenzen J, Nyström J, Thum T, Schiffer M. Identification of cell and disease specific microRNAs in glomerular pathologies. J Cell Mol Med 2019; 23:3927-3939. [PMID: 30950172 PMCID: PMC6533525 DOI: 10.1111/jcmm.14270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRs) are small non‐coding RNAs that regulate gene expression in physiological processes as well as in diseases. Currently miRs are already used to find novel mechanisms involved in diseases and in the future, they might serve as diagnostic markers. To identify miRs that play a role in glomerular diseases urinary miR‐screenings are a frequently used tool. However, miRs that are detected in the urine might simply be filtered from the blood stream and could have been produced anywhere in the body, so they might be completely unrelated to the diseases. We performed a combined miR‐screening in pooled urine samples from patients with different glomerular diseases as well as in cultured human podocytes, human mesangial cells, human glomerular endothelial cells and human tubular cells. The miR‐screening in renal cells was done in untreated conditions and after stimulation with TGF‐β. A merge of the detected regulated miRs led us to identify disease‐specific, cell type‐specific and cell stress‐induced miRs. Most miRs were down‐regulated following the stimulation with TGF‐β in all cell types. Up‐regulation of miRs after TGF‐β was cell type‐specific for most miRs. Furthermore, urinary miRs from patients with different glomerular diseases could be assigned to the different renal cell types. Most miRs were specifically regulated in one disease. Only miR‐155 was up‐regulated in all disease urines compared to control and therefore seems to be rather unspecific. In conclusion, a combined urinary and cell miR‐screening can improve the interpretation of screening results. These data are useful to identify novel miRs potentially involved in glomerular diseases.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Medicine/Nephrology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Jan Dannenberg
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | - Peidi Liu
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Lorenzen
- Department of Medicine/Nephrology, University of Zurich, Zurich, Switzerland
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Friedrich-Alexander University Erlangen, Erlangen, Germany.,Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Assmann TS, Recamonde-Mendoza M, Costa AR, Puñales M, Tschiedel B, Canani LH, Bauer AC, Crispim D. Circulating miRNAs in diabetic kidney disease: case-control study and in silico analyses. Acta Diabetol 2019; 56:55-65. [PMID: 30167868 DOI: 10.1007/s00592-018-1216-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
AIMS The aim of this study was to investigate a miRNA expression profile in type 1 diabetes mellitus (T1DM) patients with DKD (cases) or without this complication (controls). METHODS Expression of 48 miRNAs was screened in plasma of 58 T1DM patients (23 controls, 18 with moderate DKD, and 17 with severe DKD) using TaqMan Low Density Array cards (Thermo Fisher Scientific). Then, five of the dysregulated miRNAs were selected for validation in an independent sample of 10 T1DM controls and 19 patients with DKD (10 with moderate DKD and 9 with severe DKD), using RT-qPCR. Bioinformatic analyses were performed to explore the putative target genes and biological pathways regulated by the validated miRNAs. RESULTS Among the 48 miRNAs investigated in the screening analysis, 9 miRNAs were differentially expressed between DKD cases and T1DM controls. Among them, the five most dysregulated miRNAs were chosen for validation in an independent sample. In the validation sample, miR-21-3p and miR-378-3p were confirmed to be upregulated in patients with severe DKD, while miR-16-5p and miR-29a-3p were downregulated in this group compared to T1DM controls and patients with moderate DKD. MiR-503-3p expression was not validated. Bioinformatic analyses indicate that the four validated miRNAs regulate genes from PI3K/Akt, fluid shear stress and atherosclerosis, AGE-RAGE, TGF-β1, and relaxin signaling pathways. CONCLUSIONS Our study found four miRNAs differentially expressed in patients with severe DKD, providing significant information about the biological pathways in which they are involved.
Collapse
Affiliation(s)
- Taís S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Mariana Recamonde-Mendoza
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Aline R Costa
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Márcia Puñales
- Instituto da Criança com Diabetes, Hospital Nossa Senhora da Conceição, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Balduíno Tschiedel
- Instituto da Criança com Diabetes, Hospital Nossa Senhora da Conceição, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Luís H Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Andrea C Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
| |
Collapse
|
30
|
Robb KP, Fitzgerald JC, Barry F, Viswanathan S. Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy 2018; 21:289-306. [PMID: 30528726 DOI: 10.1016/j.jcyt.2018.10.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cell (MSC) therapies have been pursued for a broad spectrum of indications but mixed reports on clinical efficacy have given rise to some degree of skepticism regarding the effectiveness of this approach. However, recent reports of successful clinical outcomes and regulatory approvals for graft-versus-host disease, Crohn's disease and critical limb ischemia have prompted a shift in this perspective. With hundreds of clinical trials involving MSCs currently underway and an increasing demand for large-scale manufacturing protocols, there is a critical need to develop standards that can be applied to processing methods and to establish consensus assays for both MSC processing control and MSC product release. Reference materials and validated, uniformly applied tests for quality control of MSC products are needed. Here, we review recent developments in MSC manufacturing technologies, release testing and potency assays. We conclude that, although MSCs hold considerable promise clinically, economies of scale have yet to be achieved although numerous bioreactor technologies for scalable production of MSCs exist. Additionally, rigorous disease-specific product testing and comprehensive understanding of mechanisms of action, which are linked to relevant process and product release potency assays, will be required to ensure that these therapies continue to be successful.
Collapse
Affiliation(s)
- Kevin P Robb
- The Arthritis Program, University Health Network, Toronto, Canada;; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Frank Barry
- The Arthritis Program, University Health Network, Toronto, Canada;; Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Sowmya Viswanathan
- The Arthritis Program, University Health Network, Toronto, Canada;; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Cell Therapy Program, University Health Network, Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
31
|
Wang Y, Zhang Q, Wei C, Zhao L, Guo X, Cui X, Shao L, Long J, Gu J, Zhao M. MiR-378 modulates energy imbalance and apoptosis of mitochondria induced by doxorubicin. Am J Transl Res 2018; 10:3600-3609. [PMID: 30662611 PMCID: PMC6291733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Doxorubicin (DOX) is an effective anticancer drug, however its clinical application is limited due to its cardiotoxicity. Therefore, understanding the mechanisms of cardiotoxicity induced by DOX is essential. We found that the level of miR-378 was decreased in the hearts of DOX-treated rats. Increasing the expression of miR-378 resulted in a decrease of lactate dehydrogenase (LDH) upon DOX treatment in vitro by targeting lactate dehydrogenase A (LDHA). Furthermore, bioinformatics analysis indicated that cyclophilin A (PPIA), a regulator of apoptosis, is also a direct target gene of miR-378. We confirmed this by Western blot. Our results also showed that the overexpression of miR-378 inhibited the hyperactivation of ER stress signaling induced by DOX. In addition, MiR-378 overexpression was found to protect cardiomyocytes from DOX-induced energy imbalance and apoptosis of mitochondria. These results may allow for a therapeutic approach that overcomes the cardiotoxicity of DOX-based treatments for cancer.
Collapse
Affiliation(s)
- Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia, P. R. China
| | - Qingshan Zhang
- Affiliated Hospital of Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
| | - Chengxi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia, P. R. China
| | - Lin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Xin Guo
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia, P. R. China
| | - Xiaoxue Cui
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia, P. R. China
| | - Liqun Shao
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia, P. R. China
| | - Jie Long
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia, P. R. China
| | - Junyi Gu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia, P. R. China
| | - Ming Zhao
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Affiliated Hospital of Inner Mongolia University for NationalitiesTongliao, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular SystemTongliao, Inner Mongolia, P. R. China
| |
Collapse
|
32
|
New Approach for Differentiation of Bone Marrow Mesenchymal Stem Cells Toward Chondrocyte Cells With Overexpression of MicroRNA-140. ASAIO J 2018; 64:662-672. [DOI: 10.1097/mat.0000000000000688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Ge L, Wang Y, Cao Y, Li G, Sun R, Teng P, Wang Y, Bi Y, Guo Z, Yuan Y, Yu D. MiR-429 improved the hypoxia tolerance of human amniotic cells by targeting HIF-1α. Biotechnol Lett 2018; 40:1477-1486. [PMID: 30145667 DOI: 10.1007/s10529-018-2604-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 11/30/2022]
Abstract
MicroRNA-429(miR-429) plays an important role in mesenchymal stem cells. Hypoxia-inducible factor 1α (HIF-1α) is a nuclear transcription factor that regulates the proliferation, apoptosis and tolerance to hypoxia of mesenchymal stem cells. HIF-1α is also a target gene of miR-429. We investigated whether miR-429 plays a role in hypoxia tolerance with HIF-1α in human amniotic mesenchymal stem cells (hAMSCs). The expression of miR-429 was increased by hypoxia in hAMSCs. miR-429 expression resulted in decreased HIF-1α protein level, but little effect on HIF-1α mRNA. While overexpression of HIF-1α increased the survival rate and exhibited anti-apoptosis effects in hAMSCs under hypoxia, co-expression of miR-429 reduced survival and increased apoptosis. However, miR-429 silencing with HIF-1α overexpression stimulated cell survival and reduced apoptosis. Co-expression of HIF-1α and miR-429 reduced VEGF and Bcl-2 proteins and increased Bax and C-Caspase-3 levels in hAMSCs under hypoxia compared with cells expressing only HIF-1α; cells with HIF-1α overexpression and miR-429 silencing showed the opposite effects. These results indicate that HIF-1α and angomiR-429 reciprocally antagonized each other, while HIF-1α and antagomiR-429 interacted with each other to regulate survival and apoptosis in hAMSCs under hypoxia. miR-429 increased VEGF and Bcl-2 protein levels and decreased Bax and cleaved Caspase-3 protein levels by promoting the synthesis of HIF-1α. These results indicate that miR-429 negatively regulates the survival and anti-apoptosis ability of hAMSCs by mediating HIF-1α expression and improves the ability of hAMSCs to tolerate hypoxia.
Collapse
Affiliation(s)
- Lihao Ge
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuyan Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Gang Li
- Department of Orthopedics, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, 200092, China
| | - Rui Sun
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Peng Teng
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yansong Wang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yunlong Bi
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Zhanpeng Guo
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yajiang Yuan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Deshui Yu
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
34
|
Dong J, Zhang Z, Huang H, Mo P, Cheng C, Liu J, Huang W, Tian C, Zhang C, Li J. miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther 2018; 9:151. [PMID: 29848383 PMCID: PMC5977543 DOI: 10.1186/s13287-018-0895-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Aging is one of the key factors that regulate the function of human bone marrow mesenchymal stem cells (hBM-MSCs) and related changes in microRNA (miRNA) expression. However, data reported on aging-related miRNA changes in hBM-MSCs are limited. Methods We demonstrated previously that miR-10a is significantly decreased in aged hBM-MSCs and restoration of the miR-10a level attenuated cell senescence and increased the differentiation capacity of aged hBM-MSCs by repressing Krüpple-like factor 4 (KLF4). In the present study, miR-10a was overexpressed or KLF4 was downregulated in old hBM-MSCs by lentiviral transduction. The hypoxia-induced apoptosis, cell survival, and cell paracrine function of aged hBM-MSCs were investigated in vitro. In vivo, miR-10a-overexpressed or KLF4-downregulated old hBM-MSCs were implanted into infarcted mouse hearts after myocardial infarction (MI). The mouse cardiac function of cardiac angiogenesis was measured and cell survival of aged hBM-MSCs was investigated. Results Through lentivirus-mediated upregulation of miR-10a and downregulation of KLF4 in aged hBM-MSCs in vitro, we revealed that miR-10a decreased hypoxia-induced cell apoptosis and increased cell survival of aged hBM-MSCs by repressing the KLF4–BAX/BCL2 pathway. In vivo, transplantation of miR-10a-overexpressed aged hBM-MSCs promoted implanted stem cell survival and improved cardiac function after MI. Mechanistic studies revealed that overexpression of miR-10a in aged hBM-MSCs activated Akt and stimulated the expression of angiogenic factors, thus increasing angiogenesis in ischemic mouse hearts. Conclusions miR-10a rejuvenated aged hBM-MSCs which improved angiogenesis and cardiac function in injured mouse hearts. Electronic supplementary material The online version of this article (10.1186/s13287-018-0895-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Dong
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenhui Zhang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongshen Huang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Pei Mo
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chuanfan Cheng
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jianwei Liu
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Weizhao Huang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chaowei Tian
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chongyu Zhang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Jiao Li
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Toronto General Research Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
35
|
hsa-miRNA-154-5p expression in plasma of endometriosis patients is a potential diagnostic marker for the disease. Reprod Biomed Online 2018; 37:449-466. [PMID: 29857988 DOI: 10.1016/j.rbmo.2018.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
RESEARCH QUESTION As microRNA (miRNA) are stable in circulation, this study tested whether they could serve as putative non-invasive biomarkers for endometriosis, and their expression differences between endometriosis patients and controls. It also addressed whether the combination of differently expressed miRNA together with clinical parameters in a statistical model could distinguish between endometriosis patients and controls. DESIGN This prospective cohort study explored the possibility of using changes in extracellular miRNA spectra in plasma of 51 patients with endometriosis compared with 41 controls combined with clinical data as non-invasive biomarkers for the disease. The project was divided into three different phases for biomarker screening, discovery and validation. The differences in expression levels of plasma miRNA obtained from women with and without endometriosis were analysed with quantitative PCR-based microarrays. The diagnostic performance of the selected individual and/or combined differentially expressed miRNA candidates and clinical parameters was assessed using in silico bioinformatics modelling and receiver operating characteristic curve analysis. RESULTS Data showed that a specific plasma miRNA signature is associated with endometriosis and that hsa-miR-154-5p, which alone or in combination with hsa-miR-196b-5p, hsa-miR-378a-3p, and hsa-miR-33a-5p and the clinical parameters of body mass index and age, are potentially applicable for non-invasive diagnosis of the disease. Changes in the levels of expression of certain circulating plasma miRNA also occurred within the phases of the menstrual cycle. CONCLUSIONS miRNA seem to be promising candidates for the non-invasive diagnosis of endometriosis. Further, other clinical parameters may help in distinguishing women suffering from endometriosis from healthy individuals.
Collapse
|
36
|
Hou J, Wang L, Wu Q, Zheng G, Long H, Wu H, Zhou C, Guo T, Zhong T, Wang L, Chen X, Wang T. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p. Stem Cell Res Ther 2018; 9:109. [PMID: 29673400 PMCID: PMC5909270 DOI: 10.1186/s13287-018-0861-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Background Currently, the overall therapeutic efficiency of mesenchymal stem cells (MSCs) transplantation for the treatment of cardiovascular disease is not satisfactory. The low viability and angiogenic capacity of the implanted cells in the local infarct tissues restrict their further application. Evidence shows that long noncoding RNA H19 (lncRNA-H19) mediates cell survival and angiogenesis. Additionally, it is also involved in MSCs biological activities. This study aimed to explore the functional role of lncRNA-H19 in MSCs survival and angiogenic capacity as well as the underlying mechanism. Methods MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells at the third passage were divided into the following groups: MSCs+H19, MSCs+H19 NC, MSCs+si-H19, MSCs+si-H19 NC and MSCs. The MSCs+H19 and MSCs+H19 NC groups were transfected with lncRNA-H19 and lncRNA-H19 scramble RNA respectively. The MSCs+si-H19 and MSCs+si-H19 NC groups were transfected with lncRNA-H19 siRNA and lncRNA-H19 siRNA scramble respectively. MSCs were used as the blank control. All groups were exposed to normoxia (20% O2) and hypoxia (1% O2)/serum deprivation (H/SD) conditions for 24 h. Cell proliferation, apoptosis and vascular densities were assessed. Bioinformatics and dual luciferase reporter assay were performed. Relevant biomarkers were detected in different experimental groups. Results Overexpression of lncRNA-H19 improved survival and angiogenic capacity of MSCs under both normoxia and H/SD conditions, whereas its knockdown impaired cell viability and their angiogenic potential. MicroRNA-199a-5p (miR-199a-5p) targeted and downregulated vascular endothelial growth factor A (VEGFA). MiR-199a-5p was a target of lncRNA-H19. LncRNA-H19 transfection led to a decreased level of miR-199a-5p, accompanied with an elevated expression of VEGFA. However, both miR-199a-5p and VEGFA presented inverse alterations in the condition of lncRNA-H19 knockdown. Conclusions LncRNA-H19 enhanced MSCs survival and their angiogenic potential in vitro. It could directly upregulate VEGFA expression by inhibiting miR-199a-5p as a competing endogenous RNA. This mechanism contributes to a better understanding of MSCs biological activities and provides new insights for cell therapy based on MSCs transplantation.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Lingyun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Guanghui Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Xuxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China. .,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
The Methods and Mechanisms to Differentiate Endothelial-Like Cells and Smooth Muscle Cells from Mesenchymal Stem Cells for Vascularization in Vaginal Reconstruction. Mol Biotechnol 2018; 60:396-411. [DOI: 10.1007/s12033-018-0079-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Enhanced chondrogenesis differentiation of human induced pluripotent stem cells by MicroRNA-140 and transforming growth factor beta 3 (TGFβ3). Biologicals 2018; 52:30-36. [DOI: 10.1016/j.biologicals.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022] Open
|
39
|
Hou J, Wang L, Long H, Wu H, Wu Q, Zhong T, Chen X, Zhou C, Guo T, Wang T. Hypoxia preconditioning promotes cardiac stem cell survival and cardiogenic differentiation in vitro involving activation of the HIF-1α/apelin/APJ axis. Stem Cell Res Ther 2017; 8:215. [PMID: 28962638 PMCID: PMC5622481 DOI: 10.1186/s13287-017-0673-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cardiac stem cells (CSCs) transplantation has been regarded as an optimal therapeutic approach for cardiovascular disease. However, inferior survival and low differentiation efficiency of these cells in the local infarct site reduce their therapeutic efficacy. In this study, we investigated the influence of hypoxia preconditioning (HP) on CSCs survival and cardiogenic differentiation in vitro and explored the relevant mechanism. METHODS CSCs were obtained from Sprague-Dawley rats and cells of the third passage were cultured in vitro and exposed to hypoxia (1% O2). Cells survival and apoptosis were evaluated by MTS assay and flow cytometry respectively. Cardiogenic differentiation was induced by using 5-azacytidine for another 24 h after the cells experienced HP. Normoxia (20% O2) was used as a negative control during the whole process. Cardiogenic differentiation was assessed 2 weeks after the induction. Relevant molecules were examined after HP and during the differentiation process. Anti-hypoxia-inducible factor-1α (HIF-1α) small interfering RNA (siRNA), anti-apelin siRNA, and anti-putative receptor protein related to the angiotensin receptor AT1 (APJ) siRNA were transfected in order to block their expression, and relevant downstream molecules were detected. RESULTS Compared with the normoxia group, the hypoxia group presented more rapid growth at time points of 12 and 24 h (p < 0.01). Cells exhibited the highest proliferation rate at the time point of 24 h (p < 0.01). The cell apoptosis rate significantly declined after 24 h of hypoxia exposure (p < 0.01). Expression levels of HIF-1α, apelin, and APJ were all enhanced after HP. The percentage of apelin, α-SA, and cTnT positive cells was greatly increased in the HP group after 2 weeks of induction. The protein level of α-SA and cTnT was also significantly elevated at 7 and 14 days (p < 0.01). HIF-1α, apelin, and APJ were all increased at different time points during the cardiogenic differentiation process (p < 0.01). Knockdown of HIF-1α, apelin or APJ by siRNAs resulted in a significant reduction of α-SA and cTnT. HIF-1α blockage caused a remarkable decrease of apelin and APJ (p < 0.01). Expression levels of apelin and APJ were depressed after the inhibition of apelin (p < 0.01). CONCLUSION HP could effectively promote CSCs survival and cardiogenic differentiation in vitro, and this procedure involved activation of the HIF-1α/apelin/APJ axis. This study provided a new perspective for exploring novel strategies to enhance CSCs transplantation efficiency.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Xuxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Müller-Deile J, Dannenberg J, Schroder P, Lin MH, Miner JH, Chen R, Bräsen JH, Thum T, Nyström J, Staggs LB, Haller H, Fiedler J, Lorenzen JM, Schiffer M. Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases. Kidney Int 2017; 92:836-849. [PMID: 28476557 DOI: 10.1016/j.kint.2017.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023]
Abstract
The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA.
| | - Jan Dannenberg
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Patricia Schroder
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rongjun Chen
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Imperial College London, National Heart and Lung Institute, London, UK; REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Jenny Nyström
- Departments of Physiology and Nephrology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Hermann Haller
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Johan M Lorenzen
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA.
| |
Collapse
|
41
|
Rimkus T, Sirkisoon S, Harrison A, Lo HW. Tumor suppressor candidate 2 (TUSC2, FUS-1) and human cancers. DISCOVERY MEDICINE 2017; 23:325-330. [PMID: 28715648 PMCID: PMC5808457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tumor suppressor candidate 2 (TUSC2, also known as FUS1) was identified in 2000 as a candidate tumor suppressor gene located in a region on chromosome 3p21.3 that is homozygously deleted in some lung and breast cancers. The deletion is rare in lung and breast cancers, but is frequent in malignant pleural mesothelioma. Evidence to date indicates that TUSC2 behaves as a tumor suppressor in lung cancer; however, its role as a tumor suppressor for other tumor types has not been fully established. Loss of TUSC2 expression at the mRNA and protein levels has been reported in various cancers. While the mechanisms underlying the loss are still not well understood, several microRNAs have been reported to downregulate TUSC2 expression. TUSC2 elicits its anti-tumor effects through regulating G1 cell cycle progression, apoptosis, calcium homeostasis, gene expression, and the activity of various protein tyrosine kinases and Ser/Thr kinases, albeit the precise mechanisms that TUSC2 utilizes to regulate these cellular processes and signaling molecules are still elusive. TUSC2 restoration has been exploited as an anti-cancer therapy in various cancers in preclinical models, and clinically in patients with lung cancer. The first-in-human phase I trial demonstrated desirable safety outcomes. Phase I/II trials are being conducted to evaluate the efficacy of combining TUSC2-nanoparticles with erlotinib, an FDA-approved EGFR inhibitor. This review summarizes recent findings that advanced our understanding of TUSC2 as a novel tumor suppressor and a therapeutic opportunity for treating TUSC2-deficient cancers.
Collapse
Affiliation(s)
- Tadas Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sherona Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alexandra Harrison
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
42
|
Eirin A, Zhu XY, Puranik AS, Woollard JR, Tang H, Dasari S, Lerman A, van Wijnen AJ, Lerman LO. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS One 2017; 12:e0174303. [PMID: 28333993 PMCID: PMC5363917 DOI: 10.1371/journal.pone.0174303] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. Methods Simultaneous expression profiles of miRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and LC-MS/MS proteomic analysis in porcine MSCs and their daughter EVs (n = 3 each). TargetScan and ComiR were used to predict miRNA target genes. Functional annotation analysis was performed using DAVID 6.7 database to rank primary gene ontology categories for the enriched mRNAs, miRNA target genes, and proteins. STRING was used to predict associations between mRNA and miRNA target genes. Results Differential expression analysis revealed 4 miRNAs, 255 mRNAs, and 277 proteins enriched in EVs versus MSCs (fold change >2, p<0.05). EV-enriched miRNAs target transcription factors (TFs) and EV-enriched mRNAs encode TFs, but TF proteins are not enriched in EVs. Rather, EVs are enriched for proteins that support extracellular matrix remodeling, blood coagulation, inflammation, and angiogenesis. Conclusions Porcine MSC-derived EVs contain a genetic cargo of miRNAs and mRNAs that collectively control TF activity in EVs and recipient cells, as well as proteins capable of modulating cellular pathways linked to tissue repair. These properties provide the fundamental basis for considering therapeutic use of EVs in tissue regeneration.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amrutesh S. Puranik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John R. Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
43
|
Fakoya AOJ. New Delivery Systems of Stem Cells for Vascular Regeneration in Ischemia. Front Cardiovasc Med 2017; 4:7. [PMID: 28286751 PMCID: PMC5323391 DOI: 10.3389/fcvm.2017.00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
Abstract
The finances of patients and countries are increasingly overwhelmed with the plague of cardiovascular diseases as a result of having to chronically manage the associated complications of ischemia such as heart failures, neurological deficits, chronic limb ulcers, gangrenes, and amputations. Hence, scientific research has sought for alternate therapies since pharmacological and surgical treatments have fallen below expectations in providing the desired quality of life. The advent of stem cells research has raised expectations with respect to vascular regeneration and tissue remodeling, hence assuring the patients of the possibility of an improved quality of life. However, these supposed encouraging results have been short-lived as the retention, survival, and engraftment rates of these cells appear to be inadequate; hence, the long-term beneficial effects of these cells cannot be ascertained. These drawbacks have led to the relentless research into better ways to deliver stem cells or angiogenic factors (which mobilize stem cells) to the regions of interest to facilitate increased retention, survival, engraftment, and regeneration. This review considered methods, such as the use of scaffolds, retrograde coronary delivery, improved combinations, stem cell pretreatment, preconditioning, stem cell exosomes, mannitol, magnet, and ultrasound-enhanced delivery, homing techniques, and stem cell modulation. Furthermore, the study appraised the possibility of a combination therapy of stem cells and macrophages, considering the enormous role macrophages play in repair, remodeling, and angiogenesis.
Collapse
|
44
|
Evaluating Wharton's Jelly-Derived Mesenchymal Stem Cell's Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress. Stem Cells Int 2017; 2017:5259849. [PMID: 28265289 PMCID: PMC5318642 DOI: 10.1155/2017/5259849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/12/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
The efficacy of mesenchymal stem cell (MSC) therapy is currently limited by low retention and poor survival of transplanted cells as demonstrated by clinical studies. This is mainly due to the harsh microenvironment created by oxygen and nutrient deprivation and inflammation at the injured sites. The choice of MSC source could be critical in determining fate and cellular function of MSCs under stress. Our objective here was to investigate the influence of ischemia-like stress on Wharton's jelly MSCs (WJ-MSCs) from human umbilical cord to assess their therapeutic relevance in ischemic diseases. We simulated conditions of ischemia in vitro by culturing WJ-MSCs in 2% oxygen in serum deprived and low glucose medium. Under these conditions, WJ-MSCs retained viable population of greater than 80%. They expressed the characteristic MSC surface antigens at levels comparable to the control WJ-MSCs and were negative for the expression of costimulatory molecules. An upregulation of many ECM and adhesion molecules and growth and angiogenic factors contributing to wound healing and regeneration was noted in the ischemic WJ-MSC population by a PCR array. Their migration ability, however, got impaired. Our findings provide evidence that WJ-MSCs might be therapeutically beneficial and potent in healing wounds under ischemic conditions.
Collapse
|
45
|
Hou J, Zhong T, Guo T, Miao C, Zhou C, Long H, Wu H, Zheng S, Wang L, Wang T. Apelin promotes mesenchymal stem cells survival and vascularization under hypoxic-ischemic condition in vitro involving the upregulation of vascular endothelial growth factor. Exp Mol Pathol 2017; 102:203-209. [PMID: 28161441 DOI: 10.1016/j.yexmp.2017.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) transplantation has been regarded as an optimal therapeutic approach for cardiovascular disease. However, the inferior survival and low vascularization potential of these cells in the local infarct site reduce the therapeutic efficacy. In this study, we investigated the influence of apelin on MSCs survival and vascularization under hypoxic-ischemic condition in vitro and explored the relevant mechanism. METHODS MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells of the third passage were divided into MSCs and MSCs+apelin groups. In the MSCs+apelin group, MSCs were stimulated with apelin-13 (5μM). The two groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24h, using normoxia (20% O2) as a negative control during the process. Human umbilical vein endothelial cells (HUVECs) were used and incubated with conditioned media from both groups to promote vascularization for another 6h. Vascular densities were assessed and relevant biomarkers were detected thereafter. RESULTS Compared with MSCs group, MSCs+apelin group presented more rapid growth. The proliferation rate was much higher. Cells apoptosis percentage was significantly declined both under normoxic and hypoxic conditions. Media produced from MSCs+apelin group triggered HUVECs to form a larger number of vascular branches on matrigel. The expression and secretion of vascular endothelial growth factor (VEGF) were significantly increased. CONCLUSION Apelin could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro, and this procedure was associated with the upregulation of VEGF. This study provides a new perspective for exploring novel approaches to enhance MSCs survival and vascularization potential.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Changqing Miao
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Hou J, Long H, Zhou C, Zheng S, Wu H, Guo T, Wu Q, Zhong T, Wang T. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem Cell Res Ther 2017; 8:4. [PMID: 28095922 PMCID: PMC5242041 DOI: 10.1186/s13287-016-0454-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/11/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have limited potential of cardiogenic differentiation. In this study, we investigated the influence of long noncoding RNA Braveheart (lncRNA-Bvht) on cardiogenic differentiation of MSCs in vitro. Methods MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells were divided into three groups: blank control, null vector control, and lncRNA-Bvht. All three groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 h, and 24 h of reoxygenation (20% O2). Cardiogenic differentiation was induced using 5-AZA for another 24 h. Normoxia (20% O2) was applied as a negative control during the whole process. Cardiogenic differentiation was assessed, and expressions of cardiac-specific transcription factors and epithelial-mesenchymal transition (EMT)-associated biomarkers were detected. Anti-mesoderm posterior1 (Mesp1) siRNA was transfected in order to block its expression, and relevant downstream molecules were examined. Results Compared with the blank control and null vector control groups, the lncRNA-Bvht group presented a higher percentage of differentiated cells of the cardiogenic phenotype in vitro both under the normal condition and after hypoxia/re-oxygenation. There was an increased level of cTnT and α-SA, and cardiac-specific transcription factors including Nkx2.5, Gata4, Gata6, and Isl-1 were significantly upregulated (P < 0.01). Expressions of EMT-associated genes including Snail, Twist and N-cadherin were much higher (P < 0.01). Mesp1 exhibited a distinct augmentation following lncRNA-Bvht transfection. Expressions of relevant cardiac-specific transcription factors and EMT-associated genes all presented a converse alteration in the condition of Mesp1 inhibition prior to lncRNA-Bvht transfection. Conclusion lncRNA-Bvht could efficiently promote MSCs transdifferentation into cells with the cardiogenic phenotype in vitro. It might function via enhancing the expressions of cardiac-specific transcription factors and EMT-associated genes. Mesp1 could be a pivotal intermediary in the procedure.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
47
|
Donadeu FX, Mohammed BT, Ioannidis J. A miRNA target network putatively involved in follicular atresia. Domest Anim Endocrinol 2017; 58:76-83. [PMID: 27664382 PMCID: PMC5145806 DOI: 10.1016/j.domaniend.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/14/2023]
Abstract
In a previous microarray study, we identified a subset of micro RNAS (miRNAs), which expression was distinctly higher in atretic than healthy follicles of cattle. In the present study, we investigated the involvement of those miRNAs in granulosa and theca cells during atresia. Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) confirmed that miR-21-5p/-3p, miR-150, miR-409a, miR-142-5p, miR-378, miR-222, miR-155, and miR-199a-5p were expressed at higher levels in atretic than healthy follicles (9-17 mm, classified based on steroidogenic capacity). All miRNAs except miR-21-3p and miR-378 were expressed at higher levels in theca than granulosa cells. The expression of 13 predicted miRNA targets was determined in follicular cells by RT-qPCR, revealing downregulation of HIF1A, ETS1, JAG1, VEGFA, and MSH2 in either or both cell types during atresia. Based on increases in miRNA levels simultaneous with decreases in target levels in follicular cells, several predicted miRNA target interactions were confirmed that are putatively involved in follicular atresia, namely miR-199a-5p/miR-155-HIF1A in granulosa cells, miR-155/miR-222-ETS1 in theca cells, miR-199a-5p-JAG1 in theca cells, miR-199a-5p/miR-150/miR-378-VEGFA in granulosa and theca cells, and miR-155-MSH2 in theca cells. These results offer novel insight on the involvement of miRNAs in follicle development by identifying a miRNA target network that is putatively involved in follicle atresia.
Collapse
Affiliation(s)
- F X Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - B T Mohammed
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - J Ioannidis
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
48
|
Templin C, Volkmann J, Emmert MY, Mocharla P, Müller M, Kraenkel N, Ghadri JR, Meyer M, Styp-Rekowska B, Briand S, Klingenberg R, Jaguszewski M, Matter CM, Djonov V, Mach F, Windecker S, Hoerstrup SP, Thum T, Lüscher TF, Landmesser U. Increased Proangiogenic Activity of Mobilized CD34+ Progenitor Cells of Patients With Acute ST-Segment-Elevation Myocardial Infarction: Role of Differential MicroRNA-378 Expression. Arterioscler Thromb Vasc Biol 2016; 37:341-349. [PMID: 28062497 DOI: 10.1161/atvbaha.116.308695] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Proangiogenic effects of mobilized bone marrow-derived stem/progenitor cells are essential for cardiac repair after myocardial infarction. MicroRNAs (miRNA/miR) are key regulators of angiogenesis. We investigated the differential regulation of angio-miRs, that is, miRNAs regulating neovascularization, in mobilized CD34+ progenitor cells obtained from patients with an acute ST-segment-elevation myocardial infarction (STEMI) as compared with those with stable coronary artery disease or healthy subjects. APPROACH AND RESULTS CD34+ progenitor cells were isolated from patients with STEMI (on day 0 and day 5), stable coronary artery disease, and healthy subjects (n=27). CD34+ progenitor cells of patients with STEMI exhibited increased proangiogenic activity as compared with CD34+ cells from the other groups. Using a polymerase chain reaction-based miRNA-array and real-time polymerase chain reaction validation, we identified a profound upregulation of 2 known angio-miRs, that are, miR-378 and let-7b, in CD34+ cells of patients with STEMI. Especially, we demonstrate that miR-378 is a critical regulator of the proangiogenic capacity of CD34+ progenitor cells and its stimulatory effects on endothelial cells in vitro and in vivo, whereas let-7b upregulation in CD34+ cells failed to proof its effect on endothelial cells in vivo. CONCLUSIONS The present study demonstrates a significant upregulation of the angio-miRs miR-378 and let-7b in mobilized CD34+ progenitor cells of patients with STEMI. The increased proangiogenic activity of these cells in patients with STEMI and the observation that in particular miR-378 regulates the angiogenic capacity of CD34+ progenitor cells in vivo suggest that this unique miRNA expression pattern represents a novel endogenous repair mechanism activated in acute myocardial infarction.
Collapse
Affiliation(s)
- Christian Templin
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.).
| | - Julia Volkmann
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Maximilian Y Emmert
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Pavani Mocharla
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Maja Müller
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Nicolle Kraenkel
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Jelena-R Ghadri
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Martin Meyer
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Beata Styp-Rekowska
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Sylvie Briand
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Roland Klingenberg
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Milosz Jaguszewski
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Christian M Matter
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Valentin Djonov
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Francois Mach
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Stephan Windecker
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Simon P Hoerstrup
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Thomas Thum
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Thomas F Lüscher
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Ulf Landmesser
- From the Department of Cardiology, University Heart Center (C.T., P.M., M.M., J.-R.G., M.J., C.M.M., T.F.L.), Department of Cardiovascular Surgery, Department of Surgical Research (M.Y.E., S.P.H.), University Hospital Zurich, Switzerland; Division of Nephrology and Hypertension, Department of Internal Medicine, Hannover Medical School, Germany (J.V.); Department of Cardiology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany (N.K., U.L.); Institute of Anatomy, University of Berne, Switzerland (B.S.-R., V.D.); Division of Cardiology, Kantonsspital Frauenfeld, Switzerland (M.M.); Division of Cardiology, Kerckhoff Klinik, Bad Nauheim, Germany (R.K.); Center for Molecular Cardiology, Schlieren Campus and Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (S.B., T.F.L.); First Department of Cardiology, Medical University of Gdansk, Poland (M.J.); Department of Cardiology, University of Geneva, Switzerland (F.M.); Department of Cardiology, University Hospital Bern, Switzerland (S.W.); Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany (T.T.); and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| |
Collapse
|
49
|
Stem Cells as a Promising Tool for the Restoration of Brain Neurovascular Unit and Angiogenic Orientation. Mol Neurobiol 2016; 54:7689-7705. [DOI: 10.1007/s12035-016-0286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
50
|
Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction. Stem Cell Rev Rep 2016; 11:885-99. [PMID: 26275398 DOI: 10.1007/s12015-015-9615-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this study, we hypothesized that activation of PPAR-γ enhanced MSCs survival and their therapeutic efficacy via upregulating the expression of Cx43. METHODS MI was induced in 50 male Sprague-Dawley rats. The rats were randomized into five groups: MI group and four intervention groups, including the MSCs group, combined therapy group (MSCs+ pioglitazone), pioglitazone group and PBS group. Two weeks later, 5 × 10(6) MSCs labeled with PKH26 in PBS were injected into the infarct anterior ventricular free wall in the MSCs and combined therapy groups, and PBS alone was injected into the infarct anterior ventricular free wall in the PBS group. Pioglitazone (3 mg/kg/day) was given to the combined therapy and pioglitazone groups by oral gavage at the same time for another 2 weeks. Myocardial function and relevant signaling molecules involved were all examined thereafter. RESULTS Heart function was enhanced after MSCs treatment for 2 weeks post MI. A significant improvement of heart function was observed in the combined therapy group in contrast to the other three intervention groups. Compared with the MSCs group, there was a higher level of PPAR-γ in the combined therapy group; Cx43 was remarkably increased in different regions of the left ventricle; TGF-β1 was decreased in the infarct zone and border zone. To the downstream signaling molecules, mothers against Smad proteins including Smad2 and Smad3 presented a synchronized alteration with TGF-β1; no differences of the expressions of ERK1/2 and p38 could be discovered in the left ventricular cardiac tissue. CONCLUSIONS MSCs transplantation combined with pioglitazone administration improved cardiac function more effectively after MI. Activation of PPAR-γ could promote MSCs to express Cx43. Inhibition of TGF-β1/Smads signaling pathway might be involved in the process.
Collapse
|