1
|
Cross Talk between Mesenchymal Stem/Stromal Cells and Innate Immunocytes Concerning Lupus Disease. Stem Cell Rev Rep 2022; 18:2781-2796. [DOI: 10.1007/s12015-022-10397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 10/16/2022]
|
2
|
Yao XY, Xie L, Cai Y, Zhang Y, Deng Y, Gao MC, Wang YS, Xu HM, Ding J, Wu YF, Zhao N, Wang Z, Song YY, Wang LP, Xie C, Li ZZ, Wan WB, Lin Y, Jin HF, Wang K, Qiu HY, Zhuang L, Zhou Y, Jin YY, Ni LP, Yan JL, Guo Q, Xue JH, Qian BY, Guan YT. Human Umbilical Cord Mesenchymal Stem Cells to Treat Neuromyelitis Optica Spectrum Disorder (hUC-MSC-NMOSD): A Study Protocol for a Prospective, Multicenter, Randomized, Placebo-Controlled Clinical Trial. Front Neurol 2022; 13:860083. [PMID: 35547390 PMCID: PMC9082633 DOI: 10.3389/fneur.2022.860083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neuromyelitis Optica spectrum disorder (NMOSD) is severe relapsing and disabling autoimmune disease of the central nervous system. Its optimal first-line treatment to reduce relapse rate and ameliorate neurological disability remains unclear. We will conduct a prospective, multicenter, randomized, placebo-controlled clinical trial to study the safety and effectiveness of human umbilical cord mesenchymal stem cells (hUC-MSCs) in treating NMOSD. METHODS The trial is planned to recruit 430 AQP4-IgG seropositive NMOSD patients. It consists of three consecutive stages. The first stage will be carried out in the leading center only and aims to evaluate the safety of hUC-MSCs. Patients will be treated with three different doses of hUC-MSCs: 1, 2, or 5 × 106 MSC/kg·weight for the low-, medium-, and high-dose group, respectively. The second and third stages will be carried out in six centers. The second stage aims to find the optimal dosage. Patients will be 1:1:1:1 randomized into the low-, medium-, high-dose group and the controlled group. The third stage aims to evaluate the effectiveness. Patients will be 1:1 randomized into the optimal dose and the controlled group. The primary endpoint is the first recurrent time and secondary endpoints are the recurrent times, EDSS scores, MRI lesion numbers, OSIS scores, Hauser walking index, and SF-36 scores. Endpoint events and side effects will be evaluated every 3 months for 2 years. DISCUSSION Although hUC-MSC has shown promising treatment effects of NMOSD in preclinical studies, there is still a lack of well-designed clinical trials to evaluate the safety and effectiveness of hUC-MSC among NMOSD patients. As far as we know, this trial will be the first one to systematically demonstrate the clinical safety and efficacy of hUC-MSC in treating NMOSD and might be able to determine the optimal dose of hUC-MSC for NMOSD patients. TRIAL REGISTRATION The study was registered with the Chinese Clinical Trial Registry (CHICTR.org.cn) on 2 March 2016 (registration No. ChiCTR-INR-16008037), and the revised trial protocol (Protocol version 1.2.1) was released on 16 March 2020.
Collapse
Affiliation(s)
- Xiao-Ying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xie
- Clinical Research Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Cai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Deng
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mei-Chun Gao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Shu Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Ming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Ding
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Fan Wu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Ying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Xie
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Zhi Li
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Bin Wan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Lin
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Jin
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kan Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Ying Qiu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhuang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Yan Jin
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Ni
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Li Yan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Guo
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Hui Xue
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bi-Yun Qian
- Clinical Research Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Clinical Research Promotion and Development Center, Shanghai Hospital Development Center, Shanghai, China
| | - Yang-Tai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Efficacy and Safety of Mesenchymal Stem Cell Transplantation in the Treatment of Autoimmune Diseases (Rheumatoid Arthritis, Systemic Lupus Erythematosus, Inflammatory Bowel Disease, Multiple Sclerosis, and Ankylosing Spondylitis): A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Stem Cells Int 2022; 2022:9463314. [PMID: 35371265 PMCID: PMC8970953 DOI: 10.1155/2022/9463314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/30/2023] Open
Abstract
Objective To evaluate the efficacy and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune diseases. Methods The Chinese and English databases were searched for clinical research on the treatment of autoimmune diseases with mesenchymal stem cells. The search time range is from a self-built database to October 1, 2021. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted data, and evaluated the bias of the included studies. RevMan 5.3 analysis software was used for meta-analysis. Results A total of 18 RCTs involving 5 autoimmune diseases were included. The 5 autoimmune disease were rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease, ankylosing spondylitis, and multiple sclerosis. For RA, the current randomized controlled trials (RCTs) still believe that stem cell transplantation may reduce disease activity, improve the clinical symptoms (such as DAS28), and the percentage of CD4+CD 25+Foxp3+Tregs in the response group increased and the percentage of CD4+IL-17A+Th17 cells decreased. The total clinical effective rate of RA is 54%. For SLE, the results showed that mesenchymal stem cell transplantation may improve SLEDAI [-2.18 (-3.62, -0.75), P = 0.003], urine protein [-0.93 (-1.04, -0.81), P < 0.00001], and complement C3 [0.31 (0.19, 0.42), P < 0.00001]. For inflammatory bowel disease, the results showed that mesenchymal stem cell transplantation may improve clinical efficacy [2.50 (1.07, 5.84), P = 0.03]. For ankylosing spondylitis, MSC treatment for 6 months may increase the total effective rate; reduce erythrocyte sedimentation rate, intercellular adhesion molecules, and serum TNF-α; and improve pain and activity. For multiple sclerosis, the current research results are still controversial, so more RCTs are needed to amend or confirm the conclusions. No obvious adverse events of mesenchymal stem cell transplantation were found in all RCTs. Conclusion MSCs have a certain effect on different autoimmune diseases, but more RCTs are needed to further modify or confirm the conclusion.
Collapse
|
4
|
Li W, Chen W, Sun L. An Update for Mesenchymal Stem Cell Therapy in Lupus Nephritis. KIDNEY DISEASES 2021; 7:79-89. [PMID: 33824866 DOI: 10.1159/000513741] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Background Lupus nephritis (LN) is the most severe organ manifestations of systemic lupus erythematosus (SLE). Although increased knowledge of the disease pathogenesis has improved treatment options, outcomes have plateaued as current immunosuppressive therapies have failed to prevent disease relapse in more than half of treated patients. Thus, there is still an urgent need for novel therapy. Mesenchymal stem cells (MSCs) possess a potently immunosuppressive regulation on immune responses, and intravenous transplantation of MSCs ameliorates disease symptoms and has emerged as a potential beneficial therapy for LN. The objective of this review is to discuss the defective functions of MSCs in LN patients and the application of MSCs in the treatment of both LN animal models and patients. Summary Bone marrow MSCs from SLE patients exhibit impaired capabilities of migration, differentiation, and immune regulation and display senescent phenotype. Allogeneic MSCs suppress autoimmunity and restore renal function in mouse models and patients with LN by inducing regulatory immune cells and suppressing Th1, Th17, T follicular helper cell, and B-cell responses. In addition, MSCs can home to the kidney and integrate into tubular cells and differentiate into mesangial cells. Key Messages The efficacy of MSCs in the LN treatment remains to be confirmed, and future advances from stem cell science can be expected to pinpoint significant MSC subpopulations, as well as specific mechanisms of action, leading the way to the use of more potent stimulated or primed pretreated MSCs to treat LN.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
5
|
Radmanesh F, Mahmoudi M, Yazdanpanah E, Keyvani V, Kia N, Nikpoor AR, Zafari P, Esmaeili SA. The immunomodulatory effects of mesenchymal stromal cell-based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life 2020; 72:2366-2381. [PMID: 33006813 DOI: 10.1002/iub.2387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune inflammatory disease with no absolute cure. Although the exact etiopathogenesis of SLE is still enigmatic, it has been well demonstrated that a combination of genetic predisposition and environmental factors trigger a disturbance in immune responses and thereby participate in the development of this condition. Almost all available therapeutic strategies in SLE are primarily based on the administration of immunosuppressive drugs and are not curative. Mesenchymal stromal cells (MSCs) are a subset of non-hematopoietic adult stem cells that can be isolated from many adult tissues and are increasingly recognized as immune response modulating agents. MSC-mediated inhibition of immune responses is a complex mechanism that involves almost every aspect of the immune response. MSCs suppress the maturation of antigen-presenting cells (DC and MQ), proliferation of T cells (Th1, T17, and Th2), proliferation and immunoglobulin production of B cells, the cytotoxic activity of CTL and NK cells in addition to increasing regulatory cytokines (TGF-β and IL10), and decreasing inflammatory cytokines (IL17, INF-ϒ, TNF-α, and IL12) levels. MSCs have shown encouraging results in the treatment of several autoimmune diseases, in particular SLE. This report aims to review the beneficial and therapeutic properties of MSCs; it also focuses on the results of animal model studies, preclinical studies, and clinical trials of MSC therapy in SLE from the immunoregulatory aspect.
Collapse
Affiliation(s)
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Keyvani
- Molecular Genetics, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nadia Kia
- Skin Cancer Prevention Research Center, Torvergata University of Medical Sciences, Rome, Italy
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Huang J, Lu W, Ouyang H, Chen Y, Zhang C, Luo X, Li M, Shu J, Zheng Q, Chen H, Chen J, Tang H, Sun D, Yuan JXJ, Yang K, Wang J. Transplantation of Mesenchymal Stem Cells Attenuates Pulmonary Hypertension by Normalizing the Endothelial-to-Mesenchymal Transition. Am J Respir Cell Mol Biol 2020; 62:49-60. [PMID: 31211918 PMCID: PMC6938136 DOI: 10.1165/rcmb.2018-0165oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
For decades, stem cell therapies for pulmonary hypertension (PH) have progressed from laboratory hypothesis to clinical practice. Promising preclinical investigations have laid both a theoretical and practical foundation for clinical application of mesenchymal stem cells (MSCs) for PH therapy. However, the underlying mechanisms are still poorly understood. We sought to study the effects and mechanisms of MSCs on the treatment of PH. For in vivo experiments, the transplanted GFP+ MSCs were traced at different time points in the lung tissue of a chronic hypoxia-induced PH (CHPH) rat model. The effects of MSCs on PH pathogenesis were evaluated in both CHPH and sugen hypoxia-induced PH models. For in vitro experiments, primary pulmonary microvascular endothelial cells were cultured and treated with the MSC conditioned medium. The specific markers of endothelial-to-mesenchymal transition (EndMT) and cell migration properties were measured. MSCs decreased pulmonary arterial pressure and ameliorated the collagen deposition, and reduced the thickening and muscularization in both CHPH and sugen hypoxia-induced PH rat models. Then, MSCs significantly attenuated the hypoxia-induced EndMT in both the lungs of PH models and primary cultured rat pulmonary microvascular endothelial cells, as reflected by increased mesenchymal cell markers (fibronectin 1 and vimentin) and decreased endothelial cell markers (vascular endothelial cadherin and platelet endothelial cell adhesion molecule-1). Moreover, MSCs also markedly inhibited the protein expression and degradation of hypoxia-inducible factor-2α, which is known to trigger EndMT progression. Our data suggest that MSCs successfully prevent PH by ameliorating pulmonary vascular remodeling, inflammation, and EndMT. Transplantation of MSCs could potentially be a powerful therapeutic approach against PH.
Collapse
Affiliation(s)
- Junyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiping Ouyang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meichan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaze Shu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Translational and Regenerative Medicine, the University of Arizona College of Medicine, Tucson, Arizona; and
| | - Dejun Sun
- Division of Pulmonary and Critical Care Medicine, the People’s Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| | - Jason X.-J. Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Translational and Regenerative Medicine, the University of Arizona College of Medicine, Tucson, Arizona; and
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Translational and Regenerative Medicine, the University of Arizona College of Medicine, Tucson, Arizona; and
- Division of Pulmonary and Critical Care Medicine, the People’s Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| |
Collapse
|
7
|
Saeedi P, Halabian R, Imani Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig 2019; 6:34. [PMID: 31620481 DOI: 10.21037/sci.2019.08.11] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Multipotent mesenchymal stem cells (MSCs) have been considerably inspected as effective tool for cell-based therapy of inflammatory, immune-mediated, and degenerative diseases, attributed to their immunomodulatory, immunosuppressive, and regenerative potentials. In the present review, we focus on recent research findings of the clinical applications and therapeutic potential of this cell type, MSCs' mechanisms of therapy, strategies to improve their therapeutic potentials such as manipulations and preconditioning, and potential/unexpected risks which should be considered as a prerequisite step before clinical use. The potential risks would probably include undesirable immune responses, tumor formation and the transmission of incidental agents. Then, we also review some of the milestones in the field, briefly discuss challenges and highlight the new guideline suggested for future directions and perspectives.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wei S, Xie S, Yang Z, Peng X, Gong L, Zhao K, Zeng K, Lai K. Allogeneic adipose-derived stem cells suppress mTORC1 pathway in a murine model of systemic lupus erythematosus. Lupus 2018; 28:199-209. [PMID: 30572770 DOI: 10.1177/0961203318819131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of our study was to investigate the efficacy of adipose-derived stem cells (ADSC) transplantation in systemic lupus erythematosus (SLE) and to determine the mechanism of ADSC transplantation. METHODS B6.MRL/lpr mice were administered ADSC intravenously every week from age 28 to 31 weeks, while the lupus control group and the normal control received phosphate buffered solution (PBS) on the same schedule. RESULTS Compared with the lupus control group, the ADSC treatment group had a significant improvement of histologic abnormalities, serologic abnormalities, and immunologic function. Anti-double-stranded DNA antibodies, spleen/weight ratio, deposits of C3/IgG in the kidney, and serum creatinine and blood urea nitrogen levels were significantly decreased with the transplantation of ADSC. A significant decrease of the Th17/CD4+ T cell ratio in the spleen, the serum IL-17 concentration, as well as renal IL-17 expression was observed in the ADSC treatment group. Western blot results also showed that ADSC treatment had a lower expression of protein kinase B (Akt), p-Akt, mTOR, p-mTOR, p70S6K, p-p70S6K, and HIF-1α. CONCLUSION ADSC treatment can prevent the development of lupus nephritis and significantly ameliorate already-established disease. ADSC treatment reduced Akt, mTOR, p70S6K, HIF-1α, and that this inhibition can avert IL-17-induced inflammation, suggesting that ADSC may be a promising treatment for SLE.
Collapse
Affiliation(s)
- S Wei
- 1 Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S Xie
- 1 Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z Yang
- 1 Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Peng
- 1 Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L Gong
- 2 Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - K Zhao
- 3 Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - K Zeng
- 1 Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - K Lai
- 1 Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Aboulhoda BE, Abd el Fattah S. Bone marrow-derived versus adipose-derived stem cells in wound healing: value and route of administration. Cell Tissue Res 2018; 374:285-302. [DOI: 10.1007/s00441-018-2879-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
|
10
|
Zazzeroni L, Lanzoni G, Pasquinelli G, Ricordi C. Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2017; 5:e2435. [PMID: 30505879 PMCID: PMC6267851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal Stem Cells (MSCs) possess important characteristics that could be exploited in therapeutic strategies for Type 1 Diabetes (T1D) and for certain complications of Type 2 Diabetes (T2D). MSCs can inhibit autoimmune, alloimmune and inflammatory processes. Moreover, they can promote the function of endogenous and transplanted pancreatic islets. Furthermore, they can stimulate angiogenesis. MSC functions are largely mediated by their secretome, which includes growth factors, exosomes, and other extracellular vesicles. MSCs have shown a good safety profile in clinical trials. MSC-derived exosomes are emerging as an alternative to the transplantation of live MSCs. MSCs harvested from different anatomical locations (e.g. bone marrow, umbilical cord, placenta, adipose tissue, and pancreas) have shown differences in gene expression profiles and function. Data from clinical trials suggest that umbilical cord-derived MSCs could be superior to bone marrow-derived MSCs for the treatment of T1D. Autologous MSCs from diabetic patients may present abnormal functions. BM-MSCs from T1D patients exhibit gene expression differences that may impact in vivo function. BM-MSCs from T2D patients seem to be significantly impaired due to the T2D diabetic milieu. In this review, we highlight how the harvesting site and donor derivation can affect the efficacy of MSC-based treatments for T1D and T2D.
Collapse
Affiliation(s)
- L Zazzeroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - G Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - G Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - C Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Fayyad-Kazan M, Najar M, Fayyad-Kazan H, Raicevic G, Lagneaux L. Identification and Evaluation of New Immunoregulatory Genes in Mesenchymal Stromal Cells of Different Origins: Comparison of Normal and Inflammatory Conditions. Med Sci Monit Basic Res 2017; 23:87-96. [PMID: 28336906 PMCID: PMC5378277 DOI: 10.12659/msmbr.903518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) possess potent immunomodulatory properties that increase their value as a cell-based therapeutic tool for managing various immune-based disorders. Over the past years, accumulated results from trials using MSCs-based therapy have shown substantial contradictions. Although the reasons underlying these discrepancies are still not completely understood, it is well known that the immunomodulatory activities mediated by distinct MSCs differ in a manner dependent on their tissue origin and adequate response to inflammation priming. Thus, characterization of new molecular pathway(s) through which distinct MSC populations can exert their immunomodulatory effects, particularly during inflammation, will undoubtedly enhance their therapeutic potential. Material/Methods After confirming their compliance with ISCT criteria, quantitative real time-PCR (qRT-PCR) was used to screen new immunoregulatory genes in MSCs, derived from adipose tissue, foreskin, Wharton’s jelly or the bone-marrow, after being cultivated under normal and inflammatory conditions. Results FGL2, GAL, SEMA4D, SEMA7A, and IDO1 genes appeared to be differentially transcribed in the different MSC populations. Moreover, these genes were not similarly modulated following MSCs-exposure to inflammatory signals. Conclusions Our observations suggest that these identified immunoregulatory genes may be considered as potential candidates to be targeted in order to enhance the immunomodulatory properties of MSCs towards more efficient clinical use.
Collapse
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
12
|
Overexpression of soluble RAGE in mesenchymal stem cells enhances their immunoregulatory potential for cellular therapy in autoimmune arthritis. Sci Rep 2016; 6:35933. [PMID: 27804999 PMCID: PMC5090969 DOI: 10.1038/srep35933] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are attractive agents for cellular therapy in rheumatoid arthritis (RA). The receptor for advanced glycation end products (RAGE) serves as a pattern recognition receptor for endogenous inflammatory ligands. Soluble RAGE (sRAGE) is a truncated form of RAGE that functions as a decoy and acts as an anti-inflammatory molecule. The aim of this study was to determine whether sRAGE has therapeutic effects and the mechanisms active in sRAGE-overexpressing MSCs (sRAGE-MSCs) in an experimental model of RA. sRAGE-MSCs were generated by DNA transfection of human adipose tissue-derived MSCs (Ad-hMSCs). MSCs showed increased expression of VEGF, IL-1β, IL-6, and HMGB-1 under inflammatory conditions. However, sRAGE-MSCs showed significantly lower production of these proinflammatory molecules. Expression of immunomodulatory molecules such as IL-10, TGF-β, and indoleamine 2, 3-dioxygenase was higher in sRAGE-MSCs than in mock-MSCs. sRAGE-MSCs showed enhanced migration potential. Transplantation of sRAGE-MSCs into arthritic IL-1Ra-knockout mice markedly suppressed inflammatory arthritis, decreased Th17 cells, and reciprocally increased regulatory T cells. The differentiation of IFN-γ+CD4+ and IL-17+CD4+ cells was inhibited by incubation with sRAGE-MSCs compared with mock-MSCs. These findings suggest that sRAGE overexpression in Ad-hMSCs optimizes their immunoregulatory properties, which may be useful as a novel cellular therapy for RA.
Collapse
|
13
|
Oryan A. Mesenchymal Stem Cells and Immunomodulation: Implications in Bone Tissue Engineering. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/icpjl.2016.02.00060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Modulation of Immunoregulatory Properties of Mesenchymal Stromal Cells by Toll-Like Receptors: Potential Applications on GVHD. Stem Cells Int 2016; 2016:9434250. [PMID: 27738438 PMCID: PMC5050362 DOI: 10.1155/2016/9434250] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022] Open
Abstract
In the last decade, the immunomodulatory properties of mesenchymal stromal cells (MSCs) have attracted a lot of attention, due to their potential applicability in the treatment of graft-versus-host disease (GVHD), a condition frequently associated with opportunistic infections. The present review addresses how Pathogen-Associated Molecular Patterns (PAMPS) modulate the immunosuppressive phenotype of human MSCs by signaling through Toll-like receptors (TLRs). Overall, we observed that regardless of the source tissue, human MSCs express TLR2, TLR3, TLR4, and TLR9. Stimulation of distinct TLRs on MSCs elicits distinct inflammatory signaling pathways, differentially influencing the expression of inflammatory factors and the ability of MSCs to suppress the proliferation of immune system cells. The capacity to enhance the immunosuppressive phenotype of MSCs through TLRs stimulation might be properly elucidated in order to improve the MSC-based immunotherapy against GVHD.
Collapse
|
15
|
Yang YH, Hsieh TL, Ji ATQ, Hsu WT, Liu CY, Lee OKS, Ho JHC. Stromal Tissue Rigidity Promotes Mesenchymal Stem Cell-Mediated Corneal Wound Healing Through the Transforming Growth Factor β Signaling Pathway. Stem Cells 2016; 34:2525-2535. [DOI: 10.1002/stem.2405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yun-Hsiang Yang
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Ophthalmology; Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation; New Taipei City Taiwan
| | - Ting-Lieh Hsieh
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| | - Andrea Tung-Qian Ji
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| | - Wei-Tse Hsu
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| | - Chia-Yu Liu
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedic Surgery; Taipei City Hospital; Taipei Taiwan
- Institute of Clinical Medicine, National Yang-Ming University; Taipei Taiwan
- Stem Cell Research Center, National Yang-Ming University; Taipei Taiwan
| | - Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
- Department of Ophthalmology; Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| |
Collapse
|
16
|
Lin CY, Liu TY, Chen MH, Sun JS, Chen MH. An injectable extracellular matrix for the reconstruction of epidural fat and the prevention of epidural fibrosis. ACTA ACUST UNITED AC 2016; 11:035010. [PMID: 27271471 DOI: 10.1088/1748-6041/11/3/035010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extensive epidural fibrosis is a common complication following spinal surgery and can cause pain and limited mobility. In the present study, a novel biomimetic approach was developed to prevent postsurgical adhesion of the dura. We aimed to reconstruct epidural fat, which prevents scar-tissue adhesion, through the development of an injectable decellularized adipose matrix (DAM)-containing hyaluronic acid (HA) hydrogel loaded with adipose stromal cells (ASCs). Injectable DAM was prepared from porcine adipose tissue by four freeze-thaw cycles with subsequent pepsin digestion. Residual analyses confirmed the efficacy of detergent-free decellularization, while most sulfated glycosaminoglycans and collagen were preserved. The Transwell migration assay demonstrated the anti-infiltrative property of the DAM-containing HA hydrogel. After 14 d of 3D culture, the DAM-containing HA hydrogel showed inductive potential in the adipogenic differentiation of ASCs. For an in vivo study, the ASC-loaded DAM-containing HA hydrogel (DAM/ASC-incorporated HA hydrogel) was injected into adult laminectomized male rats, and the results were assessed by microscopic histological examination. The in vivo data indicated that HA hydrogel, DAM, and ASCs were all required for the ability of the engineered fat tissue to block the invasion of the fibrous tissue. Our results suggested that this injectable DAM/ASC-incorporated HA hydrogel has potential applications in minimally invasive surgery for soft-tissue reconstruction and epidural fibrosis prevention.
Collapse
Affiliation(s)
- Cheng-Yi Lin
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Liang J, Wang D, Dominique F, Sun L. Mesenchymal stem cells for treating autoimmune diseases: The Chinese experience from lab to clinics. Curr Res Transl Med 2016; 64:115-20. [PMID: 27316395 DOI: 10.1016/j.retram.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022]
Abstract
Autoimmune diseases are a group of chronic inflammatory conditions diseases characterized by aberrant activation of the immune system involving either cells or antibodies directed against normal tissues. The current conventional strategies, notably corticosteroids and immunosuppressors, are responsible for high treatment-related morbidity and are still associated with significant disease and treatment-related mortality. Recently, experimental and clinical data has suggested that mesenchymal stem cell transplantation would be a promising therapy strategy for the treatment of autoimmune diseases. This article will review the rationale and Chinese experience of mesenchymal stem cell transplantation in treatment of autoimmune diseases.
Collapse
Affiliation(s)
- J Liang
- Department of Immunology and Rheumatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu CN 210008, PR China
| | - D Wang
- Department of Immunology and Rheumatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu CN 210008, PR China
| | - F Dominique
- Assistance publique-Hôpitaux de Paris, Saint-Louis Hospital, Internal Medicine and Vascular Disease Unit, CIC-BT501, Inserm UMRS 1160, Paris 7 Diderot University, Sorbonne Paris Cité, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | - L Sun
- Department of Immunology and Rheumatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu CN 210008, PR China.
| |
Collapse
|
18
|
Choi EW, Shin IS, Song JW, Yun TW, Yang J, Choi KS, Seong JK. Transplantation of Adipose Tissue-Derived Mesenchymal Stem Cells Prevents the Development of Lupus Dermatitis. Stem Cells Dev 2015; 24:2041-51. [PMID: 25941899 DOI: 10.1089/scd.2015.0021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MRL/lpr mice spontaneously develop high titers of anti-dsDNA antibodies and symptoms such as glomerular nephritis and organ weight gain. They also develop spontaneous skin inflammation similar to the cutaneous lesions common in human lupus erythematosus. This study aimed to compare the effects of long-term serial administration of human adipose tissue-derived mesenchymal stem cells (ASCs), CTLA4Ig-overexpressing ASCs, and cyclophosphamide treatment in MRL/lpr mice. MRL/lpr mice were divided into saline (C), cyclophosphamide (Y), ASC early (E), ASC late (L), and CTLA4Ig-overexpressing ASC (CT) treatment groups. Background-matched control MRL/MPJ mice treated with saline (N) were also compared. The treatment period was 5-23 weeks, except for the L group (15-23 weeks). Blood and tissue samples were collected when the mice were 24 weeks old. Organ weight, anti-dsDNA antibodies, urine protein, skin and kidney histologic abnormalities, and trabecular bone volume were evaluated. The Y group showed the greatest decrease in anti-dsDNA antibodies, organ weight, degree of kidney inflammation and glomerular infiltration of C3, and incidence rate of severe proteinuria; the E, L, and CT treatment groups showed better results than the C group. ASC transplantation reduced anti-dsDNA antibody levels significantly. Mice treated with ASCs or CTLA4Ig-ASCs starting from the early disease stage did not show dermatitis upon gross examination; they demonstrated significant improvement in hyperkeratosis, acanthosis, and inflammatory cell infiltration scores in histopathology. Micro-CT analysis revealed that cyclophosphamide treatment significantly decreased bone volume and increased bone spacing in the trabecular bone. Thus, we found that ASC and CTLA4-ASC treatments prevent lupus dermatitis development in MRL/lpr mice without adverse effects.
Collapse
Affiliation(s)
- Eun Wha Choi
- 1 Laboratory Animal Research Center, Samsung Biomedical Research Institute , Seoul, Republic of Korea.,2 School of Medicine, Sungkyunkwan University , Seoul, Republic of Korea
| | - Il Seob Shin
- 3 Biostar Stem Cell Research Center, K-STEMCELL , Seoul, Republic of Korea
| | - Ji Woo Song
- 1 Laboratory Animal Research Center, Samsung Biomedical Research Institute , Seoul, Republic of Korea
| | - Tae Won Yun
- 1 Laboratory Animal Research Center, Samsung Biomedical Research Institute , Seoul, Republic of Korea
| | - Jehoon Yang
- 1 Laboratory Animal Research Center, Samsung Biomedical Research Institute , Seoul, Republic of Korea.,2 School of Medicine, Sungkyunkwan University , Seoul, Republic of Korea
| | - Kyu-Sil Choi
- 1 Laboratory Animal Research Center, Samsung Biomedical Research Institute , Seoul, Republic of Korea.,2 School of Medicine, Sungkyunkwan University , Seoul, Republic of Korea
| | - Je Kyung Seong
- 4 Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
19
|
Feng X, Che N, Liu Y, Chen H, Wang D, Li X, Chen W, Ma X, Hua B, Gao X, Tsao BP, Sun L. Restored immunosuppressive effect of mesenchymal stem cells on B cells after olfactory 1/early B cell factor-associated zinc-finger protein down-regulation in patients with systemic lupus erythematosus. Arthritis Rheumatol 2015; 66:3413-23. [PMID: 25219468 DOI: 10.1002/art.38879] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/09/2014] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To evaluate whether olfactory 1/early B cell factor-associated zinc-finger protein (OAZ), a candidate lupus susceptibility gene involved in antinuclear antibody (ANA) production, plays a role in the regulation of B cells by mesenchymal stem cells (MSCs). METHODS MSCs derived from the bone marrow of patients with systemic lupus erythematosus (SLE) and healthy control subjects were expanded and incubated with small interfering RNAs specific for OAZ or a nontargeting sequence. Knockdown of messenger RNA levels of OAZ and its downstream genes was measured using real-time polymerase chain reaction, and protein levels of chemokine/cytokine and immunoglobulins were determined by enzyme-linked immunosorbent assay or Western blotting. The effects of modulating the OAZ levels in MSCs, by either silencing or overexpression, on B cell proliferation and terminal differentiation were assessed by coculturing MSCs with mouse spleen cells. RESULTS OAZ gene expression was highly enriched in MSCs compared with peripheral blood leukocytes and was increased in patients with SLE compared with control subjects. After the silencing of OAZ expression, SLE MSCs could regain the ability to inhibit B cell proliferation and terminal differentiation, as indicated by decreased percentages of bromodeoxyuridine-positive cells and CD138+ cells as well as decreased levels of IgG, IgM, and ANAs. The level of CCL2 was increased after OAZ knockdown, while anti-CCL2 antibodies completely counteracted the effect of OAZ silencing. Umbilical cord-derived normal MSCs that overexpressed OAZ had a diminished ability to inhibit B cell proliferation and terminal differentiation. CONCLUSION OAZ down-regulation could restore the impaired function of SLE MSCs in the immune regulation of B cells, contributing to a reduction in ANA levels. OAZ might represent a new target for therapy in patients with SLE.
Collapse
Affiliation(s)
- Xuebing Feng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Mesenchymal stem cells are a rare subset of stem cells residing in the bone marrow where they closely interact with hematopoietic stem cells and support their growth and differentiation. They can suppress proliferation or functions of many immune cells such as T cells, B cells, natural killer cells and dendritic cells. Recently, a substantial progress has been made in the field of mesenchymal stem cell transplantation. Experimental and clinical data suggest that this therapy has been a promising strategy for severe and refractory systemic lupus erythematosus.
Collapse
Affiliation(s)
- Jun Liang
- Department of Immunology and Rheumatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | | |
Collapse
|
21
|
Sánchez-Berná I, Santiago-Díaz C, Jiménez-Alonso J. Acción inmunomoduladora de las células madre mesenquimales en las enfermedades autoinmunitarias. Med Clin (Barc) 2015; 144:88-91. [DOI: 10.1016/j.medcli.2014.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 11/17/2022]
|
22
|
Balan A, Lucchini G, Schmidt S, Schneider A, Tramsen L, Kuçi S, Meisel R, Bader P, Lehrnbecher T. Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients with graft-versus-host disease--friends or foes? Leukemia 2014; 28:1941-8. [PMID: 24762460 DOI: 10.1038/leu.2014.127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/22/2014] [Accepted: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells, which exhibit broad immunosuppressive activities. Moreover, they may be administered irrespectively of human leukocyte antigen (HLA) compatibility, without inducing life-threatening immunological reactions, as they express no HLA class II and limited HLA class I antigens under resting conditions. These characteristics have made MSC an appealing candidate for cell therapy after hematopoietic stem cell transplantation (HSCT), for example, for treatment of graft-versus-host disease (GvHD) or for graft rejection prevention/treatment in allogeneic HSCT recipients. Unfortunately, information regarding the effect of MSC infusion on the host response to infectious agents is scarce, and study results on infectious complications in patients receiving MSC are conflicting. The present review focuses on the available data from in vitro studies and animal models regarding the interaction of MSC with bacterial, viral and fungal pathogens. In a clinical part, we present the current information on infectious complications in allogeneic HSCT recipients who had received MSCs as prophylaxis or treatment of GvHD disease.
Collapse
Affiliation(s)
- A Balan
- 1] Department of Pediatric Hematology and Oncology, Children's Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany [2] 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - G Lucchini
- Department of Pediatric Hematology and Oncology, Children's Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - S Schmidt
- Department of Pediatric Hematology and Oncology, Children's Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - A Schneider
- Department of Pediatric Hematology and Oncology, Children's Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - L Tramsen
- Department of Pediatric Hematology and Oncology, Children's Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - S Kuçi
- Department of Pediatric Hematology and Oncology, Children's Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - R Meisel
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Heinrich-Heine University, Düsseldorf, Germany
| | - P Bader
- Department of Pediatric Hematology and Oncology, Children's Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - T Lehrnbecher
- Department of Pediatric Hematology and Oncology, Children's Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
23
|
Ilmer M, Vykoukal J, Boiles AR, Coleman M, Alt E. Two sides of the same coin: stem cells in cancer and regenerative medicine. FASEB J 2014; 28:2748-61. [DOI: 10.1096/fj.13-244640] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthias Ilmer
- Department of Translational Molecular PathologyThe University of Texas M. D. Anderson Cancer CenterHoustonTexasUSA
| | - Jody Vykoukal
- Department of Translational Molecular PathologyThe University of Texas M. D. Anderson Cancer CenterHoustonTexasUSA
| | - Alejandro Recio Boiles
- Department of Translational Molecular PathologyThe University of Texas M. D. Anderson Cancer CenterHoustonTexasUSA
| | | | - Eckhard Alt
- Center for Stem Cell and Developmental BiologyThe University of Texas M. D. Anderson Cancer CenterHoustonTexasUSA
- Applied Stem Cell Laboratory, Heart and Vascular InstituteDepartment of MedicineTulane University Health Science CenterNew OrleansLouisianaUSA
| |
Collapse
|
24
|
Figueroa FE, Cuenca Moreno J, La Cava A. Novel approaches to lupus drug discovery using stem cell therapy. Role of mesenchymal-stem-cell-secreted factors. Expert Opin Drug Discov 2014; 9:555-66. [PMID: 24655067 DOI: 10.1517/17460441.2014.897692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Patients with systemic lupus erythematosus (SLE) are at increased risk for premature death, particularly among young adults, and present dilemmas regarding drug efficacy versus toxicity. Novel therapeutic strategies have included the use of mesenchymal stem cell (MSC) therapies that are promising but still have limitations. In several disease models, it has become apparent that MSCs do not necessarily replace diseased tissues but rather exert complex paracrine effects that are mediated by their extracellular-secreted products. AREAS COVERED In this review, the authors highlight the data on MSC treatment of SLE and related mechanisms of actions. This data includes the recent evidence that MSC-secreted factors such as extracellular microvesicles (MVs) are important mediators of MSC therapy. Among MVs, the authors delineate the role of exosomes as triggers of regenerative effects in target cells, mediated by transfer of proteins, mRNAs or microRNAs. The authors also outline some of the biological and regulatory restraints encountered by MSC therapy, in contrast to the potential advantages of MSC-derived exosomes as new therapeutic tools in SLE. EXPERT OPINION There is concern about reproducible data on the use of MSC therapy in rheumatic diseases and specifically SLE. Although most experts consider MSCs to be safe, there are still worries over donor variability, immune-mediated rejection, culture-induced senescence, loss of functional properties and genetic instability or eventual malignant transformation. MSC-released factors could avoid most limiting factors associated with cell therapy and are therefore expected to provide a new and safe therapeutic option at an affordable cost.
Collapse
Affiliation(s)
- Fernando E Figueroa
- Universidad de los Andes, Centro de Investigaciones Biomédicas, Facultad de Medicina , Santiago de , Chile
| | | | | |
Collapse
|
25
|
Ruan GP, Xu F, Li ZA, Zhu GX, Pang RQ, Wang JX, Cai XM, He J, Yao X, Ruan GH, Xu XM, Pan XH. Induced autologous stem cell transplantation for treatment of rabbit renal interstitial fibrosis. PLoS One 2013; 8:e83507. [PMID: 24367598 PMCID: PMC3867441 DOI: 10.1371/journal.pone.0083507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/05/2013] [Indexed: 12/02/2022] Open
Abstract
Introduction Renal interstitial fibrosis (RIF) is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. Methods A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP). These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. Results Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05) were observed in serum creatinine (SCr) (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L) and blood urea nitrogen (BUN) (119 ± 22 µmol/L to 97 ± 13 µmol/L), indicating improvement in renal function. Conclusions We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function.
Collapse
Affiliation(s)
- Guang-Ping Ruan
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Fan Xu
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Zi-An Li
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Guang-Xu Zhu
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Rong-Qing Pang
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Jin-Xiang Wang
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Xue-Min Cai
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Jie He
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Xiang Yao
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Guang-Hong Ruan
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Xin-Ming Xu
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | - Xing-Hua Pan
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
- * E-mail:
| |
Collapse
|
26
|
Sui W, Hou X, Che W, Chen J, Ou M, Xue W, Dai Y. Hematopoietic and mesenchymal stem cell transplantation for severe and refractory systemic lupus erythematosus. Clin Immunol 2013; 148:186-97. [DOI: 10.1016/j.clim.2013.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 12/29/2022]
|