1
|
Devi P, Engdahl K, Punga T, Bergqvist A. Next-Generation Sequencing Analysis of CpG Methylation of a Tumor Suppressor Gene SHP-1 Promoter in Stable Cell Lines and HCV-Positive Patients. Viruses 2022; 14:v14112352. [PMID: 36366451 PMCID: PMC9695419 DOI: 10.3390/v14112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatitis C virus (HCV) is the major causative pathogen associated with hepatocellular carcinoma and liver cirrhosis. The main virion component, the Core (C) protein, is involved in multiple aspects of HCV pathology including oncogenesis and immune evasion. In this study, we established a next-generation bisulfite sequencing (NGS-BS) protocol to analyze the CpG methylation profile at the tumor suppressor gene SHP-1 P2 promoter as a model system. Our data show that HCV C protein expression in the immortalized T cells correlated with a specific CpG methylation profile at the SHP-1 P2. The NGS-BS on HCV-positive (HCV+) patient-derived PBMCs revealed a considerably different CpG methylation profile compared to the HCV C protein immortalized T cells. Notably, the CpG methylation profile was very similar in healthy and HCV+ PBMCs, suggesting that the SHP-1 P2 CpG methylation profile is not altered in the HCV+ individuals. Collectively, the NGS-BS is a highly sensitive method that can be used to quantitatively characterize the CpG methylation status at the level of individual CpG position and also allows the characterization of cis-acting effects on epigenetic regulation.
Collapse
Affiliation(s)
- Priya Devi
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
| | - Katarina Engdahl
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123 Uppsala, Sweden
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
- Clinical Microbiology and Hospital Infection Control, Uppsala University Hospital, SE 75185 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186113937
| |
Collapse
|
2
|
Hepatitis C Virus Core Protein Down-Regulates Expression of Src-Homology 2 Domain Containing Protein Tyrosine Phosphatase by Modulating Promoter DNA Methylation. Viruses 2021; 13:v13122514. [PMID: 34960785 PMCID: PMC8709277 DOI: 10.3390/v13122514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) is the major causative pathogen associated with liver cirrhosis and hepatocellular carcinoma. The main virion component, the core (C) protein, has been implicated in several aspects of HCV pathology including oncogenesis and immune subversion. Here we show that expression of the C protein induced specific tyrosine phosphorylation of the TCR-related signaling proteins ZAP-70, LAT and PLC-γ in the T cells. Stable expression of the C protein specifically reduced Src homology domain 2-containing protein tyrosine phosphatase 1 (SHP-1) mRNA and protein accumulation. Quantitative CpG methylation analysis revealed a distinct CpG methylation pattern at the SHP-1 gene promoter in the C protein expressing cells that included specific hypermethylation of the binding site for Sp1 transcription factor. Collectively, our results suggest that HCV may suppress immune responses and facilitate its own persistence by deregulating phosphotyrosine signaling via repressive epigenetic CpG modification at the SHP-1 promoter in the T cells.
Collapse
|
3
|
Ferreira DA, Tayyar Y, Idris A, McMillan NAJ. A "hit-and-run" affair - A possible link for cancer progression in virally driven cancers. Biochim Biophys Acta Rev Cancer 2020; 1875:188476. [PMID: 33186643 DOI: 10.1016/j.bbcan.2020.188476] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND It is well-known that certain cancers are caused by viruses. However, viral oncogenesis is complex and only a small fraction of the infected people develop cancer. Indeed, a number of environmental factors can contribute to virally infected cells developing cancer hallmarks, promoting tumorigenesis. SCOPE OF REVIEW The hit-and-run theory proposes that viruses facilitate the accumulation of mutations and promote genomic instability until the virus becomes dispensable for tumour maintenance. Indeed, several studies have reported viral genome, episome and/or oncogene loss in tumour cells without losing malignant phenotype. MAJOR CONCLUSIONS The current evidence supports the clear contribution of certain viruses to develop cancers. Importantly, the evidence supporting the sustained maintenance of malignancy after the loss of viral "presence" is sufficient to support the hit-and-run hypothesis of viral cancer development. Long-term tracking of vaccination outcome over the decades will test this theory. GENERAL SIGNIFICANCE If the hit-and-run theory is true, viruses might cause more cancers than previously thought and will have implications in the prevention of many cancers through implementing vaccination programs.
Collapse
Affiliation(s)
- Danyelle A Ferreira
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Yaman Tayyar
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia.
| | - Nigel A J McMillan
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
4
|
Kim EO, Kang SE, Choi M, Rhee KJ, Yun M. CCR4‑NOT transcription complex subunit 2 regulates TRAIL sensitivity in non‑small‑cell lung cancer cells via the STAT3 pathway. Int J Mol Med 2019; 45:324-332. [PMID: 31894259 PMCID: PMC6984779 DOI: 10.3892/ijmm.2019.4425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/30/2019] [Indexed: 12/02/2022] Open
Abstract
TRAIL is an attractive candidate for anticancer therapy in a variety of tumors since it targets only tumors and not normal tissue. However, a remaining major hurdle is that the majority of tumors exhibit a resistance mechanism against the effects of TRAIL via the induction of anti-apoptotic signaling pathways. In this study, we aimed to evaluate whether the modulation of CCR4-NOT transcription complex subunit 2 (CNOT2) function can promote TRAIL sensitivity in non-small-cell lung cancer (NSCLC) cells. CNOT2 depletion partially decreased colony numbers and the proliferation of NSCLC cells. When combined with TRAIL, the suppression of CNOT2 expression markedly decreased the survival rate and increased apoptosis, as compared with TRAIL treatment alone in TRAIL-resistant NSCLC cells. Of note, CNOT2 overexpression in TRAIL-sensitive H460 cells enhanced the survival rate and decreased apoptosis when compared with TRAIL treatment alone. Gene expression analysis indicated that genes involved in the signal transducer and activator of transcription 3 (STAT3) signaling pathway were dominantly altered in the CNOT2-depleted A549 cells. Under this condition, Src homology region 2 domain containing phosphatase-1 (SHP1) was significantly upregulated and subsequently increased apoptosis. On the whole, the findings of this study demonstrate that CNOT2 participates in TRAIL sensitivity in NSCLC cells via the regulation of the STAT3 signaling pathway, and suggest that combination therapy with CNOT2 depletion and TRAIL treatment may prove to be a useful strategy for overcoming TRAIL resistance in NSCLC.
Collapse
Affiliation(s)
- Eun-Ok Kim
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Shi-Eun Kang
- Korean Medicine Clinical Trail Center, Kyung Hee University Korean Medicine Hospital, Seoul 02453, Republic of Korea
| | - Minji Choi
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02453, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon‑do 26493, Republic of Korea
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
5
|
Gan L, Zhong L, Shan Z, Xiao C, Xu T, Song H, Li L, Yang R, Liu B. Epigallocatechin-3-gallate induces apoptosis in acute promyelocytic leukemia cells via a SHP-1-p38α MAPK-Bax cascade. Oncol Lett 2017; 14:6314-6320. [PMID: 29113283 DOI: 10.3892/ol.2017.6980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/08/2017] [Indexed: 01/13/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by a specific chromosomal translation, resulting in a fusion gene that affects the differentiation, proliferation and apoptosis of APL cells. Epigallocatechin-3-gallate (EGCG), a catechin, exhibits numerous biological functions, including antitumor activities. Previous studies have reported that EGCG induces apoptosis in NB4 cells. However, the molecular mechanism underlying EGCG-induced apoptosis remains unclear. The present study aimed to determine the molecular basis of EGCG-induced apoptosis in NB4 cells. EGCG treatment significantly inhibited the viability of NB4 cells in a dose-dependent manner. In addition, EGCG treatment induced apoptosis and increased the levels of (Bcl-2-like protein 4) Bax protein expression. Moreover, EGCG treatment was able to increase phosphorylated (p)-p38α mitogen-activated protein kinase (MAPK) and Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1) expression. Pretreatment with PD169316 (a p38 MAPK inhibitor) partially blocked EGCG-induced apoptosis and inhibited EGCG-mediated Bax expression. Similarly, pretreatment with NSC87877, an inhibitor of SHP-1, partially blocked EGCG-induced apoptosis and inhibited EGCG-mediated increases in p-p38α MAPK and Bax expression. Therefore, the results of the present study indicate that EGCG is able to induce apoptosis in NB4 cells via the SHP-1-p38αMAPK-Bax cascade.
Collapse
Affiliation(s)
- Liugen Gan
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhiling Shan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunlan Xiao
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Ting Xu
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Hao Song
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liu Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rong Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Beizhong Liu
- Central Laboratory, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Faculty of Laboratory Medical, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
6
|
Sokratous M, Dardiotis E, Tsouris Z, Bellou E, Michalopoulou A, Siokas V, Arseniou S, Stamati T, Tsivgoulis G, Bogdanos D, Hadjigeorgiou GM. Deciphering the role of DNA methylation in multiple sclerosis: emerging issues. AUTOIMMUNITY HIGHLIGHTS 2016; 7:12. [PMID: 27605361 PMCID: PMC5014764 DOI: 10.1007/s13317-016-0084-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory and neurodegenerative disease of the central nervous system that involves several not yet fully elucidated pathophysiologic mechanisms. There is increasing evidence that epigenetic modifications at level of DNA bases, histones, and micro-RNAs may confer risk for MS. DNA methylation seems to have a prominent role in the epigenetics of MS, as aberrant methylation in the promoter regions across genome may underlie several processes involved in the initiation and development of MS. In the present review, we discuss current understanding regarding the role of DNA methylation in MS, possible therapeutic implications and future emerging issues.
Collapse
Affiliation(s)
- Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Eleni Bellou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Stylianos Arseniou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Tzeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly Viopolis, 40500, Larissa, Greece.,Cellular Immunotherapy and Molecular Immunodiagnostics, Biomedical Section, Center for Research and Technology-Hellas (CERTH)-Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.
| |
Collapse
|
7
|
PAN XIAOFEN, MENG RUI, YU ZHONGHUA, MOU JINGJING, LIU SHA, SUN ZIYI, ZOU ZHENWEI, WU GANG, PENG GANG. Quinalizarin enhances radiosensitivity of nasopharyngeal carcinoma cells partially by suppressing SHP-1 expression. Int J Oncol 2016; 48:1073-84. [DOI: 10.3892/ijo.2016.3338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/22/2015] [Indexed: 11/06/2022] Open
|
8
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Papadopoulou V, Kontandreopoulou E, Panayiotidis P, Roumelioti M, Angelopoulou M, Kyriazopoulou L, Diamantopoulos PT, Vaiopoulos G, Variami E, Kotsianidis I, Athina Viniou N. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia. Leuk Lymphoma 2015; 57:1182-8. [PMID: 26373709 DOI: 10.3109/10428194.2015.1090573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- a Hematology Unit, 1st Department of Internal Medicine, Laiko Hospital , University of Athens , Athens , Greece
| | - Elina Kontandreopoulou
- a Hematology Unit, 1st Department of Internal Medicine, Laiko Hospital , University of Athens , Athens , Greece
| | - Panayiotis Panayiotidis
- b Molecular Hematology Laboratory, 1st Department of Propaedeutic Medicine , University of Athens , Athens , Greece
| | - Maria Roumelioti
- b Molecular Hematology Laboratory, 1st Department of Propaedeutic Medicine , University of Athens , Athens , Greece
| | - Maria Angelopoulou
- c Hematology Department, Laiko Hospital , University of Athens , Athens , Greece
| | - Lydia Kyriazopoulou
- d Hematology Department , University of Ioannina Medical School , Ioannina , Greece
| | - Panagiotis T Diamantopoulos
- a Hematology Unit, 1st Department of Internal Medicine, Laiko Hospital , University of Athens , Athens , Greece
| | - George Vaiopoulos
- a Hematology Unit, 1st Department of Internal Medicine, Laiko Hospital , University of Athens , Athens , Greece
| | - Eleni Variami
- a Hematology Unit, 1st Department of Internal Medicine, Laiko Hospital , University of Athens , Athens , Greece
| | - Ioannis Kotsianidis
- e Hematology Department , Democritus University of Thrace Medical School , Xanthi , Greece
| | - Nora Athina Viniou
- a Hematology Unit, 1st Department of Internal Medicine, Laiko Hospital , University of Athens , Athens , Greece
| |
Collapse
|
10
|
Tumor Suppressor Inactivation in the Pathogenesis of Adult T-Cell Leukemia. JOURNAL OF ONCOLOGY 2015; 2015:183590. [PMID: 26170835 PMCID: PMC4478360 DOI: 10.1155/2015/183590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Tumor suppressor functions are essential to control cellular proliferation, to activate the apoptosis or senescence pathway to eliminate unwanted cells, to link DNA damage signals to cell cycle arrest checkpoints, to activate appropriate DNA repair pathways, and to prevent the loss of adhesion to inhibit initiation of metastases. Therefore, tumor suppressor genes are indispensable to maintaining genetic and genomic integrity. Consequently, inactivation of tumor suppressors by somatic mutations or epigenetic mechanisms is frequently associated with tumor initiation and development. In contrast, reactivation of tumor suppressor functions can effectively reverse the transformed phenotype and lead to cell cycle arrest or death of cancerous cells and be used as a therapeutic strategy. Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease associated with infection of CD4 T cells by the Human T-cell Leukemia Virus Type 1 (HTLV-I). HTLV-I-associated T-cell transformation is the result of a multistep oncogenic process in which the virus initially induces chronic T-cell proliferation and alters cellular pathways resulting in the accumulation of genetic defects and the deregulated growth of virally infected cells. This review will focus on the current knowledge of the genetic and epigenetic mechanisms regulating the inactivation of tumor suppressors in the pathogenesis of HTLV-I.
Collapse
|
11
|
Pan X, Mou J, Liu S, Sun Z, Meng R, Zhou Z, Wu G, Peng G. SHP-1 overexpression increases the radioresistance of NPC cells by enhancing DSB repair, increasing S phase arrest and decreasing cell apoptosis. Oncol Rep 2015; 33:2999-3005. [PMID: 25962492 DOI: 10.3892/or.2015.3939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the influence of SHP-1 on the radioresistance of the nasopharyngeal carcinoma (NPC) cell line CNE-2 and the relevant underlying mechanisms. The human NPC cell line CNE-2 was transfected with a lentivirus that contained the SHP-1 gene or a nonsense sequence (referred to as LP-H1802Lv201 and LP-NegLv201 cells, respectively). Cells were irradiated with different ionizing radiation (IR) doses. Cell survival, DNA double-strand breaks (DSBs), apoptosis, cell cycle distribution, and the expression of related proteins were assessed using colony formation assay, immunofluorescent assays (IFAs), flow cytometry (FCM) and western blot analyses, respectively. Compared with the control (CNE-2 cells) and LP-NegLv201 cells, LP-H1802Lv201 cells were more resistant to IR. IFAs showed that IR caused less histone H2AX phosphorylation (γH2AX) and RAD51 foci in the LP-H1802Lv201 cells. Compared with the control and LP-NegLv201 cells, LP-H1802Lv201 cells showed increased S phase arrest. After IR, the apoptotic rate of the LP-H1802Lv201 cells was lower in contrast to the control and LP-NegLv201 cells. Western blot analyses showed that IR increased the phosphorylation of ataxia telangiectasia mutated (ATM) kinase, checkpoint kinase 2 (CHK2), ataxia telangiectasia and Rad3-related (ATR) protein, checkpoint kinase 1 (CHK1) and p53. In LP-H1802Lv201 cells, the phosphorylation levels of ATM and CHK2 were significantly increased while the p53 phosphorylation level was decreased compared to these levels in the control and LP-NegLv201 cells. Phosphorylation of ATR and CHK1 did not show significant differences in the three cell groups. Overexpression of SHP-1 in the CNE-2 cells led to radioresistance and the radioresistance was related to enhanced DNA DSB repair, increased S phase arrest and decreased cell apoptosis.
Collapse
Affiliation(s)
- Xiaofen Pan
- Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingjing Mou
- Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Sha Liu
- Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ziyi Sun
- Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Rui Meng
- Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenwei Zhou
- Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gang Wu
- Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gang Peng
- Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Su JC, Chiang HC, Tseng PH, Tai WT, Hsu CY, Li YS, Huang JW, Ko CH, Lin MW, Chu PY, Liu CY, Chen KF, Shiau CW. RFX-1-dependent activation of SHP-1 inhibits STAT3 signaling in hepatocellular carcinoma cells. Carcinogenesis 2014; 35:2807-2814. [DOI: 10.1093/carcin/bgu210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
13
|
The SHP-1 expression is associated with cytokines and psychopathological status in unmedicated first episode schizophrenia patients. Brain Behav Immun 2014; 41:251-60. [PMID: 24793756 DOI: 10.1016/j.bbi.2014.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 04/21/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent lines of research have boosted awareness of the immunological facets of schizophrenia. However, associations with protein tyrosine phosphatase regulators have never been reported. The aim of our study was to investigate the expression and promoter status methylation of phosphatase SHP-1, a key negative regulator of the inflammatory process, in Peripheral blood mononuclear cells (PBMCs) of Schizophrenic patients. METHODS We enrolled fifty-four (28 men and 26 women) unmedicated first episode subjects (SC) who met DSM-IV and thirty-eight (22 men and 16 women) healthy controls (HC). The SC psychopathological status was assessed using the Positive and Negative Syndrome Scale. We evaluated SHP-1 expression by Quantitative Real-time PCR (qPCR) and Western blotting (WB) methods and promoter status methylation through PCR bisulfate. IKK/NFkB signaling was detected by WB, and medium and plasma levels of pro-inflammatory cytokines (IL-1β, IL-2, and TNF-α) by the ELISA method. SHP-1 was silenced by treating cells with specific siRNA. RESULTS We found a significantly lower level of SHP-1 gene expression in PBMCs from SC vs. HC, consistently with which the promoter region analyzed presented significant hypermethylation. Silencing of SHP-1 expression induced higher activation of IKK/NF-kB signaling and pro-inflammatory cytokine production in ex vivo PBMCs from both SC and HC. Linear regression among patients generated a model in which SHP-1 expression explained 30% of the clinical negative symptom variance (adjusted R(2)=0.30, ANOVA p<0.001). CONCLUSIONS Our findings are the first to suggest that impairment of SHP-1 expression is involved in the physiopathology of schizophrenia, opening fruitful new avenues for ameliorating treatment at least of negative symptoms.
Collapse
|
14
|
Su JC, Tseng PH, Wu SH, Hsu CY, Tai WT, Li YS, Chen IT, Liu CY, Chen KF, Shiau CW. SC-2001 overcomes STAT3-mediated sorafenib resistance through RFX-1/SHP-1 activation in hepatocellular carcinoma. Neoplasia 2014; 16:595-605. [PMID: 25047655 PMCID: PMC4198826 DOI: 10.1016/j.neo.2014.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is the fifth most common solid cancer worldwide. Sorafenib, a small multikinase inhibitor, is the only approved therapy for advanced HCC. The clinical benefit of sorafenib is offset by the acquisition of sorafenib resistance. Understanding of the molecular mechanism of STAT3 overexpression in sorafenib resistance is critical if the clinical benefits of this drug are to be improved. In this study, we explored our hypothesis that loss of RFX-1/SHP-1 and further increase of p-STAT3 as a result of sorafenib treatment induces sorafenib resistance as a cytoprotective response effect, thereby, limiting sorafenib sensitivity and efficiency. We found that knockdown of RFX-1 protected HCC cells against sorafenib-induced cell apoptosis and SHP-1 activity was required for the process. SC-2001, a molecule with similar structure to obatoclax, synergistically suppressed tumor growth when used in combination with sorafenib in vitro and overcame sorafenib resistance through up-regulating RFX-1 and SHP-1 resulting in tumor suppression and mediation of dephosphorylation of STAT3. In addition, sustained sorafenib treatment in HCC led to increased p-STAT3 which was a key mediator of sorafenib sensitivity. The combination of SC-2001 and sorafenib strongly inhibited tumor growth in both wild-type and sorafenib-resistant HCC cell bearing xenograft models. These results demonstrate that inactivation of RFX/SHP-1 induced by sustained sorafenib treatment confers sorafenib resistance to HCC through p-STAT3 up-regulation. These effects can be overcome by SC-2001 through RFX-1/SHP-1 dependent p-STAT3 suppression. In conclusion, the use of SC-2001 in combination with sorafenib may constitute a new strategy for HCC therapy.
Collapse
Affiliation(s)
- Jung-Chen Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ping-Hui Tseng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Szu-Hsien Wu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Yi Hsu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yong-Shi Li
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Ting Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Liu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
15
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Christophi GP, Rong R, Holtzapple PG, Massa PT, Landas SK. Immune markers and differential signaling networks in ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 2012; 18:2342-56. [PMID: 22467146 PMCID: PMC3407828 DOI: 10.1002/ibd.22957] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 02/27/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cytokine signaling pathways play a central role in the pathogenesis of inflammatory bowel disease (IBD). Ulcerative colitis (UC) and Crohn's disease (CD) have unique as well as overlapping phenotypes, susceptibility genes, and gene expression profiles. This study aimed to delineate patterns within cytokine signaling pathways in colonic mucosa of UC and CD patients, explore molecular diagnostic markers, and identify novel immune mediators in IBD pathogenesis. METHODS We quantified 70 selected immune genes that are important in IBD signaling from formalin-fixed, paraffin-embedded (FFPE) colon biopsy samples from normal control subjects and UC and CD patients having either severe colitis or quiescent disease (n = 98 subjects). We utilized and validated a new modified real-time reverse-transcription polymerase chain reaction (RT-PCR) technique for gene quantification. RESULTS Expression levels of signaling molecules including IL-6/10/12/13/17/23/33, STAT1/3/6, T-bet, GATA3, Foxp3, SOCS1/3, and downstream inflammatory mediators such as chemokines CCL-2/11/17/20, oxidative stress inducers, proteases, and mucosal genes were differentially regulated between UC and CD and between active and quiescent disease. We also document the possible role of novel genes in IBD, including SHP-1, IRF-1,TARC, Eotaxin, NOX2, arginase I, and ADAM 8. CONCLUSIONS This comprehensive approach to quantifying gene expression provides insights into the pathogenesis of IBD by elucidating distinct immune signaling networks in CD and UC. Furthermore, this is the first study demonstrating that gene expression profiling in FFPE colon biopsies might be a practical and effective tool in the diagnosis and prognosis of IBD and may help identify molecular markers that can predict and monitor response to individualized therapeutic treatments.
Collapse
Affiliation(s)
- George P. Christophi
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY
,Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
,Corresponding Author: Mailing Address: Washington University School of Medicine Department of Internal Medicine, 660 S. Euclid Ave., Box 8121, St. Louis, MO 63110, , Tel: 314-956-9640
| | - Rong Rong
- Department of Pathology, SUNY Upstate Medical University, Syracuse NY
| | | | - Paul T. Massa
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY
| | - Steve K. Landas
- Department of Pathology, SUNY Upstate Medical University, Syracuse NY
| |
Collapse
|
17
|
Kumagai C, Kalman B, Middleton FA, Vyshkina T, Massa PT. Increased promoter methylation of the immune regulatory gene SHP-1 in leukocytes of multiple sclerosis subjects. J Neuroimmunol 2012; 246:51-7. [PMID: 22458980 DOI: 10.1016/j.jneuroim.2012.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/21/2022]
Abstract
The protein tyrosine phosphatase, SHP-1, is a negative regulator of proinflammatory signaling and autoimmune disease. We have previously reported reduced SHP-1 expression in peripheral blood leukocytes of subjects with multiple sclerosis (MS). Recent evidence indicates that virus-induced DNA methylation of the SHP-1 promoter is responsible for aberrant silencing of SHP-1 expression and function in hematopoietic cells that might relate to inflammatory diseases. In the present study, bisulfite sequencing of the SHP-1 promoter demonstrated that over a third of MS subjects had abnormally high promoter methylation. As SHP-1 is deficient in MS leukocytes and SHP-1-regulated proinflammatory genes are correspondingly upregulated, we propose that increased SHP-1 promoter methylation may relate in part to decreased SHP-1 expression and increased leukocyte-mediated inflammation in MS.
Collapse
Affiliation(s)
- Chiharu Kumagai
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
18
|
Niller HH, Banati F, Ay E, Minarovits J. Epigenetic Changes in Virus-Associated Neoplasms. PATHO-EPIGENETICS OF DISEASE 2012:179-225. [DOI: 10.1007/978-1-4614-3345-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Nesterovitch AB, Gyorfy Z, Hoffman MD, Moore EC, Elbuluk N, Tryniszewska B, Rauch TA, Simon M, Kang S, Fisher GJ, Mikecz K, Tharp MD, Glant TT. Alteration in the gene encoding protein tyrosine phosphatase nonreceptor type 6 (PTPN6/SHP1) may contribute to neutrophilic dermatoses. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1434-41. [PMID: 21406173 DOI: 10.1016/j.ajpath.2010.12.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 11/17/2022]
Abstract
We have found a B2 repeat insertion in the gene encoding protein tyrosine phosphatase nonreceptor type 6 (PTPN6) in a mouse that developed a skin disorder with clinical and histopathological features resembling those seen in human neutrophilic dermatoses. Neutrophilic dermatoses are a group of complex heterogeneous autoinflammatory diseases that all demonstrate excessive neutrophil infiltration of the skin. Therefore, we tested the cDNA and genomic DNA sequences of PTPN6 from patients with Sweet's syndrome (SW) and pyoderma gangrenosum and found numerous novel splice variants in different combinations. Isoforms resulting from deletions of exons 2, 5, 11, and 15 and retention of intron 1 or 5 were the most common in a patients with a familial case of SW, who had a neonatal onset of an inflammatory disorder with skin lesions and a biopsy specimen consistent with SW. These isoforms were associated with a heterozygous E441G mutation and a heterozygous 1.7-kbp deletion in the promoter region of the PTPN6 gene. Although full-length PTPN6 was detected in all other patients with either pyoderma gangrenosum or SW, it was always associated with splice variants: a partial deletion of exon 4 with the complete deletion of exon 5, alterations that were not detected in healthy controls. The defect in transcriptional regulation of the hematopoietic PTPN6 appears to be involved in the pathogenesis of certain subsets of the heterogeneous group of neutrophilic dermatoses.
Collapse
|
20
|
Niller HH, Wolf H, Minarovits J. Viral hit and run-oncogenesis: genetic and epigenetic scenarios. Cancer Lett 2010; 305:200-17. [PMID: 20813452 DOI: 10.1016/j.canlet.2010.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/29/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022]
Abstract
It is well documented that viral genomes either inserted into the cellular DNA or co-replicating with it in episomal form can be lost from neoplastic cells. Therefore, "hit and run"-mechanisms have been a topic of longstanding interest in tumor virology. The basic idea is that the transient acquisition of a complete or incomplete viral genome may be sufficient to induce malignant conversion of host cells in vivo, resulting in neoplastic development. After eliciting a heritable change in the gene expression pattern of the host cell (initiation), the genomes of tumor viruses may be completely lost, i.e. in a hit and run-scenario they are not necessary for the maintenance of the malignant state. The expression of viral oncoproteins and RNAs may interfere not only with regulators of cell proliferation, but also with DNA repair mechanisms. DNA recombinogenic activities induced by tumor viruses or activated by other mechanisms may contribute to the secondary loss of viral genomes from neoplastic cells. Viral oncoproteins can also cause epigenetic dysregulation, thereby reprogramming cellular gene expression in a heritable manner. Thus, we expect that epigenetic scenarios of viral hit and run-tumorigenesis may facilitate new, innovative experiments and clinical studies in spite of the fact that the regular presence of a suspected human tumor virus in an early phase of neoplastic development and its subsequent regular loss have not been demonstrated yet. We propose that virus-specific "epigenetic signatures", i.e. alterations of the host cell epigenome, especially altered DNA methylation patterns, may help to identify viral hit and run-oncogenic events, even after the complete loss of tumor viruses from neoplastic cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, Germany.
| | | | | |
Collapse
|
21
|
Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 2009; 15:1298-306. [PMID: 19881493 DOI: 10.1038/nm.2052] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/22/2009] [Indexed: 01/08/2023]
Abstract
Cellular apoptosis induced by hyperglycemia occurs in many vascular cells and is crucial for the initiation of diabetic pathologies. In the retina, pericyte apoptosis and the formation of acellular capillaries, the most specific vascular pathologies attributed to hyperglycemia, is linked to the loss of platelet-derived growth factor (PDGF)-mediated survival actions owing to unknown mechanisms. Here we show that hyperglycemia persistently activates protein kinase C-delta (PKC-delta, encoded by Prkcd) and p38alpha mitogen-activated protein kinase (MAPK) to increase the expression of a previously unknown target of PKC-delta signaling, Src homology-2 domain-containing phosphatase-1 (SHP-1), a protein tyrosine phosphatase. This signaling cascade leads to PDGF receptor-beta dephosphorylation and a reduction in downstream signaling from this receptor, resulting in pericyte apoptosis independently of nuclear factor-kappaB (NF-kappaB) signaling. We observed increased PKC-delta activity and an increase in the number of acellular capillaries in diabetic mouse retinas, which were not reversible with insulin treatment that achieved normoglycemia. Unlike diabetic age-matched wild-type mice, diabetic Prkcd(-/-) mice did not show activation of p38alpha MAPK or SHP-1, inhibition of PDGF signaling in vascular cells or the presence of acellular capillaries. We also observed PKC-delta, p38alpha MAPK and SHP-1 activation in brain pericytes and in the renal cortex of diabetic mice. These findings elucidate a new signaling pathway by which hyperglycemia can induce PDGF resistance and increase vascular cell apoptosis to cause diabetic vascular complications.
Collapse
Affiliation(s)
- Pedro Geraldes
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype. J Transl Med 2009; 89:742-59. [PMID: 19398961 PMCID: PMC2725397 DOI: 10.1038/labinvest.2009.32] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that may be important in controlling macrophage-mediated demyelination in MS.
Collapse
|