1
|
Yang Y, Fan L, Li M, Wang Z. Immune senescence: A key player in cancer biology. Semin Cancer Biol 2025; 108:71-82. [PMID: 39675646 DOI: 10.1016/j.semcancer.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
With the rapid development of immunological techniques in recent years, our understanding of immune senescence has gradually deepened, but the role of immune senescence in cancer biology remains incompletely elucidated. Understanding these mechanisms and interactions is crucial for the development of tumor biology. This review examines five key areas: the classification and main features of immune senescence, factors influencing immune cell senescence in cancer, the reciprocal causal cycle between immune senescence and malignancy, and the potential of immune senescence as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Winter S, Götze KS, Hecker JS, Metzeler KH, Guezguez B, Woods K, Medyouf H, Schäffer A, Schmitz M, Wehner R, Glauche I, Roeder I, Rauner M, Hofbauer LC, Platzbecker U. Clonal hematopoiesis and its impact on the aging osteo-hematopoietic niche. Leukemia 2024; 38:936-946. [PMID: 38514772 PMCID: PMC11073997 DOI: 10.1038/s41375-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors from the bone marrow (BM) niche, which complicates the prediction of a mutant cell's fate in a shifting pre-malignant microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes. Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued development and progression of CH. We also provide an overview of the latest technology developments to study the spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we discuss aspects of CH carrier management in clinical practice, based on work from our group and others.
Collapse
Affiliation(s)
- Susann Winter
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katharina S Götze
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
| | - Judith S Hecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich (TUM), Munich, Germany
| | - Klaus H Metzeler
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany
| | - Borhane Guezguez
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Kevin Woods
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Alexander Schäffer
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Rebekka Wehner
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ingo Roeder
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany.
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German MDS Study Group (D-MDS), Leipzig, Germany.
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
3
|
Zawidzka EM, Biavati L, Thomas A, Zanettini C, Marchionni L, Leone R, Borrello I. Tumor-Specific CD8 + T Cells from the Bone Marrow Resist Exhaustion and Exhibit Increased Persistence in Tumor-Bearing Hosts as Compared to Tumor Infiltrating Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555119. [PMID: 37693379 PMCID: PMC10491133 DOI: 10.1101/2023.08.28.555119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Immunotherapy is now an integral aspect of cancer therapy. Strategies employing adoptive cell therapy (ACT) have seen the establishment of chimeric antigen receptor (CAR)-T cells using peripheral blood lymphocytes as well as tumor infiltrating lymphocytes (TILs) with significant clinical results. Despite these successes, the limitations of the current strategies are also emerging and novel approaches are needed. The bone marrow (BM) is an immunological niche that houses T cells with specificity for previously encountered antigens, including tumor-associated antigens from certain solid cancers. This study sought to improve our understanding of tumor-specific BM T cells in the context of solid tumors by comparing them with TILs, and to assess whether there is a rationale for using the BM as a source of T cells for ACT against solid malignancies. Herein, we demonstrate that T cells from the BM appear superior to TILs as a source of cells for cellular therapy. Specifically, they possess a memory-enriched phenotype and exhibit improved effector function, greater persistence within a tumor-bearing host, and the capacity for increased tumor infiltration. Taken together, these data provide a foundation for further exploring the BM as a source of tumor-specific T cells for ACT in solid malignancies.
Collapse
Affiliation(s)
- Elizabeth M. Zawidzka
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
| | - Luca Biavati
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
| | - Amy Thomas
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
| | | | | | - Robert Leone
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
| | - Ivan Borrello
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
- Current Address: Tampa General Hospital Cancer Institute
| |
Collapse
|
4
|
Nelke C, Pawlitzki M, Schroeter CB, Huntemann N, Räuber S, Dobelmann V, Preusse C, Roos A, Allenbach Y, Benveniste O, Wiendl H, Lundberg IE, Stenzel W, Meuth SG, Ruck T. High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies. Cells 2022; 11:3330. [PMID: 36291195 PMCID: PMC9601098 DOI: 10.3390/cells11203330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic inflammation of skeletal muscle is the common feature of idiopathic inflammatory myopathies (IIM). Given the rarity of the disease and potential difficulty of routinely obtaining target tissue, i.e., standardized skeletal muscle, our understanding of immune signatures of the IIM spectrum remains incomplete. Further insight into the immune topography of IIM is needed to determine specific treatment targets according to clinical and immunological phenotypes. Thus, we used high-dimensional flow cytometry to investigate the immune phenotypes of anti-synthetase syndrome (ASyS), dermatomyositis (DM) and inclusion-body myositis (IBM) patients as representative entities of the IIM spectrum and compared them to healthy controls. We studied the CD8, CD4 and B cell compartments in the blood aiming to provide a contemporary overview of the immune topography of the IIM spectrum. ASyS was characterized by altered CD4 composition and expanded T follicular helper cells supporting B cell-mediated autoimmunity. For DM, unsupervised clustering identified expansion of distinct B cell subtypes highly expressing immunoglobulin G4 (IgG4) and CD38. Lastly, terminally differentiated, cytotoxic CD8 T cells distinguish IBM from other IIM. Interestingly, these terminally differentiated CD8 T cells highly expressed the integrin CD18 mediating cellular adhesion and infiltration. The distinct immune cell topography of IIM might provide the framework for targeted treatment approaches potentially improving therapeutic outcomes.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Christina B. Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Andreas Roos
- Department of Neuropediatrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Yves Allenbach
- Service de Médecine Interne et Immunologie Clinique, University Hospital Pitié Salpêtrière, 75013 Paris, France
| | - Olivier Benveniste
- Service de Médecine Interne et Immunologie Clinique, University Hospital Pitié Salpêtrière, 75013 Paris, France
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
5
|
Singh B, Kumar Rai A. Loss of immune regulation in aged T-cells: A metabolic review to show lack of ability to control responses within the self. Hum Immunol 2022; 83:808-817. [DOI: 10.1016/j.humimm.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
|
6
|
Heavener KS, Bradshaw EM. The aging immune system in Alzheimer's and Parkinson's diseases. Semin Immunopathol 2022; 44:649-657. [PMID: 35505128 PMCID: PMC9519729 DOI: 10.1007/s00281-022-00944-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
The neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) both have a myriad of risk factors including genetics, environmental exposures, and lifestyle. However, aging is the strongest risk factor for both diseases. Aging also profoundly influences the immune system, with immunosenescence perhaps the most prominent outcome. Through genetics, mouse models, and pathology, there is a growing appreciation of the role the immune system plays in neurodegenerative diseases. In this review, we explore the intersection of aging and the immune system in AD and PD.
Collapse
Affiliation(s)
- Kelsey S Heavener
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Effect of Cytomegalovirus on the Immune System: Implications for Aging and Mental Health. Curr Top Behav Neurosci 2022; 61:181-214. [PMID: 35871707 DOI: 10.1007/7854_2022_376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a major modulator of the immune system leading to long-term changes in T-lymphocytes, macrophages, and natural killer (NK) cells among others. Perhaps because of this immunomodulatory capacity, HCMV infection has been linked with a host of deleterious effects including accelerated immune aging (premature mortality, increased expression of immunosenescence-linked markers, telomere shortening, speeding-up of epigenetic "clocks"), decreased vaccine immunogenicity, and greater vulnerability to infectious diseases (e.g., tuberculosis) or infectious disease-associated pathology (e.g., HIV). Perhaps not surprisingly given the long co-evolution between HCMV and humans, the virus has also been associated with beneficial effects, such as increased vaccine responsiveness, heterologous protection against infections, and protection against relapse in the context of leukemia. Here, we provide an overview of this literature. Ultimately, we focus on one other deleterious effect of HCMV, namely the emerging literature suggesting that HCMV plays a pathophysiological role in psychiatric illness, particularly depression and schizophrenia. We discuss this literature through the lens of psychological stress and inflammation, two well-established risk factors for psychiatric illness that are also known to predispose to reactivation of HCMV.
Collapse
|
8
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
9
|
Poloni C, Szyf M, Cheishvili D, Tsoukas CM. Are the Healthy Vulnerable? Cytomegalovirus Seropositivity in Healthy Adults Is Associated With Accelerated Epigenetic Age and Immune Dysregulation. J Infect Dis 2022; 225:443-452. [PMID: 34255838 PMCID: PMC8344607 DOI: 10.1093/infdis/jiab365] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Evaluating age as a risk factor for susceptibility to infectious diseases, particularly coronavirus disease 2019 (COVID-19), is critical. Cytomegalovirus (CMV) serologic prevalence increases with age and associates with inflammatory-mediated diseases in the elderly. However, little is known regarding the subclinical impact of CMV and risk it poses to healthy older adults. Prior to the COVID-19 pandemic we conducted a study to determine the association of CMV to biologic age and immune dysregulation. METHODS Community-dwelling, healthy adults older than 60 years were evaluated using DNA methylation assays to define epigenetic age (EpiAge) and T-cell immunophenotyping to assess immune dysregulation. RESULTS All subjects were healthy and asymptomatic. Those CMV seropositive had more lymphocytes, CD8 T cells, CD28- T cells, decreased CD4:CD8 cell ratios, and had higher average EpiAge (65.34 years) than those CMV seronegative (59.53 years). Decreased percent CD4 (P = .003) and numbers of CD4 T cells (P = .0199) correlated with increased EpiAge. CONCLUSIONS Our novel findings distinguish altered immunity in the elderly based on CMV status. Chronic CMV infection in healthy, older adults is associated with indicators of immune dysregulation, both of which correlate to differences in EpiAge.
Collapse
Affiliation(s)
- Chad Poloni
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | - Christos M Tsoukas
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Medicine, Division of Allergy and Clinical Immunology, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Kouli A, Jensen M, Papastavrou V, Scott KM, Kolenda C, Parker C, Solim IH, Camacho M, Martin-Ruiz C, Williams-Gray CH. T lymphocyte senescence is attenuated in Parkinson's disease. J Neuroinflammation 2021; 18:228. [PMID: 34645462 PMCID: PMC8513368 DOI: 10.1186/s12974-021-02287-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Background Immune involvement is well-described in Parkinson’s disease (PD), including an adaptive T lymphocyte response. Given the increasing prevalence of Parkinson’s disease in older age, age-related dysregulation of T lymphocytes may be relevant in this disorder, and we have previously observed changes in age-associated CD8+ T cell subsets in mid-stage PD. This study aimed to further characterise T cell immunosenescence in newly diagnosed PD patients, including shifts in CD4+ and CD8+ subpopulations, and changes in markers of cellular ageing in CD8+ T lymphocytes. Methods Peripheral blood mononuclear cells were extracted from the blood of 61 newly diagnosed PD patients and 63 age- and sex-matched controls. Flow cytometric analysis was used for immunophenotyping of CD8+ and CD4+ lymphocyte subsets, and analysis of recent thymic emigrant cells. Telomere length within CD8+ T lymphocytes was assessed, as well as the expression of the telomerase reverse transcriptase enzyme (hTERT), and the cell-ageing markers p16INK4a and p21CIP1/Waf1. Results The number of CD8+ TEMRA T cells was found to be significantly reduced in PD patients compared to controls. The expression of p16INK4a in CD8+ lymphocytes was also lower in patients versus controls. Chronic latent CMV infection was associated with increased senescent CD8+ lymphocytes in healthy controls, but this shift was less apparent in PD patients. Conclusions Taken together, our data demonstrate a reduction in CD8+ T cell replicative senescence which is present at the earliest stages of Parkinson’s disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02287-9.
Collapse
Affiliation(s)
- Antonina Kouli
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Melanie Jensen
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.,Department of Cellular Pathology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, W6 8RF, UK
| | - Vanesa Papastavrou
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Kirsten M Scott
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Claire Kolenda
- Bioscience Institute, BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Craig Parker
- Bioscience Institute, BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Imtiaz H Solim
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Marta Camacho
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Carmen Martin-Ruiz
- Bioscience Institute, BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| |
Collapse
|
11
|
Coleman MJ, Zimmerly KM, Yang XO. Accumulation of CD28 null Senescent T-Cells Is Associated with Poorer Outcomes in COVID19 Patients. Biomolecules 2021; 11:1425. [PMID: 34680058 PMCID: PMC8533086 DOI: 10.3390/biom11101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes infectious disease, and manifests in a wide range of symptoms from asymptomatic to severe illness and even death. Severity of infection is related to many risk factors, including aging and an array of underlying conditions, such as diabetes, hypertension, chronic obstructive pulmonary disease (COPD), and cancer. It remains poorly understood how these conditions influence the severity of COVID-19. Expansion of the CD28null senescent T-cell populations, a common phenomenon in aging and several chronic inflammatory conditions, is associated with higher morbidity and mortality rates in COVID-19. Here, we summarize the potential mechanisms whereby CD28null cells drive adverse outcomes in disease and predispose patients to devastating COVID-19, and discuss possible treatments for individuals with high counts of CD28null senescent T-cells.
Collapse
Affiliation(s)
- Mia J. Coleman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
- Class of 2023, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kourtney M. Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (M.J.C.); (K.M.Z.)
| |
Collapse
|
12
|
Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021; 9:vaccines9090979. [PMID: 34579216 PMCID: PMC8471734 DOI: 10.3390/vaccines9090979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations. This review focuses on the qualitative nature of immune responses against influenza viruses, with an emphasis on trained immunity and an assessment of the characteristics of the host–pathogen that compromise the effectiveness of immunization. We also highlight innovative immunological concepts that are important considerations for the development of the next generation of vaccines against influenza viruses.
Collapse
|
13
|
Fu J, Zuber J, Shonts B, Obradovic A, Wang Z, Frangaj K, Meng W, Rosenfeld AM, Waffarn EE, Liou P, Lau SP, Savage TM, Yang S, Rogers K, Danzl NM, Ravella S, Satwani P, Iuga A, Ho SH, Griesemer A, Shen Y, Prak ETL, Martinez M, Kato T, Sykes M. Lymphohematopoietic graft-versus-host responses promote mixed chimerism in patients receiving intestinal transplantation. J Clin Invest 2021; 131:141698. [PMID: 33630757 DOI: 10.1172/jci141698] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
In humans receiving intestinal transplantation (ITx), long-term multilineage blood chimerism often develops. Donor T cell macrochimerism (≥4%) frequently occurs without graft-versus-host disease (GVHD) and is associated with reduced rejection. Here we demonstrate that patients with macrochimerism had high graft-versus-host (GvH) to host-versus-graft (HvG) T cell clonal ratios in their allografts. These GvH clones entered the circulation, where their peak levels were associated with declines in HvG clones early after transplant, suggesting that GvH reactions may contribute to chimerism and control HvG responses without causing GVHD. Consistently, donor-derived T cells, including GvH clones, and CD34+ hematopoietic stem and progenitor cells (HSPCs) were simultaneously detected in the recipients' BM more than 100 days after transplant. Individual GvH clones appeared in ileal mucosa or PBMCs before detection in recipient BM, consistent with an intestinal mucosal origin, where donor GvH-reactive T cells expanded early upon entry of recipient APCs into the graft. These results, combined with cytotoxic single-cell transcriptional profiles of donor T cells in recipient BM, suggest that tissue-resident GvH-reactive donor T cells migrated into the recipient circulation and BM, where they destroyed recipient hematopoietic cells through cytolytic effector functions and promoted engraftment of graft-derived HSPCs that maintain chimerism. These mechanisms suggest an approach to achieving intestinal allograft tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Julien Zuber
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Brittany Shonts
- Columbia Center for Translational Immunology, Department of Medicine and
| | | | - Zicheng Wang
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, New York, USA
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Sai-Ping Lau
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Thomas M Savage
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Suxiao Yang
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Shilpa Ravella
- Division of Digestive and Liver Diseases, Department of Medicine
| | | | - Alina Iuga
- Department of Pathology and Cell Biology, and
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Department of Medicine and
| | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine and.,Department of Surgery
| | - Yufeng Shen
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, New York, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine and.,Department of Surgery.,Department of Microbiology and Immunology, Columbia University, New York, New York, USA
| |
Collapse
|
14
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
15
|
Antioxidants N-Acetylcysteine and Vitamin C Improve T Cell Commitment to Memory and Long-Term Maintenance of Immunological Memory in Old Mice. Antioxidants (Basel) 2020; 9:antiox9111152. [PMID: 33228213 PMCID: PMC7699597 DOI: 10.3390/antiox9111152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Aging is characterized by reduced immune responses, a process known as immunosenescence. Shortly after their generation, antigen-experienced adaptive immune cells, such as CD8+ and CD4+ T cells, migrate into the bone marrow (BM), in which they can be maintained for long periods of time within survival niches. Interestingly, we recently observed how oxidative stress may negatively support the maintenance of immunological memory in the BM in old age. To assess whether the generation and maintenance of immunological memory could be improved by scavenging oxygen radicals, we vaccinated 18-months (old) and 3-weeks (young) mice with alum-OVA, in the presence/absence of antioxidants vitamin C (Vc) and/or N-acetylcysteine (NAC). To monitor the phenotype of the immune cell population, blood was withdrawn at several time-points, and BM and spleen were harvested 91 days after the first alum-OVA dose. Only in old mice, memory T cell commitment was boosted with some antioxidant treatments. In addition, oxidative stress and the expression of pro-inflammatory molecules decreased in old mice. Finally, changes in the phenotype of dendritic cells, important regulators of T cell activation, were additionally observed. Taken together, our data show that the generation and maintenance of memory T cells in old age may be improved by targeting oxidative stress.
Collapse
|
16
|
Xia M, Luo TY, Shi Y, Wang G, Tsui H, Harari D, Spaner DE. Effect of Ibrutinib on the IFN Response of Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2629-2639. [PMID: 33067379 DOI: 10.4049/jimmunol.2000478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023]
Abstract
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has profound activity in chronic lymphocytic leukemia (CLL) but limited curative potential by itself. Residual signaling pathways that maintain survival of CLL cells might be targeted to improve ibrutinib's therapeutic activity, but the nature of these pathways is unclear. Ongoing activation of IFN receptors in patients on ibrutinib was suggested by the presence of type I and II IFN in blood together with the cycling behavior of IFN-stimulated gene (ISG) products when IFN signaling was blocked intermittently with the JAK inhibitor ruxolitinib. IFN signaling in CLL cells from human patients was not prevented by ibrutinib in vitro or in vivo, but ISG expression was significantly attenuated in vitro. ISGs such as CXCL10 that require concomitant activation of NF-κB were decreased when this pathway was inhibited by ibrutinib. Other ISGs, exemplified by LAG3, were decreased as a result of inhibited protein translation. Effects of IFN on survival remained intact as type I and II IFN-protected CLL cells from ibrutinib in vitro, which could be prevented by ruxolitinib and IFNR blocking Abs. These observations suggest that IFNs may help CLL cells persist and specific targeting of IFN signaling might deepen clinical responses of patients on ibrutinib.
Collapse
Affiliation(s)
- Meihui Xia
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.,Department of Gynecology and Obstetrics, First Hospital, Jilin University, 130021 Changchun, Jilin, China.,Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, 130021 Changchun, Jilin, China
| | - Tina Yuxuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Hubert Tsui
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Hematopathology, Sunnybrook Health Sciences Center, Toronto, Ontario M4C 3E7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada; and.,Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
17
|
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 2020; 42:521-536. [PMID: 32930852 PMCID: PMC7490574 DOI: 10.1007/s00281-020-00818-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.
Collapse
Affiliation(s)
- T Fulop
- Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - A Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - K Hirokawa
- Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
| | - A A Cohen
- Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - J M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
18
|
Pangrazzi L, Weinberger B. T cells, aging and senescence. Exp Gerontol 2020; 134:110887. [PMID: 32092501 DOI: 10.1016/j.exger.2020.110887] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
The T cell compartment undergoes characteristic changes with age, which contribute to increased incidence and severity of infections and reduced immunogenicity and efficacy of many vaccines in the older population. Production of naïve T cells is severely impaired due to a decreased output of lymphoid cells from the bone marrow and the involution of the thymus. At the same time, antigen-experienced, highly differentiated T cells accumulate resulting in a diminished T cell receptor repertoire. These cells show some similarities with senescent cells, such as shorter telomers, accumulated DNA damage and metabolic changes. Latent infection with Cytomegalovirus also impacts the T cell compartment and aggravates several of its age-associated changes. Loss of CD28 expression is one hallmark of T cells after repeated antigenic stimulation, but CD28- T cells cannot be considered truly senescent as e.g. they are still able to proliferate upon adequate stimulation. Several additional markers have been suggested in order to define a potential fully senescent T cell population, but no consensus definition has been reached so far. It has been postulated that highly differentiated senescent-like T cells are unable to eliminate other senescent cell types. Removal of senescent non-immune cells has been shown to be beneficial for the organism and a reliable definition of senescent T cells is essential for an extension of this concept to T cells.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
19
|
Sekido K, Tomihara K, Tachinami H, Heshiki W, Sakurai K, Moniruzzaman R, Imaue S, Fujiwara K, Noguchi M. Alterations in composition of immune cells and impairment of anti-tumor immune response in aged oral cancer-bearing mice. Oral Oncol 2019; 99:104462. [PMID: 31683168 DOI: 10.1016/j.oraloncology.2019.104462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Aging has been suggested to be associated with immune dysregulation. An understanding of alterations in the host immunity with advancing age is, therefore, important for designing immune therapy for elderly cancer patients. In this context, not much is known about age-associated alterations in the immune system in oral cancer. METHODS To evaluate age-associated alterations in the immune system, which might affect anti-tumor immune responses in oral cancer, we performed a comparative analysis of the proportion of different immune cells, the proliferative capacity of T cell compartment, and the response against immune therapies targeting immune check point molecules between young and aged oral cancer-bearing mice. RESULTS The proportion of immune regulatory cells, such as regulatory T cells and myeloid derived suppressor cells, was significantly increased in aged mice compared to that in young mice. Moreover, the expression of PD-1 and CTLA-4 on both CD4+ and CD8+ T cells was elevated in aged mice compared to that in young mice, and the proliferative abilities of CD4+ and CD8+ T cells derived from aged mice were significantly reduced following stimulation of T-cell receptors. Moreover, tumor growth was significantly enhanced in aged mice compared to that in young mice. However, immunotherapies targeting PD-1, CTLA-4, and PD-L1 resulted in faster tumor regression in aged mice than in young mice. CONCLUSIONS Together, our results indicate that age-associated alterations in the immune system are directly associated with the impairment of anti-tumor immunity in aged mice bearing oral cancer, and might facilitate the progression of the tumor.
Collapse
Affiliation(s)
- Katsuhisa Sekido
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Kei Tomihara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan.
| | - Hidetake Tachinami
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Wataru Heshiki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Kotaro Sakurai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Rohan Moniruzzaman
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Shuichi Imaue
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Kumiko Fujiwara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Makoto Noguchi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| |
Collapse
|
20
|
Davies JS, Thompson HL, Pulko V, Padilla Torres J, Nikolich-Žugich J. Role of Cell-Intrinsic and Environmental Age-Related Changes in Altered Maintenance of Murine T Cells in Lymphoid Organs. J Gerontol A Biol Sci Med Sci 2019; 73:1018-1026. [PMID: 28582491 DOI: 10.1093/gerona/glx102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022] Open
Abstract
Age-related changes in primary lymphoid organs are well described. Less is known about age-related changes affecting peripheral lymphoid organs, although defects in old peripheral lymph nodes (pLNs) were recently described in both steady state and during viral infection. To address whether such pLN defects were intrinsic to old T cells or extrinsic (due to aging microenvironment), we employed heterochronic parabiosis. We found no age-related intrinsic or extrinsic barriers to T cell circulation and seeding of pLN, spleen, and bone marrow. However, heterochronic parabiosis failed to improve cellularity of old pLN, suggesting an environment-based limit on pLN cellularity. Furthermore, upon parabiosis, pLN of the adult partner exhibited reduced, old-like stromal and T cell cellularity, which was restored following separation of parabionts. Decay measurement of adult and old T cell subsets following separation of heterochronic parabionts delineated both T cell-intrinsic and environmental changes in T cell maintenance. Moreover, parabiotic separation revealed differences between CD4 and CD8 T cell subset maintenance with aging, the basis of which will require further investigation. Reasons for this asymmetric and subset-specific pattern of differential maintenance are discussed in light of possible age-related changes in lymph nodes as the key sites for peripheral T cell maintenance.
Collapse
Affiliation(s)
- John S Davies
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Heather L Thompson
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Vesna Pulko
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Jose Padilla Torres
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| |
Collapse
|
21
|
Naismith E, Pangrazzi L, Grasse M, Keller M, Miggitsch C, Weinberger B, Trieb K, Grubeck-Loebenstein B. Peripheral antibody concentrations are associated with highly differentiated T cells and inflammatory processes in the human bone marrow. IMMUNITY & AGEING 2019; 16:21. [PMID: 31462901 PMCID: PMC6706884 DOI: 10.1186/s12979-019-0161-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Background Antigen-experienced immune cells migrate back to the bone marrow (BM), where they are maintained in BM survival niches for an extended period. The composition of T cell subpopulations in the BM changes with age, leading to an accumulation of highly differentiated T cells and a loss of naïve T cells. While innate immune cells are also affected by age, little is known about interactions between different adaptive immune cell populations maintained in the BM. In this study, the phenotype and function of innate and adaptive immune cells isolated from human BM and peripheral blood (PB) was analysed in detail using flow cytometry, to determine if the accumulation of highly differentiated T and B cells, supported by the BM niches, limits the maintenance of other immune cells, or affects their functions such as providing protective antibody concentrations. Results Total T cells increase in the BM with age, as do highly differentiated CD8+ T cells which no longer express the co-stimulatory molecule CD28, while natural killer T (NKT) cells, monocytes, B cells, and naïve CD8+ T cells all decrease in the BM with age. A negative correlation of total T cells with B cells was observed in the BM. The percentage of B cells in the BM negatively correlated with highly differentiated CD8+CD28− T cells, replicative-senescent CD8+CD57+ T cells, as well as the CD8+CD28−CD57+ population. Similar correlations were seen between B cells and the frequency of highly differentiated T cells producing pro-inflammatory molecules in the BM. Interestingly, plasma concentrations of diphtheria-specific antibodies negatively correlated with highly differentiated CD8+CD57+ T cells as well as with exhausted central memory CD8+ and CD4+ T cells in the BM. A negative impact on diphtheria-specific antibodies was also observed for CD8+ T cells expressing senescence associated genes such as the cell cycle regulator p21 (CDKN1A), KLRG-1, and elevated levels of reactive oxygen species (ROS). Conclusion Our data suggest that the accumulation and maintenance of highly differentiated, senescent, and exhausted T cells in the BM, particularly in old age, may interfere with the survival of other cell populations resident in the BM such as monocytes and B cells, leading to reduced peripheral diphtheria antibody concentrations as a result. These findings further highlight the importance of the BM in the long-term maintenance of immunological memory. Electronic supplementary material The online version of this article (10.1186/s12979-019-0161-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin Naismith
- 1Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Luca Pangrazzi
- 1Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Marco Grasse
- 1Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Michael Keller
- 1Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Carina Miggitsch
- 1Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Birgit Weinberger
- 1Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, Grieskirchnerstrasse 42, Wels, Austria
| | | |
Collapse
|
22
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
23
|
Naismith E, Pangrazzi L. The impact of oxidative stress, inflammation, and senescence on the maintenance of immunological memory in the bone marrow in old age. Biosci Rep 2019; 39:BSR20190371. [PMID: 31018996 PMCID: PMC6522741 DOI: 10.1042/bsr20190371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
The bone marrow (BM) provides a preferential survival environment for the long-term maintenance of antigen-experienced adaptive immune cells. After the contact with antigens, effector/memory T cells and plasma cell precursors migrate to the BM, in which they can survive within survival niches in an antigen-independent manner. Despite this, the phenotype of adaptive immune cells changes with aging, and BM niches themselves are affected, leading to impaired long-term maintenance of immunological memory in the elderly as a result. Oxidative stress, age-related inflammation (inflammaging), and cellular senescence appear to play a major role in this process. This review will summarize the age-related changes in T and B cell phenotype, and in the BM niches, discussing the possibility that the accumulation of highly differentiated, senescent-like T cells in the BM during aging may cause inflammation in the BM and promote oxidative stress and senescence. In addition, senescent-like T cells may compete for space with other immune cells within the marrow, partially excluding effector/memory T cells and long-lived plasma cells from the niches.
Collapse
Affiliation(s)
- Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, Innsbruck, Austria
| |
Collapse
|
24
|
Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help? JOURNAL OF ONCOLOGY 2019; 2019:2186494. [PMID: 31093282 PMCID: PMC6481018 DOI: 10.1155/2019/2186494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is usually diagnosed in older adults at the time of immunosenescence, a collection of age-related changes in the immune system that contribute to increased susceptibility to infection and cancer. The MM tumor microenvironment and cumulative chemotherapies also add to defects in immunity over the course of disease. In this review we discuss how mouse models have furthered our understanding of the immune defects caused by MM and enabled immunotherapeutics to progress to clinical trials, but also question the validity of using immunodeficient models for these purposes. Immunocompetent models, in particular the 5T series and Vk⁎MYC models, are increasingly being utilized in preclinical studies and are adding to our knowledge of not only the adaptive immune system but also how the innate system might be enhanced in anti-MM activity. Finally we discuss the concept of immune profiling to target patients who might benefit the most from immunotherapeutics, and the use of humanized mice and 3D culture systems for personalized medicine.
Collapse
|
25
|
Hoang TN, Harper JL, Pino M, Wang H, Micci L, King CT, McGary CS, McBrien JB, Cervasi B, Silvestri G, Paiardini M. Bone Marrow-Derived CD4 + T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol 2019; 93:e01344-18. [PMID: 30305357 PMCID: PMC6288341 DOI: 10.1128/jvi.01344-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022] Open
Abstract
The bone marrow (BM) is the key anatomic site for hematopoiesis and plays a significant role in the homeostasis of mature T cells. However, very little is known on the phenotype of BM-derived CD4+ T cells, their fate during simian immunodeficiency virus (SIV) infection, and their contribution to viral persistence during antiretroviral therapy (ART). In this study, we characterized the immunologic and virologic status of BM-derived CD4+ T cells in rhesus macaques prior to SIV infection, during the early chronic phase of infection, and during ART. We found that BM memory CD4+ T cells are significantly depleted following SIV infection, at levels that are similar to those measured in the peripheral blood (PB). In addition, BM-derived memory CD4+ T cells include a high frequency of cells that express the coinhibitory receptors CTLA-4 and PD-1, two subsets previously shown to be enriched in the viral reservoir; these cells express Ki-67 at levels similar to or higher than the same cells in PB. Finally, when we analyzed SIV-infected RMs in which viral replication was effectively suppressed by 12 months of ART, we found that BM CD4+ T cells harbor SIV DNA and SIV RNA at levels comparable to those of PB CD4+ T cells, including replication-competent SIV. Thus, BM is a largely understudied anatomic site of the latent reservoir which contributes to viral persistence during ART and needs to be further characterized and targeted when designing therapies for a functional or sterilizing cure to HIV.IMPORTANCE The latent viral reservoir is one of the major obstacles in purging the immune system of HIV. It is paramount that we elucidate which anatomic compartments harbor replication-competent virus, which upon ART interruption results in viral rebound and pathogenesis. In this study, using the rhesus macaque model of SIV infection and ART, we examined the immunologic status of the BM and its role as a potential sanctuary for latent virus. We found that the BM compartment undergoes a similar depletion of memory CD4+ T cells as PB, and during ART treatment the BM-derived memory CD4+ T cells contain high levels of cells expressing CTLA-4 and PD-1, as well as amounts of cell-associated SIV DNA, SIV RNA, and replication-competent virus comparable to those in PB. These results enrich our understanding of which anatomic compartments harbor replication virus and suggest that BM-derived CD4+ T cells need to be targeted by therapeutic strategies aimed at achieving an HIV cure.
Collapse
Affiliation(s)
- Timothy N Hoang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin L Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hong Wang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colin T King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julia B McBrien
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Lukas Yani S, Keller M, Melzer FL, Weinberger B, Pangrazzi L, Sopper S, Trieb K, Lobina M, Orrù V, Fiorillo E, Cucca F, Grubeck-Loebenstein B. CD8 +HLADR + Regulatory T Cells Change With Aging: They Increase in Number, but Lose Checkpoint Inhibitory Molecules and Suppressive Function. Front Immunol 2018; 9:1201. [PMID: 29915580 PMCID: PMC5994398 DOI: 10.3389/fimmu.2018.01201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
CD4+ regulatory T cells have been intensively studied during aging, but little is still known about age-related changes of other regulatory T cell subsets. It was, therefore, the goal of the present study to analyze CD8+human leukocyte antigen–antigen D related (HLADR)+ T cells in old age, a cell population reported to have suppressive activity and to be connected to specific genetic variants. We demonstrate a strong increase in the number of CD8+HLADR+ T cells with age in a cohort of female Sardinians as well as in elderly male and female persons from Austria. We also show that CD8+HLADR+ T cells lack classical activation molecules, such as CD69 and CD25, but contain increased numbers of checkpoint inhibitory molecules, such as cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin and mucin protein-3, LAG-3, and PD-1, when compared with their HLADR− counterparts. They also have the capacity to inhibit the proliferation of autologous peripheral blood mononuclear cells. This suppressive activity is, however, decreased when CD8+HLADR+ T cells from elderly persons are analyzed. In accordance with this finding, CD8+HLADR+ T cells from persons of old age contain lower percentages of checkpoint inhibitory molecules than young controls. We conclude that in spite of high abundance of a CD8+ regulatory T cell subset in old age its expression of checkpoint inhibitory molecules and its suppressive function on a per cell basis are reduced. Reduction of suppressive capacity may support uncontrolled subclinical inflammatory processes referred to as “inflamm-aging.”
Collapse
Affiliation(s)
- Stella Lukas Yani
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Michael Keller
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Clinic for Haematology and Oncology, Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, Wels, Austria
| | - Monia Lobina
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
El Chakhtoura NG, Bonomo RA, Jump RLP. Influence of Aging and Environment on Presentation of Infection in Older Adults. Infect Dis Clin North Am 2018; 31:593-608. [PMID: 29079150 DOI: 10.1016/j.idc.2017.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In older adults, pathophysiologic, clinical, and environmental factors all affect the presentation of infections. We explore how age-related changes influence the manifestation and evaluation of infections in this population. Specific topics include immunosenescence, age-related organ-specific physiologic changes, and frailty. We also describe clinical factors influencing infection risk and presentation in older adults, including temperature regulation, cognitive decline, and malnutrition. Finally, we discuss the influence of the setting in which older adults reside on the clinical evaluation of infection. Understanding the influence of all these changes may facilitate the prevention, early recognition, and treatment of infections in older adults.
Collapse
Affiliation(s)
- Nadim G El Chakhtoura
- Geriatric Research Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center (LSCVAMC), 10701 East Boulevard, Cleveland, OH 44106, USA; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA
| | - Robert A Bonomo
- Geriatric Research Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center (LSCVAMC), 10701 East Boulevard, Cleveland, OH 44106, USA; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Specialty Care Center of Innovation, LSCVAMC, 10701 East Boulevard, Cleveland, OH 44106, USA; Research Services, LSCVAMC, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA
| | - Robin L P Jump
- Geriatric Research Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center (LSCVAMC), 10701 East Boulevard, Cleveland, OH 44106, USA; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Specialty Care Center of Innovation, LSCVAMC, 10701 East Boulevard, Cleveland, OH 44106, USA; Research Services, LSCVAMC, 10701 East Boulevard, Cleveland, OH 44106, USA.
| |
Collapse
|
28
|
Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech Dis 2017; 4:1. [PMID: 29285399 PMCID: PMC5740164 DOI: 10.1038/s41514-017-0020-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The progressive increase of the aged population worldwide mandates new strategies to ensure sustained health and well-being with age. The development of better and/or new vaccines against pathogens that affect older adults is one pivotal intervention in approaching this goal. However, the functional decline of various physiological systems, including the immune system, requires novel approaches to counteract immunosenescence. Although important progress has been made in understanding the mechanisms underlying the age-related decline of the immune response to infections and vaccinations, knowledge gaps remain, both in the areas of basic and translational research. In particular, it will be important to better understand how environmental factors, such as diet, physical activity, co-morbidities, and pharmacological treatments, delay or contribute to the decline of the capability of the aging immune system to appropriately respond to infectious diseases and vaccination. Recent findings suggest that successful approaches specifically targeted to the older population can be developed, such as the high-dose and adjuvanted vaccines against seasonal influenza, the adjuvanted subunit vaccine against herpes zoster, as well as experimental interventions with immune-potentiators or immunostimulants. Learning from these first successes may pave the way to developing novel and improved vaccines for the older adults and immunocompromised. With an integrated, holistic vaccination strategy, society will offer the opportunity for an improved quality of life to the segment of the population that is going to increase most significantly in numbers and proportion over future decades.
Collapse
|
29
|
Pangrazzi L, Naismith E, Meryk A, Keller M, Jenewein B, Trieb K, Grubeck-Loebenstein B. Increased IL-15 Production and Accumulation of Highly Differentiated CD8 + Effector/Memory T Cells in the Bone Marrow of Persons with Cytomegalovirus. Front Immunol 2017; 8:715. [PMID: 28674537 PMCID: PMC5474847 DOI: 10.3389/fimmu.2017.00715] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/02/2017] [Indexed: 01/10/2023] Open
Abstract
Cytomegalovirus (CMV) has been described as a contributor to immunosenescence, thus exacerbating age-related diseases. In persons with latent CMV infection, the CD8+ T cell compartment is irreversibly changed, leading to the accumulation of highly differentiated virus-specific CD8+ T cells in the peripheral blood. The bone marrow (BM) has been shown to play a major role in the long-term survival of antigen-experienced T cells. Effector CD8+ T cells are preferentially maintained by the cytokine IL-15, the expression of which increases in old age. However, the impact of CMV on the phenotype of effector CD8+ T cells and on the production of T cell survival molecules in the BM is not yet known. We now show, using BM samples obtained from persons who underwent hip replacement surgery because of osteoarthrosis, that senescent CD8+ TEMRA cells with a bright expression of CD45RA and a high responsiveness to IL-15 accumulate in the BM of CMV-infected persons. A negative correlation was found between CMV antibody (Ab) titers in the serum and the expression of CD28 and IL-7Rα in CD8+ [Formula: see text] cells. Increased IL-15 mRNA levels were observed in the BM of CMV+ compared to CMV- persons, being particularly high in old seropositive individuals. In summary, our results indicate that a BM environment rich in IL-15 may play an important role in the maintenance of highly differentiated CD8+ T cells generated after CMV infection.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Michael Keller
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, Wels, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Wang D, Fløisand Y, Myklebust CV, Bürgler S, Parente-Ribes A, Hofgaard PO, Bogen B, Taskén K, Tjønnfjord GE, Schjesvold F, Dalgaard J, Tveita A, Munthe LA. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice. Leukemia 2017; 31:2114-2121. [PMID: 28232741 DOI: 10.1038/leu.2017.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.
Collapse
Affiliation(s)
- D Wang
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Y Fløisand
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - C V Myklebust
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - S Bürgler
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - A Parente-Ribes
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - P O Hofgaard
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - B Bogen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K Taskén
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - G E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - F Schjesvold
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - J Dalgaard
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Department of Medicine, Vestre Viken Trust, Drammen Hospital, Drammen, Norway
| | - A Tveita
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - L A Munthe
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Pangrazzi L, Meryk A, Naismith E, Koziel R, Lair J, Krismer M, Trieb K, Grubeck-Loebenstein B. "Inflamm-aging" influences immune cell survival factors in human bone marrow. Eur J Immunol 2017; 47:481-492. [PMID: 27995612 PMCID: PMC5434810 DOI: 10.1002/eji.201646570] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/21/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
The bone marrow (BM) plays a key role in the long-term maintenance of immunological memory. However, the impact of aging on the production of survival factors for effector/memory T cells and plasma cells in the human BM has not been studied. We now show that the expression of molecules involved in the maintenance of immunological memory in the human BM changes with age. While IL-15, which protects potentially harmful CD8+ CD28- senescent T cells, increases, IL-7 decreases. IL-6, which may synergize with IL-15, is also overexpressed. In contrast, a proliferation-inducing ligand, a plasma cell survival factor, is reduced. IFN-y, TNF, and ROS accumulate in the BM in old age. IL-15 and IL-6 expression are stimulated by IFN-y and correlate with ROS levels in BM mononuclear cells. Both cytokines are reduced by incubation with the ROS scavengers N-acetylcysteine and vitamin C. IL-15 and IL-6 are also overexpressed in the BM of superoxide dismutase 1 knockout mice compared to their WT counterparts. In summary, our results demonstrate the role of inflammation and oxidative stress in age-related changes of immune cell survival factors in the BM, suggesting that antioxidants may be beneficial in counteracting immunosenescence by improving immunological memory in old age.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Rafal Koziel
- Department of Molecular and Cell Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Julian Lair
- Department of Orthopedic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Krismer
- Department of Orthopedic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, Wels, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Tu W, Rao S. Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection. Front Microbiol 2016; 7:2111. [PMID: 28082969 PMCID: PMC5186782 DOI: 10.3389/fmicb.2016.02111] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/13/2016] [Indexed: 01/03/2023] Open
Abstract
The ability of the human immune system to protect against infectious disease declines with age and efficacy of vaccination reduces significantly in the elderly. Aging of the immune system, also termed as immunosenescence, involves many changes in human T cell immunity that is characterized by a loss in naïve T cell population and an increase in highly differentiated CD28- memory T cell subset. There is extensive data showing that latent persistent human cytomegalovirus (HCMV) infection is also associated with age-related immune dysfunction in the T cells, which might enhance immunosenescence. Understanding the molecular mechanisms underlying age-related and HCMV-related immunosenescence is critical for the development of effective age-targeted vaccines and immunotherapies. In this review, we will address the role of both aging and HCMV infection that contribute to the T cell senescence and discuss the potential molecular mechanisms in aged T cells.
Collapse
Affiliation(s)
- Wenjuan Tu
- Faculty of ESTeM, Health Research Institute, University of Canberra Canberra, ACT, Australia
| | - Sudha Rao
- Faculty of ESTeM, Health Research Institute, University of Canberra Canberra, ACT, Australia
| |
Collapse
|
33
|
Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, Greil R, Jöhrer K. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol 2016; 9:116. [PMID: 27809856 PMCID: PMC5093947 DOI: 10.1186/s13045-016-0345-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple myeloma is an incurable plasma cell malignancy that is mostly restricted to the bone marrow. Cancer-induced dysfunction of cytotoxic T cells at the tumor site may be responsible for immune evasion and therapeutical failure of immunotherapies. Therefore, enhanced knowledge about the actual status of T cells in myeloma bone marrow is urgently needed. Here, we assessed the expression of inhibitory molecules PD-1, CTLA-4, 2B4, CD160, senescence marker CD57, and CD28 on T cells of naive and treated myeloma patients in the bone marrow and peripheral blood and collected data on T cell subset distribution in both compartments. In addition, T cell function concerning proliferation and expression of T-bet, IL-2, IFNγ, and CD107a was investigated after in vitro stimulation by CD3/CD28. Finally, data was compared to healthy, age-matched donor T cells from both compartments. METHODS Multicolor flow cytometry was utilized for the analyses of surface molecules, intracellular staining of cytokines was also performed by flow cytometry, and proliferation was assessed by 3H-thymidine incorporation. Statistical analyses were performed utilizing unpaired T test and Mann-Whitney U test. RESULTS We observed enhanced T cell exhaustion and senescence especially at the tumor site. CD8+ T cells expressed several molecules associated with T cell exhaustion (PD-1, CTLA-4, 2B4, CD160) and T cell senescence (CD57, lack of CD28). This phenotype was associated with lower proliferative capacity and impaired function. Despite a high expression of the transcription factor T-bet, CD8+ T cells from the tumor site failed to produce IFNγ after CD3/CD28 in vitro restimulation and displayed a reduced ability to degranulate in response to T cell stimuli. Notably, the percentage of senescent CD57+CD28- CD8+ T cells was significantly lower in treated myeloma patients when compared to untreated patients. CONCLUSIONS T cells from the bone marrow of myeloma patients were more severely impaired than peripheral T cells. While our data suggest that terminally differentiated cells are preferentially deleted by therapy, immune-checkpoint molecules were still present on T cells supporting the potential of checkpoint inhibitors to reactivate T cells in myeloma patients in combination therapies. However, additional avenues to restore anti-myeloma T cell responses are urgently needed.
Collapse
Affiliation(s)
| | | | - Rainer Biedermann
- Department of Orthopedic Surgery, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Medical University of Innsbruck, Müllerstraße 44, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Ella Willenbacher
- Department of Internal Medicine V, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - Richard Greil
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria.,Salzburg Cancer Research Institute (SCRI), Müllner Hauptstraße 48, 5020, Salzburg, Austria.,Third Medical Department at The Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, Salzburg, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
34
|
van Beek AA, Hugenholtz F, Meijer B, Sovran B, Perdijk O, Vermeij WP, Brandt RMC, Barnhoorn S, Hoeijmakers JHJ, de Vos P, Leenen PJM, Hendriks RW, Savelkoul HFJ. Frontline Science: Tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely aging Ercc1-/Δ7 mice. J Leukoc Biol 2016; 101:811-821. [PMID: 27418353 DOI: 10.1189/jlb.1hi0216-062rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
With aging, tryptophan metabolism is affected. Tryptophan has a crucial role in the induction of immune tolerance and the maintenance of gut microbiota. We, therefore, studied the effect of dietary tryptophan restriction in young wild-type (WT) mice (118-wk life span) and in DNA-repair deficient, premature-aged (Ercc1-/Δ7 ) mice (20-wk life span). First, we found that the effect of aging on the distribution of B and T cells in bone marrow (BM) and in the periphery of 16-wk-old Ercc1-/Δ7 mice was comparable to that in 18-mo-old WT mice. Dietary tryptophan restriction caused an arrest of B cell development in the BM, accompanied by diminished B cell frequencies in the periphery. In general, old Ercc1-/Δ7 mice showed similar responses to tryptophan restriction compared with young WT mice, indicative of age-independent effects. Dietary tryptophan restriction increased microbial diversity and made the gut microbiota composition of old Ercc1-/Δ7 mice more similar to that of young WT mice. The decreased abundances of Alistipes and Akkermansia spp. after dietary tryptophan restriction correlated significantly with decreased B cell precursor numbers. In conclusion, we report that dietary tryptophan restriction arrests B cell development and concomitantly changes gut microbiota composition. Our study suggests a beneficial interplay between dietary tryptophan, B cell development, and gut microbial composition on several aspects of age-induced changes.
Collapse
Affiliation(s)
- Adriaan A van Beek
- Top Institute Food and Nutrition, Wageningen, The Netherlands; .,Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands.,Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Floor Hugenholtz
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ben Meijer
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Bruno Sovran
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Host-Microbe Interactomics Group, Wageningen University, Wageningen, The Netherlands
| | - Olaf Perdijk
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Wilbert P Vermeij
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul de Vos
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands; and
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
35
|
Di Rosa F, Gebhardt T. Bone Marrow T Cells and the Integrated Functions of Recirculating and Tissue-Resident Memory T Cells. Front Immunol 2016; 7:51. [PMID: 26909081 PMCID: PMC4754413 DOI: 10.3389/fimmu.2016.00051] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Changes in T cell trafficking accompany the naive to memory T cell antigen-driven differentiation, which remains an incompletely defined developmental step. Upon priming, each naive T cell encounters essential signals – i.e., antigen, co-stimuli and cytokines – in a secondary lymphoid organ; nevertheless, its daughter effector and memory T cells recirculate and receive further signals during their migration through various lymphoid and non-lymphoid organs. These additional signals from tissue microenvironments have an impact on immune response features, including T cell effector function, expansion and contraction, memory differentiation, long-term maintenance, and recruitment upon antigenic rechallenge into local and/or systemic responses. The critical role of T cell trafficking in providing efficient T cell memory has long been a focus of interest. It is now well recognized that naive and memory T cells have different migratory pathways, and that memory T cells are heterogeneous with respect to their trafficking. We and others have observed that, long time after priming, memory T cells are preferentially found in certain niches such as the bone marrow (BM) or at the skin/mucosal site of pathogen entry, even in the absence of residual antigen. The different underlying mechanisms and peculiarities of resulting immunity are currently under study. In this review, we summarize key findings on BM and tissue-resident memory (TRM) T cells and revisit some issues in memory T cell maintenance within such niches. Moreover, we discuss BM seeding by memory T cells in the context of migration patterns and protective functions of either recirculating or TRM T cells.
Collapse
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, c/o Department of Molecular Medicine Sapienza University , Rome , Italy
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
36
|
Kapetanovic R, Bokil NJ, Sweet MJ. Innate immune perturbations, accumulating DAMPs and inflammasome dysregulation: A ticking time bomb in ageing. Ageing Res Rev 2015; 24:40-53. [PMID: 25725308 DOI: 10.1016/j.arr.2015.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 01/11/2023]
Abstract
Ageing has pronounced effects on the immune system, including on innate immune cells. Whilst most studies suggest that total numbers of different innate immune cell populations do not change dramatically during ageing, many of their functions such as phagocytosis, antigen presentation and inflammatory molecule secretion decline. In contrast, many endogenous damage-associated molecular patterns (DAMPs) accumulate during ageing. These include reactive oxygen species (ROS) released from damaged mitochondria, extracellular nucleotides like ATP, high mobility group box (HMGB) 1 protein, oxidized low density lipoprotein, amyloid-beta (Aβ), islet amyloid polypeptide and particulates like monosodium urate (MSU) crystals and cholesterol crystals. Some of these DAMPs trigger the activation of inflammasomes, cytosolic danger sensing signalling platforms that drive both the maturation of specific pro-inflammatory mediators such as IL-1β, as well as the initiation of pro-inflammatory pyroptotic cell death. Herein, we review the evidence that dysregulated inflammasome activation, via altered innate immune cell functions and elevated levels of DAMPs, contributes to the establishment of chronic, low-grade inflammation (characterized by elevated levels of IL-6 and C-reactive protein) and the development of age-related pathological processes.
Collapse
Affiliation(s)
- Ronan Kapetanovic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Nilesh J Bokil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia.
| |
Collapse
|
37
|
Immunosenescence in renal transplantation: a changing balance of innate and adaptive immunity. Curr Opin Organ Transplant 2015; 20:417-23. [PMID: 26154914 DOI: 10.1097/mot.0000000000000210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW With global demographic changes and an overall improved healthcare, more older end-stage renal disease (ESRD) patients receive kidney transplants. At the same time, organs from older donors are utilized more frequently. Those developments have and will continue to impact allocation, immunosuppression and efforts improving organ quality. RECENT FINDINGS Findings mainly outside the field of transplantation have provided insights into mechanisms that drive immunosenescence and immunogenicity, thus providing a rationale for an age-adapted immunosuppression and relevant clinical trials in the elderly. With fewer rejections in the elderly, alloimmune responses appear to be characterized by a decline in effectiveness and an augmented unspecific immune response. SUMMARY Immunosenescence displays broad and ambivalent effects in elderly transplant recipients. Those changes appear to compensate a decline in allospecific effectiveness by a shift towards an augmented unspecific immune response. Immunosuppression needs to target those age-specific changes to optimize outcomes in elderly transplant recipients.
Collapse
|
38
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
39
|
[Immunogerontology - Research into aging]. Z Rheumatol 2015; 74:435-7. [PMID: 26031286 DOI: 10.1007/s00393-014-1562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Leitner J, Herndler-Brandstetter D, Zlabinger GJ, Grubeck-Loebenstein B, Steinberger P. CD58/CD2 Is the Primary Costimulatory Pathway in Human CD28-CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:477-87. [PMID: 26041540 DOI: 10.4049/jimmunol.1401917] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
A substantial proportion of CD8(+) T cells in adults lack the expression of the CD28 molecule, and the aging of the immune system is associated with a steady expansion of this T cell subset. CD28(-)CD8(+) T cells are characterized by potent effector functions but impaired responses to antigenic challenge. CD28 acts as the primary T cell costimulatory receptor, but there are numerous additional receptors that can costimulate the activation of T cells. In this study, we have examined such alternative costimulatory pathways regarding their functional role in CD28(-)CD8(+) T cells. Our study showed that most costimulatory molecules have a low capacity to activate CD28-deficient T cells, whereas the engagement of the CD2 molecule by its ligand CD58 clearly costimulated proliferation, cytokine production, and effector function in this T cell subset. CD58 is broadly expressed on APCs including dendritic cells. Blocking CD58 mAb greatly reduced the response of human CD28(-)CD8(+) T cells to allogeneic dendritic cells, as well as to viral Ags. Our results clearly identify the CD58/CD2 axis as the primary costimulatory pathway for CD8 T cells that lack CD28. Moreover, we show that engagement of CD2 amplifies TCR signals in CD28(-)CD8(+) T cells, demonstrating that the CD2-CD58 interaction has a genuine costimulatory effect on this T cell subset. CD2 signals might promote the control of viral infection by CD28(-)CD8(+) T cells, but they might also contribute to the continuous expansion of CD28(-)CD8(+) T cells during chronic stimulation by persistent Ag.
Collapse
Affiliation(s)
- Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Gerhard J Zlabinger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
41
|
Jaskula E, Dlubek D, Tarnowska A, Lange J, Mordak-Domagala M, Suchnicki K, Sedzimirska M, Borowik A, Mizia S, Lange A. Anti-CMV-IgG positivity of donors is beneficial for alloHSCT recipients with respect to the better short-term immunological recovery and high level of CD4+CD25high lymphocytes. Viruses 2015; 7:1391-408. [PMID: 25807050 PMCID: PMC4379577 DOI: 10.3390/v7031391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell transplantation from anti-cytomegalovirus immunoglobulin G (anti-CMV-IgG) positive donors facilitated immunological recovery post-transplant, which may indicate that chronic CMV infection has an effect on the immune system. This can be seen in the recipients after reconstitution with donor lymphocytes. We evaluated the composition of lymphocytes at hematologic recovery in 99 patients with hematologic malignancies post hematopoietic stem cell transplantation (HSCT). Anti-CMV-IgG seropositivity of the donor was associated with higher proportions of CD4+ (227.963 ± 304.858 × 106 vs. 102.050 ± 17.247 × 106 cells/L, p = 0.009) and CD4+CD25high (3.456 ± 0.436 × 106 vs. 1.589 ± 0.218 × 106 cells/L, p = 0.003) lymphocytes in the blood at hematologic recovery. The latter parameter exerted a diverse influence on the risk of acute graft-versus-host disease (GvHD) if low (1.483 ± 0.360 × 106 vs. 3.778 ± 0.484 × 106 cells/L, p < 0.001) and de novo chronic GvHD (cGvHD) if high (3.778 ± 0.780 × 106 vs. 2.042 ± 0.261 × 106 cells/L, p = 0.041). Higher values of CD4+ lymphocytes in patients who received transplants from anti-CMV-IgG-positive donors translated into a reduced demand for IgG support (23/63 vs. 19/33, p = 0.048), and these patients also exhibited reduced susceptibility to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and/or human herpes 6 virus (HHV6) infection/reactivation (12/50 vs. 21/47, p = 0.032). Finally, high levels (³0.4%) of CD4+CD25high lymphocytes were significantly associated with better post-transplant survival (56% vs. 38%, four-year survival, p = 0.040). Donors who experience CMV infection/reactivation provide the recipients with lymphocytes, which readily reinforce the recovery of the transplanted patients' immune system.
Collapse
Affiliation(s)
- Emilia Jaskula
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland.
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Dorota Dlubek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland.
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Agnieszka Tarnowska
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Janusz Lange
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Monika Mordak-Domagala
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Krzysztof Suchnicki
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Mariola Sedzimirska
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Agata Borowik
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Sylwia Mizia
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| | - Andrzej Lange
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland.
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw 53-439, Poland.
| |
Collapse
|
42
|
Pritz T, Lair J, Ban M, Keller M, Weinberger B, Krismer M, Grubeck-Loebenstein B. Plasma cell numbers decrease in bone marrow of old patients. Eur J Immunol 2014; 45:738-46. [PMID: 25430805 DOI: 10.1002/eji.201444878] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/04/2014] [Accepted: 11/24/2014] [Indexed: 02/02/2023]
Abstract
The BM is well understood to play a key role in plasma cell homing and survival in mice. In humans, BM plasma cells and their functions are less well characterized. In this study, we used paired bone biopsies from the femur shaft and blood samples from persons of different ages to analyze age-related changes of plasma and memory B cells. Our results demonstrated that plasma cells were mainly located in the BM, while a higher percentage of memory B cells was in the peripheral blood than in the BM. The frequency of plasma and memory B cells from both sources decreased with age, while immature and naïve B cells were unaffected. An age-related decline of tetanus- and diphtheria-specific BM plasma cells was observed, whereas influenza A- and cytomegalovirus-specific BM plasma cells were not affected. With the exception of cytomegalovirus, peripheral antibody concentrations correlated with BM plasma cells of the same specificity, but were independent of antigen-specific peripheral blood memory B cells. Our results demonstrate that the BM houses decreased numbers of plasma cells in old age. The number of cells of certain specificity may reflect the number and time point of previous antigen encounters and intrinsic age-related changes in the BM.
Collapse
Affiliation(s)
- Theresa Pritz
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
43
|
The aging bone marrow and its impact on immune responses in old age. Immunol Lett 2014; 162:310-5. [DOI: 10.1016/j.imlet.2014.06.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/21/2022]
|
44
|
Van Epps P, Banks R, Aung H, Betts MR, Canaday DH. Age-related differences in polyfunctional T cell responses. IMMUNITY & AGEING 2014; 11:14. [PMID: 25512758 PMCID: PMC4265991 DOI: 10.1186/1742-4933-11-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Background A reduced number of naïve T cells along with an accumulation of differentiated cell types in aging have been described but little is known about the polyfunctionality of the T cell responses. In this study we compared the individual and polyfunctional expression of IFN-γ, MIP-1α, TNF-α, perforin, and IL-2 by T cell subsets, including the newly described stem cell like memory T cells (TSCM), in response to stimulation with superantigen staphylococcal enterotoxin B (SEB) in older (median age 80, n = 23) versus younger (median age 27; n = 23) adults. Results Older age was associated with a markedly lower frequency of CD8+ naïve T cells (11% vs. 47%; p < 0.0001) and an expansion in memory T cell subsets including central memory (p < 0.05), effector memory and effector T cells (p < 0.001 for both). There was also a decline in CD4+ naïve T cells in older subjects (33% vs. 45%; p = 0.02). There were no differences in frequencies or polyfunctional profiles of TSCM between groups. CD8+ naïve cells in the older group had increased expression of all functional parameters measured compared to the younger subjects and exhibited greater polyfunctionality (p = 0.04). CD4+ naïve T cells in the older group also showed greater polyfunctionality with a TNF-α and IL-2 predominance (p = 0.005). CD8+ effector memory and effector T cells exhibited increased polyfunctionality in the older group compared with younger (p = 0.01 and p = 0.003). Conclusions These data suggest that aging does not have a negative effect on polyfunctionality and therefore this is likely not a major contributor to the immunesenescence described with aging.
Collapse
Affiliation(s)
- Puja Van Epps
- Geriatric Research Center Clinical Core (GRECC), Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA ; Division of Infectious Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Ave, BRB 1022, Cleveland, Ohio, 44106-4684, USA
| | - Richard Banks
- Geriatric Research Center Clinical Core (GRECC), Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA
| | - Htin Aung
- Geriatric Research Center Clinical Core (GRECC), Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA ; Division of Infectious Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Ave, BRB 1022, Cleveland, Ohio, 44106-4684, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David H Canaday
- Geriatric Research Center Clinical Core (GRECC), Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, Ohio 44106, USA ; Division of Infectious Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Ave, BRB 1022, Cleveland, Ohio, 44106-4684, USA
| |
Collapse
|
45
|
Hock K, Pilat N, Baranyi U, Mahr B, Gattringer M, Klaus C, Wekerle T. Donor CD4 T cells trigger costimulation blockade-resistant donor bone marrow rejection through bystander activation requiring IL-6. Am J Transplant 2014; 14:2011-22. [PMID: 25100658 DOI: 10.1111/ajt.12823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/22/2014] [Accepted: 05/07/2014] [Indexed: 01/25/2023]
Abstract
Bone marrow (BM) transplantation under costimulation blockade induces chimerism and tolerance. Cotransplantation of donor T cells (contained in substantial numbers in mobilized peripheral blood stem cells and donor lymphocyte infusions) together with donor BM paradoxically triggers rejection of donor BM through undefined mechanisms. Here, nonmyeloablatively irradiated C57BL/6 recipients simultaneously received donor BM (BALB/c) and donor T cells under costimulation blockade (anti-CD154 and CTLA4Ig). Donor CD4, but not CD8 cells, triggered natural killer-independent donor BM rejection which was associated with increased production of IL-6, interferon gamma (IFN-γ) and IL-17A. BM rejection was prevented through neutralization of IL-6, but not of IFN-γ or IL-17A. IL-6 counteracted the antiproliferative effect of anti-CD154 in vitro. Rapamycin and anti-lymphocyte function-associated antigen 1 negated this effect of IL-6 in vitro and prevented BM rejection in vivo. Simultaneous cotransplantation of (BALB/cxB6)F1, recipient or irradiated donor CD4 cells, or late transfer of donor CD4 cells did not lead to BM rejection, whereas cotransplantation of third party CD4 cells did. Transferred donor CD4 cells became activated, rapidly underwent apoptosis and triggered activation and proliferation of recipient T cells. Collectively, these results provide evidence that donor T cells recognizing the recipient as allogeneic lead to the release of IL-6, which abolishes the effect of anti-CD154, triggering donor BM rejection through bystander activation.
Collapse
Affiliation(s)
- K Hock
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Lee N, Shin MS, Kang KS, Yoo SA, Mohanty S, Montgomery RR, Shaw AC, Kang I. Human monocytes have increased IFN-γ-mediated IL-15 production with age alongside altered IFN-γ receptor signaling. Clin Immunol 2014; 152:101-10. [PMID: 24657713 PMCID: PMC4018768 DOI: 10.1016/j.clim.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 11/26/2022]
Abstract
IL-15 is involved in regulating host defense and inflammation. Monocytes produce the biologically active cell surface IL-15 in response to IFN-γ. Although aging can alter the immune system, little is known about whether and how aging affects IFN-γ-mediated IL-15 production in human monocytes. We showed that monocytes of healthy older adults (age ≥ 65) had increased cell surface IL-15 expression in response to IFN-γ compared to those of healthy young adults (age ≤ 40). This finding stems in part from increased IFN-γ receptor (R)1/2 expression on monocytes in older adults, leading to enhanced STAT1 activation and interferon regulatory factor 1 synthesis with increased IL15 gene expression. Our study suggests that with aging the IFN-γ-mediated IL-15 production pathway in human monocytes is uncompromised, but rather augmented, and could be considered as a therapeutic target point to modulate host defense and inflammation in older adults.
Collapse
Affiliation(s)
- Naeun Lee
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Min Sun Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ki Soo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pediatrics, Jeju National University School of Medicine, Jeju 690-756, Republic of Korea
| | - Seung-Ah Yoo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Subhasis Mohanty
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
47
|
Welzl K, Weinberger B, Kronbichler A, Sturm G, Kern G, Mayer G, Grubeck-Loebenstein B, Koppelstaetter C. How immunosuppressive therapy affects T cells from kidney transplanted patients of different age: the role of latent cytomegalovirus infection. Clin Exp Immunol 2014; 176:112-9. [PMID: 24028181 DOI: 10.1111/cei.12205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2013] [Indexed: 01/31/2023] Open
Abstract
The average age of patients receiving renal transplantation is increasing as programmes have been established which support the donation of organs from elderly donors to older recipients. Little is known about the effect of immunosuppressive therapy on the immune system of older patients. In this study, T cell function and the composition of the T cell repertoire were analysed in immunosuppressed renal transplant recipients of different age and cytomegalovirus (CMV) status in comparison to age- and CMV-matched controls. Independent of age and CMV status, the production of interleukin (IL)-2 and interferon (IFN)-γ by T cells was decreased in the patient groups and autologous serum from patients was capable of inhibiting the proliferation of CD3⁺ T cells. CXCR5 expression on T cells was increased in patients versus controls reflecting reduced endogenous IL-2 signalling under immunosuppressive therapy. In CMV-seronegative patients kidney transplantation and immunosuppressive therapy did not induce changes in the CD8⁺ T cell pool, but there was a moderate increase in CD4⁺CD28⁻ effector T cells when compared to age-matched controls. In contrast, latent CMV infection triggered a shift from early to late differentiated CD4⁺ and CD8⁺ T cells in patients and controls. This shift was most pronounced in elderly transplant patients under immunosuppressive therapy. In conclusion, our results demonstrate that immunosuppressive therapy following kidney transplantation is effective in patients older than 65 years. Latent CMV infection, however, accelerates age-related changes in the T cell repertoire in elderly people under immunosuppressive therapy. These patients should therefore be monitored with special care.
Collapse
Affiliation(s)
- K Welzl
- Immunology Division, Research Institute of Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria; Division of Nephrology, Department of Internal Medicine IV, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Boraschi D, Aguado MT, Dutel C, Goronzy J, Louis J, Grubeck-Loebenstein B, Rappuoli R, Del Giudice G. The gracefully aging immune system. Sci Transl Med 2014; 5:185ps8. [PMID: 23677590 DOI: 10.1126/scitranslmed.3005624] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prolonged life expectancy in the 20th century has been one of humankind's greatest triumphs. However, the substantial increase in the human life span has ushered in a new concern: healthy aging. Because infectious diseases prominently contribute to morbidity in the particularly vulnerable elderly population, strategies for preventing these diseases would have a clear impact on improving healthy aging. Thus, vaccines and immunization strategies tailored for the elderly population are needed, and vaccines should be developed to take into consideration the peculiar age-induced variations of immune responsiveness. The conference "Ageing and Immunity" recently held in Siena, Italy, has reviewed and discussed several possible causes of immune senescence, as well as strategies for counteracting this waning of immune responsiveness and for restoring immunocompetence. In addition, examples of diseases that should be targeted by vaccination in the senior population were considered.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Biomedical Technologies, National Research Council, Pisa 56124, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Arnold CR, Pritz T, Brunner S, Knabb C, Salvenmoser W, Holzwarth B, Thedieck K, Grubeck-Loebenstein B. T cell receptor-mediated activation is a potent inducer of macroautophagy in human CD8(+)CD28(+) T cells but not in CD8(+)CD28(-) T cells. Exp Gerontol 2014; 54:75-83. [PMID: 24468331 DOI: 10.1016/j.exger.2014.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 11/25/2022]
Abstract
A key feature of the aged human immune system is the accumulation of highly differentiated CD8(+)CD28(-) T cells, a phenomenon that negatively influences immune function in the elderly. However, the mechanisms that regulate survival or death of CD8(+)CD28(-) T cells remain incompletely understood. Macroautophagy has been shown to protect cells from unfavorable environmental conditions and extend lifespan of various cells and organisms. In this study, we investigated autophagy in CD8(+)CD28(+) and CD8(+)CD28(-) T cells following T cell receptor (TCR) engagement. We demonstrate that TCR-mediated activation led to a potent induction of autophagy in CD8(+)CD28(+) T cells which was accompanied by an increased activity of the mammalian target of rapamycin complex 1 (mTORC1). This was surprising, as mTORC1 is generally perceived as an inhibitor of autophagy. Inhibition of mTORC1 by rapamycin could still enhance activation-induced autophagy. In contrast, CD8(+)CD28(-) T cells induced autophagy to a significantly lower extent in response to TCR engagement compared to CD8(+)CD28(+) T cells and failed to increase autophagy upon mTORC1 inhibition. In conclusion, we describe for the first time the induction of autophagy in human CD8(+) T cells following TCR engagement and the decreased ability of CD8(+)CD28(-) T cells to induce autophagy, suggesting that they cannot meet the metabolic needs of antigen receptor-mediated activation and are therefore unlikely to survive when confronted by their specific antigens.
Collapse
Affiliation(s)
- Christoph R Arnold
- Institute for Biomedical Aging Research, Immunology Division, University of Innsbruck, 6020 Innsbruck, Austria
| | - Theresa Pritz
- Institute for Biomedical Aging Research, Immunology Division, University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Brunner
- Institute for Biomedical Aging Research, Immunology Division, University of Innsbruck, 6020 Innsbruck, Austria
| | - Carina Knabb
- Institute for Biomedical Aging Research, Immunology Division, University of Innsbruck, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Institute for Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Birgit Holzwarth
- Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Kathrin Thedieck
- Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; BIOSS Center for Biological Signalling Studies and Center for Systems Biology (ZBSA), Albert-Ludwigs-University Freiburg, 79104 Freburg, Germany
| | - Beatrix Grubeck-Loebenstein
- Institute for Biomedical Aging Research, Immunology Division, University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
50
|
Westman G, Lidehall AK, Magnusson P, Ingelsson M, Kilander L, Lannfelt L, Korsgren O, Eriksson BM. Decreased proportion of cytomegalovirus specific CD8 T-cells but no signs of general immunosenescence in Alzheimer's disease. PLoS One 2013; 8:e77921. [PMID: 24155977 PMCID: PMC3796487 DOI: 10.1371/journal.pone.0077921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/14/2013] [Indexed: 01/10/2023] Open
Abstract
Cytomegalovirus (CMV) has been suggested as a contributing force behind the impaired immune responsiveness in the elderly, with decreased numbers of naïve T-cells and an increased proportion of effector T-cells. Immunological impairment is also implicated as a part of the pathogenesis in Alzheimer's disease (AD). The aim of this study was to investigate whether AD patients present with a different CMV-specific CD8 immune profile compared to non-demented controls. Blood samples from 50 AD patients and 50 age-matched controls were analysed for HLA-type, CMV serostatus and systemic inflammatory biomarkers. Using multi-colour flow cytometry, lymphocytes from peripheral blood mononuclear cells were analysed for CMV-specific CD8 immunity with MHC-I tetramers A01, A02, A24, B07, B08 and B35 and further classified using CD27, CD28, CD45RA and CCR7 antibodies. Among CMV seropositive subjects, patients with AD had significantly lower proportions of CMV-specific CD8 T-cells compared to controls, 1.16 % vs. 4.13 % (p=0.0057). Regardless of dementia status, CMV seropositive subjects presented with a lower proportion of naïve CD8 cells and a higher proportion of effector CD8 cells compared to seronegative subjects. Interestingly, patients with AD showed a decreased proportion of CMV-specific CD8 cells but no difference in general CD8 differentiation.
Collapse
Affiliation(s)
- Gabriel Westman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Anna-Karin Lidehall
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peetra Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|