Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity.
Cell Mol Life Sci 2020;
77:1345-1355. [PMID:
31605149 PMCID:
PMC11105102 DOI:
10.1007/s00018-019-03328-6]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse