1
|
Gong K, Xia M, Wang Y, Bai L, Ying W, Zhu F, Chen Y. Importance of glycosylation in the interaction of Tamm-Horsfall protein with collectin-11 and acute kidney injury. J Cell Mol Med 2020; 24:3572-3581. [PMID: 32045104 PMCID: PMC7131921 DOI: 10.1111/jcmm.15046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Both Tamm-Horsfall protein (THP) and collectin-11 (CL-11) are important molecules in acute kidney injury (AKI). In this study, we measured the change of glycosylation of THP in patients with AKI after surgery, using MALDI-TOF MS and lectin array analysis. The amount of high-mannose and core fucosylation in patients with AKI were higher than those in healthy controls. In vitro study showed that THP could bind to CL-11 with affinity at 9.41 × 10-7 mol/L and inhibited activation of complement lectin pathway. The binding affinity decreased after removal of glycans on THP. Removal of fucose completely ablated the binding between the two proteins. While removal of high-mannose or part of the N-glycan decreased the binding ability to 30% or 60%. The results indicated that increase of fucose on THP played an important role via complement lectin pathway in AKI.
Collapse
Affiliation(s)
- Kunjing Gong
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Min Xia
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Yaqin Wang
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Lufeng Bai
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| | - Wantao Ying
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for protein science (Beijing)Beijing Institute of lifeomicsBeijingChina
| | - Fengxue Zhu
- Department of Critical Care MedicinePeking University People's HospitalBeijingChina
| | - Yuqing Chen
- Renal DivisionDepartment of MedicinePeking University First HospitalBeijingChina
- Institute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of EducationBeijingChina
| |
Collapse
|
2
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
3
|
Howard M, Farrar CA, Sacks SH. Structural and functional diversity of collectins and ficolins and their relationship to disease. Semin Immunopathol 2018; 40:75-85. [PMID: 28894916 PMCID: PMC5794833 DOI: 10.1007/s00281-017-0642-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Pattern recognition molecules are sensors for the innate immune system and trigger a number of pathophysiological functions after interaction with the corresponding ligands on microorganisms or altered mammalian cells. Of those pattern recognition molecules used by the complement system, collagen-like lectins (collectins) are an important subcomponent. Whereas the best known of these collectins, mannose-binding lectin, largely occurs as a circulating protein following production by hepatocytes, the most recently described collectins exhibit strong local biosynthesis. This local production and release of soluble collectin molecules appear to serve local tissue functions at extravascular sites, including a developmental function. In this article, we focus on the characteristics of collectin-11 (CL-11 or CL-K1), whose ubiquitous expression and multiple activities likely reflect a wide biological relevance. Collectin-11 appears to behave as an acute phase protein whose production associated with metabolic and physical stress results in locally targeted inflammation and tissue cell death. Early results indicate the importance of fucosylated ligand marking the injured cells targeted by collectin-11, and we suggest that further characterisation of this and related ligands will lead to better understanding of pathophysiological significance and exploitation for clinical benefit.
Collapse
Affiliation(s)
- Mark Howard
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Conrad A Farrar
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Steven H Sacks
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
4
|
Eisen DP, Osthoff M. If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it? Clin Exp Immunol 2014; 176:165-71. [PMID: 24255984 DOI: 10.1111/cei.12241] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 01/06/2023] Open
Abstract
Either immune selection or stochastic processes may have influenced the frequency of highly polymorphic genes such as mannose-binding lectin 2 (MBL2). This pattern recognition receptor of the innate immune system recognizes and binds to pathogenic microorganisms and apoptotic cells leading to lectin pathway complement killing or clearance. In almost all of a large number of studies in different ethnic groups worldwide there is 20-25% carriage of low MBL2 haplotypes, with 8-10% of each population having no MBL detectable in the blood. The source of this high variability of MBL2 remains cryptic. It arises from six main snps in the prompter and exon regions of the gene that assort into seven common haplotypes under linkage disequilibrium. While global studies of MBL2 show that it is not under immune selection pressure, these results are not the same when the same population genetic tools are used on large national studies. Other analyses point to the silenced MBL1 pseudogene and development of promoter polymorphisms in humans as evidence of selection pressure favouring low-producing haplotypes. While these analyses cannot be reconciled readily, there are two processes by which MBL heterozygosity could have been advantageous in an evolutionary sense; protection against adverse effects of various infectious diseases and lethal manifestations of atherosclerosis - a disease that now seems to have a more ancient history than assumed previously. Ultimately, consideration of the context for possible future therapeutic manipulation of MBL means that this can proceed independently of resolution of the evolutionary forces that have shaped MBL2 polymorphism.
Collapse
Affiliation(s)
- D P Eisen
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Vic., Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Vic., Australia
| | | |
Collapse
|
5
|
Nonaka M, Imaeda H, Matsumoto S, Yong Ma B, Kawasaki N, Mekata E, Andoh A, Saito Y, Tani T, Fujiyama Y, Kawasaki T. Mannan-binding protein, a C-type serum lectin, recognizes primary colorectal carcinomas through tumor-associated Lewis glycans. THE JOURNAL OF IMMUNOLOGY 2014; 192:1294-301. [PMID: 24391218 DOI: 10.4049/jimmunol.1203023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mannan (mannose)-binding protein (MBP) is a C-type serum lectin that plays a key role in innate immunity. MBP forms large multimers (200-600 kDa) and exhibits broad specificity for mannose, N-acetylglucosamine, and fucose. MBP exhibits high affinity for unique oligosaccharides that have been isolated from human colorectal carcinoma (SW1116) cells and characterized as highly fucosylated high m.w. type 1 Lewis glycans. In this study, we first demonstrated that MBP recognizes human primary colorectal carcinoma tissues through tumor-associated MBP ligands. We performed fluorescence-based histochemistry of MBP in human colorectal carcinoma tissues and showed that MBP clearly stained cancer mucosae in a Ca(2+)-dependent manner. Coincubation with plant (Aleuria aurantia) lectin, but not Con A, blocked MBP staining, indicating that fucose, rather than mannose, is involved in this interaction. The expression of MBP ligands was detected in 127 of 330 patients (38.5%), whereas, most significantly, there was no expression in 69 nonmalignant tissues. The MBP-staining pattern in cancer mucosae significantly overlapped with that of Lewis b [Fucα1-2Galβ1-3(Fucα1-4)GlcNAc] staining, but the Lewis b staining in normal tissues was not associated with MBP staining. In addition, the MBP staining correlated inversely with the expression of CA19-9 Ag, and MBP stained 11 of 25 (44%) CA19-9 (sialyl Lewis a [NeuAc(α2-3)Galβ1-3(Fucα1-4)GlcNAc])(-) colorectal carcinoma tissues. We found a favorable prognosis in patients with MBP ligand(+) tumors. These results suggest that selective recognition of cancer cells by endogenous MBP seems to be associated with an antitumor effect and that tissue staining with MBP in combination with CA19-9 may serve as a novel indicator of colorectal carcinoma tissues.
Collapse
Affiliation(s)
- Motohiro Nonaka
- Research Center for Glycobiotechnology, Ritsumeikan University, Shiga 525-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Henriksen M, Brandt J, Iyer S, Thielens N, Hansen S. Characterization of the interaction between Collectin 11 (CL-11, CL-K1) and nucleic acids. Mol Immunol 2013. [DOI: 10.1016/j.molimm.2013.05.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Henriksen ML, Brandt J, Iyer SSC, Thielens NM, Hansen S. Characterization of the interaction between collectin 11 (CL-11, CL-K1) and nucleic acids. Mol Immunol 2013; 56:757-67. [PMID: 23954398 DOI: 10.1016/j.molimm.2013.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 01/22/2023]
Abstract
Collectins are a group of innate immune proteins that contain collagen-like regions and globular C-type lectin domains. Via the lectin domains, collectins recognize and bind to various microbial carbohydrate patterns. Collectin 11 (CL-11) exists in complex with the complement activating MBL-associated proteases, MASPs. In the present work, we characterize the interaction between CL-11 and DNA, and show that CL-11 binds to DNA from a variety of origins in a calcium-independent manner. CL-11 binds also to apoptotic cells presenting extracellular DNA on their surface. The binding to DNA is sensitive to changes in ionic strength and pH. Competition studies show that CL-11 binds to nucleic acids and carbohydrates via separate binding-sites and oligomericity appears crucial for binding activity. Combined interaction with DNA and mannan strongly increases binding avidity. By surface plasmon resonance we estimate the dissociation constant for the binding between CL-11 and double stranded DNA oligonucleotides to K(D)=9-20 nM. In an in vitro assay we find that CL-11 binds to DNA coated surfaces, which leads to C4b deposition via MASP-2. We propose that CL-11, e.g. via complement, may play a role in response to particles and surfaces presenting extracellular DNA, such as apopototic cells, neutrophil extracellular traps and biofilms.
Collapse
Affiliation(s)
- Maiken L Henriksen
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|
8
|
The lectin pathway and its implications in coagulation, infections and auto-immunity. Curr Opin Organ Transplant 2013; 16:21-7. [PMID: 21150610 DOI: 10.1097/mot.0b013e32834253df] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To give a comprehensive overview of the recently published studies on the role of the lectin pathway in coagulation, infections and auto-immunity. RECENT FINDINGS We present the status quo picture of the lectin pathway, including the newly discovered member, MAp44 (a.k.a. MAP-1), which may act as a specific regulator of activation. On the functional side the focus is on the important discoveries of the connections between the coagulation system and mannose-binding lectin-associated serine proteases, newly discovered associations between the lectin pathway and infectious diseases, especially among neonates, the recent findings of the involvement of mannan-binding lectin and ficolins in auto-immune disorders, and novel therapeutic avenues. The involvement of the lectin pathway in ischemia-reperfusion injuries and transplantations is discussed elsewhere in this issue. SUMMARY The emerging picture of the lectin pathway is that it may play a role in the case of concomitant impairments of cellular and adaptive immunity, as seen in the case of premature infants, neonates, neutropenic cancer patients and the like. Considering the near-exponential increase in interest for the lectin pathway and its intricacies in recent years, the future of the field seems promising.
Collapse
|
9
|
Cai Y, Zhang W, Xiong S. Mannose-binding lectin blunts macrophage polarization and ameliorates lupus nephritis. PLoS One 2013; 8:e62465. [PMID: 23626823 PMCID: PMC3633861 DOI: 10.1371/journal.pone.0062465] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022] Open
Abstract
Background Deficiency in clearance of self nuclear antigens, including DNA, is the hallmark of systemic lupus erythematosus (SLE), a chronic autoimmnue disease characterized by the production of various autoantibodies, immune complex deposition and severe organ damage. Our previous studies revealed that administration of syngeneic BALB/c mice with activated lymphocyte-derived DNA (ALD-DNA) could induce SLE disease. Mannose-binding lectin (MBL), a secreted pattern recognition receptor with binding activity to DNA, has been proved to be a modulator of inflammation, but whether MBL takes responsibility for DNA clearance, modulates the DNA-mediated immune responses, and is involved in the development of DNA-induced SLE disease remain poorly understood. Methodology/Principal Findings The levels of serum MBL significantly decreased in lupus mice induced by ALD-DNA and were negatively correlated with SLE disease. MBL blunted macrophage M2b polarization by inhibiting the MAPK and NF-κB signaling while enhancing the activation of CREB. Furthermore, MBL suppressed the ability of ALD-DNA–stimulated macrophages to polarize T cells toward Th1 cells and Th17 cells. Importantly, MBL supplement in vivo could ameliorate lupus nephritis. Conclusion/Significance These results suggest MBL supplement could alleviate SLE disease and might imply a potential therapeutic strategy for DNA-induced SLE, which would further our understanding of the protective role of MBL in SLE disease.
Collapse
Affiliation(s)
- Yanxing Cai
- Department of Immunology and Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Weijuan Zhang
- Department of Immunology and Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Sidong Xiong
- Department of Immunology and Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
10
|
Kovacs M, Papp M, Lakatos PL, Jacobsen S, Nemes E, Polgar M, Solyom E, Bodi P, Horvath A, Molnar K, Szabo D, Cseh A, Muller KE, Dezsofi A, Arato A, Veres G. Low mannose-binding lectin (MBL) is associated with paediatric inflammatory bowel diseases and ileal involvement in patients with Crohn disease. J Crohns Colitis 2013; 7:134-141. [PMID: 22504031 DOI: 10.1016/j.crohns.2012.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Mannose-binding lectin (MBL) is a pattern-recognition molecule of the innate immune system and may be involved in the pathogenesis of inflammatory bowel disease (IBD). Our aim was to assess the prevalence of MBL deficiency in a cohort of patients with paediatric-onset IBD and study whether it is associated with the clinical manifestations, serum antibody formation, or genetic factors. METHODS This prospective study included 159 paediatric patients (mean age: 14.0 years) with IBD [107 patients with Crohn disease (CD) and 52 patients with ulcerative colitis (UC)]. Furthermore, 95 controls were investigated. Serum samples were determined for MBL by enzyme-linked immunosorbent assay (ELISA) and for serologic markers [autoantibodies against Saccharomyces cerevisiae (ASCA) and perinuclear components of neutrophils (pANCA)] by indirect immunofluorescent assay. NOD2/CARD15 variants were tested by polymerase chain reaction/restriction fragment length polymorphism. RESULTS The MBL serum concentration was significantly lower in IBD patients(both with CD and UC) compared to controls (IBD, p=0.007, CD, p=0.04, UC p=0.004). Prevalence of low MBL level (<500 ng/mL) was significantly higher in both CD and UC groups compared to controls (p=0.002 and p=0.006). Furthermore, low MBL level was associated with isolated ileal involvement (p=0.01) and MBL deficiency (<100 ng/mL) with male gender (p=0.004) in patients with CD. We failed to confirm any correlation between MBL deficiency and serum autoantibodies or NOD2/CARD15 variants. CONCLUSIONS Our results suggest that low MBL associated with paediatric-onset IBD and ileal CD may be considered an additional marker of the IBD pathogenesis.
Collapse
Affiliation(s)
- Marta Kovacs
- Department of Paediatrics, Petz Aladár County and Teaching Hospital, Győr, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Structure and function of collectin liver 1 (CL-L1) and collectin 11 (CL-11, CL-K1). Immunobiology 2012; 217:851-63. [DOI: 10.1016/j.imbio.2011.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 01/25/2023]
|
12
|
Hirano M, Ma BY, Kawasaki N, Oka S, Kawasaki T. Role of interaction of mannan-binding protein with meprins at the initial step of complement activation in ischemia/reperfusion injury to mouse kidney. Glycobiology 2011; 22:84-95. [PMID: 21835783 DOI: 10.1093/glycob/cwr107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemia/reperfusion (I/R) is an important cause of acute renal failure. Recent studies have shown that the complement system mediated by the mannan-binding protein (MBP), which is a C-type serum lectin recognizing mannose, fucose and N-acetylglucosamine residues, plays a critical role in the pathogenesis of ischemic acute renal failure. MBP causes complement activation through the MBP lectin pathway and a resulting complement component, C3b, is accumulated on the brush borders of kidney proximal tubules in a renal I/R-operated mouse kidney. However, the initial step of the complement activation has not been studied extensively. We previously identified both meprins α and β, highly glycosylated zinc metalloproteases, localized on kidney proximal tubules as endogenous MBP ligands. In the present study, we demonstrated that serum-type MBP (S-MBP) and C3b were co-localized with meprins on both the cortex and the medulla in the renal I/R-operated mouse kidney. S-MBP was indicated to interact with meprins in vivo in the I/R-operated mouse kidney and was shown to initiate the complement activation through the interaction with meprins in vitro. Taken together, the present study strongly suggested that the binding of S-MBP to meprins triggers the complement activation through the lectin pathway and may cause the acute renal failure due to I/R on kidney transplantation and hemorrhagic shock.
Collapse
Affiliation(s)
- Makoto Hirano
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
13
|
Hansen S, Selman L, Palaniyar N, Ziegler K, Brandt J, Kliem A, Jonasson M, Skjoedt MO, Nielsen O, Hartshorn K, Jørgensen TJD, Skjødt K, Holmskov U. Collectin 11 (CL-11, CL-K1) is a MASP-1/3-associated plasma collectin with microbial-binding activity. THE JOURNAL OF IMMUNOLOGY 2010; 185:6096-104. [PMID: 20956340 DOI: 10.4049/jimmunol.1002185] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collectins play important roles in the innate immune defense against microorganisms. Recently, a new collectin, collectin 11 (CL-11 or CL-K1), was identified via database searches. In present work, we characterize the structural and functional properties of CL-11. Under nonreducing conditions, in gel permeation chromatography recombinant CL-11 forms disulfide-linked oligomers of 100 and 200 kDa. A mAb-based ELISA estimates the concentration of CL-11 in plasma to be 2.1 μg/ml, and the presence of CL-11 in plasma was further verified by Western blotting and mass spectrometry. Mannan-binding lectin-associated serine protease 1 (MASP-1) copurified with CL-11 and the interaction in plasma with MASP-1 and/or MASP-3 was further demonstrated using ELISA. We identified the adrenal glands, the kidneys, and the liver as primary sites of expression. CL-11 lectin activity was demonstrated by ELISA and showed that CL-11 has preference for l-fucose and d-mannose. We finally show that CL-11 binds to intact bacteria, fungi, and viruses and that CL-11 decreases influenza A virus infectivity and forms complexes with DNA. On the basis of the significant concentration of CL-11 in circulation and CL-11's interaction with various microorganisms and MASP-1 and/or MASP-3, it is conceivable that CL-11 plays a role in activation of the complement system and in the defense against invading microorganisms.
Collapse
Affiliation(s)
- Soren Hansen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Poon IKH, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2009; 17:381-97. [PMID: 20019744 DOI: 10.1038/cdd.2009.195] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phagocytosis serves as one of the key processes involved in development, maintenance of tissue homeostasis, as well as in eliminating pathogens from an organism. Under normal physiological conditions, dying cells (e.g., apoptotic and necrotic cells) and pathogens (e.g., bacteria and fungi) are rapidly detected and removed by professional phagocytes such as macrophages and dendritic cells (DCs). In most cases, specific receptors and opsonins are used by phagocytes to recognize and bind their target cells, which can trigger the intracellular signalling events required for phagocytosis. Depending on the type of target cell, phagocytes may also release both immunomodulatory molecules and growth factors to orchestrate a subsequent immune response and wound healing process. In recent years, evidence is growing that opsonins and receptors involved in the removal of pathogens can also aid the disposal of dying cells at all stages of cell death, in particular plasma membrane-damaged cells such as late apoptotic and necrotic cells. This review provides an overview of the molecular mechanisms and the immunological outcomes of late apoptotic/necrotic cell removal and highlights the striking similarities between late apoptotic/necrotic cell and pathogen clearance.
Collapse
Affiliation(s)
- I K H Poon
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australia
| | | | | |
Collapse
|