1
|
Ganeshan H, Huang J, Belmonte M, Belmonte A, Inoue S, Velasco R, Maiolatesi S, Limbach K, Patterson N, Sklar MJ, Soisson L, Epstein JE, Edgel KA, Peters B, Hollingdale MR, Villasante E, Duplessis CA, Sedegah M. Human responses to the DNA prime/chimpanzee adenovirus (ChAd63) boost vaccine identify CSP, AMA1 and TRAP MHC Class I-restricted epitopes. PLoS One 2025; 20:e0318098. [PMID: 39946433 PMCID: PMC11825025 DOI: 10.1371/journal.pone.0318098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/17/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND A three-antigen DNA-prime/chimpanzee adenovirus 63 (ChAd63) boost vaccine containing pre-erythrocytic Plasmodium falciparum (Pf) circumsporozoite protein (CSP), Pf apical membrane antigen-1 (AMA1) and malaria multiple epitopes (ME) fused to Pf thrombospondin-related adhesion protein (ME-TRAP) elicited higher vaccine efficacy (VE) in an open label, randomized Phase 1 trial against controlled human malaria infection (CHMI) than the two-antigen vaccine DNA/Human Adenovirus 5 (HuAd5) containing CSP and AMA1. The objective of this follow-up study was to determine whether responses to CSP, AMA1 or TRAP MHC Class I-restricted epitopes were associated with VE. METHODOLOGY Protected (n = 6) and non-protected participants (n = 26) were screened in FluoroSpot interferon gamma (IFN-γ) and Granzyme B (GzB) assays using antigen-specific 15mer peptide subpools spanning CSP (n = 9 subpools), AMA1 (n = 12 subpools), and TRAP (n = 11 subpools). Individual antigen-specific 15mers in the subpools with strong responses were then deconvoluted, evaluated for activities, and MHC Class I-restricted epitopes within the active 15mers were predicted using NetMHCpan algorithms. The predicted epitopes were synthesized and evaluated in the FluoroSpot IFN-γ and GzB assays. RESULTS Protected and some non-protected participants had similar responses to individual antigen-specific peptide subpools, which did not distinguish only protected participants. However, deconvoluted antigen-specific positive subpools with high magnitudes of responses revealed individual 15mer peptides containing specific and/or predicted MHC Class I (HLA) epitopes. Responses to epitopes were either IFN-γ-only, IFN-γ and GzB, or GzB-only. Due to limitation of cells, most of the analysis concentrated on the identification of protection associated AMA1 epitopes, since most of the predominant pool specific responses were generated against AMA1 15mer subpools. Furthermore, we previously identified protection associated HLA class I-restricted epitopes in a previous gene-based vaccine trial. Seven predicted minimal epitopes in AMA1 were synthesized and upon testing, five recalled responses from protected participants confirming their possible contribution and association with protection, and two recalled responses from non-protected participants. Two protection-associated epitopes were promiscuous and may have also contributed to protection by recognition of different HLA alleles. In addition, strongly positive antigen-specific 15mers identified within active antigen-specific subpools contained 39 predicted but not tested epitopes were identified in CSP, AMA1 and TRAP. Finally, some non-protected individuals recognized HLA-matched protection-associated minimal epitopes and we discuss possible reasons. Other factors such as HLA allele fine specificity or interaction between other HLA alleles in same individual may also influence protective efficacy. CONCLUSIONS This integrated approach using immunoassays and bioinformatics identified and confirmed AMA1-MHC Class I-restricted epitopes and a list of predicted additional epitopes which could be evaluated in future studies to assess possible association with protection against CHMI in the Phase 1 trial participants. The results suggest that identification of protection-associated epitopes within malaria antigens is feasible and can help design potent next generation multi-antigen, multi-epitope malaria vaccines for a genetically diverse population and to develop robust assays to measure protective cellular immunity against pre-erythrocytic stages of malaria. This approach can be used to develop vaccines for other novel emerging infectious disease pathogens.
Collapse
Affiliation(s)
- Harini Ganeshan
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Jun Huang
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Maria Belmonte
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Arnel Belmonte
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Falls Church, Virginia, United States of America
| | - Sandra Inoue
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Falls Church, Virginia, United States of America
| | - Rachel Velasco
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- General Dynamics Information Technology, Falls Church, Virginia, United States of America
| | - Santina Maiolatesi
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Keith Limbach
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Noelle Patterson
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Marvin J. Sklar
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
| | - Lorraine Soisson
- United States Agency for International Development (USAID), Washington, DC, United States of America
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kimberly A. Edgel
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
| | - Bjoern Peters
- La Jolla Institute of Allergy and Immunology, La Jolla, California, United States of America
| | - Michael R. Hollingdale
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Eileen Villasante
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
| | | | - Martha Sedegah
- Naval Medical Research Command, Silver Spring, Maryland, United States of America
| |
Collapse
|
2
|
A three-antigen Plasmodium falciparum DNA prime-Adenovirus boost malaria vaccine regimen is superior to a two-antigen regimen and protects against controlled human malaria infection in healthy malaria-naïve adults. PLoS One 2021; 16:e0256980. [PMID: 34495988 PMCID: PMC8425539 DOI: 10.1371/journal.pone.0256980] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1 (PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63), and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-erythrocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-related adhesive protein (TRAP)] to potentially enhance protection. Methodology This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to receive three monthly CA or CAT DNA priming immunizations, followed by corresponding ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12 infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was assessed by determining the differences in time to parasitemia as detected by thick blood smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk ratio of each treatment group and subtracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. Results In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63 boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia (mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasitemia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection. Conclusions This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective efficacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen (CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associated with increased frequencies of systemic AEs compared to the CA vaccine and, historically, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they were transient and associated with increased vector dosing.
Collapse
|
3
|
Rojas JM, Sevilla N, Martín V. A New Look at Vaccine Strategies Against PPRV Focused on Adenoviral Candidates. Front Vet Sci 2021; 8:729879. [PMID: 34568477 PMCID: PMC8455998 DOI: 10.3389/fvets.2021.729879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a virus that mainly infects goats and sheep causing significant economic loss in Africa and Asia, but also posing a serious threat to Europe, as recent outbreaks in Georgia (2016) and Bulgaria (2018) have been reported. In order to carry out the eradication of PPRV, an objective set for 2030 by the Office International des Epizooties (OIE) and the Food and Agriculture Organization of the United Nations (FAO), close collaboration between governments, pharmaceutical companies, farmers and researchers, among others, is needed. Today, more than ever, as seen in the response to the SARS-CoV2 pandemic that we are currently experiencing, these goals are feasible. We summarize in this review the current vaccination approaches against PPRV in the field, discussing their advantages and shortfalls, as well as the development and generation of new vaccination strategies, focusing on the potential use of adenovirus as vaccine platform against PPRV and more broadly against other ruminant pathogens.
Collapse
Affiliation(s)
| | | | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
4
|
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan 49341‐74515 Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| | - Zahra Nazari
- Department of Biology School of Basic Sciences Golestan University Gorgan 49361‐79142 Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| |
Collapse
|
5
|
Fukuda M, Nakamura J, Ito S, Kawazoe K, Miyanaga Y, Teshigawara T, Okuda K, Mizuki N, Shimada M. Vaccination inhibits the human adenoviral transduction in a mouse keratoconjunctivitis model. Vaccine 2021; 39:3498-3508. [PMID: 34016474 DOI: 10.1016/j.vaccine.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022]
Abstract
Adenovirus infections are a major cause of epidemic keratoconjunctivitis (EKC), which can lead to corneal subepithelial infiltrates and multifocal corneal opacity. In the current study, we investigated the use of an E1/E3-deleted adenovirus serotype 5 (Ad5) vector as a vaccine administered intramuscularly (IM) or intranasally (IN) against subsequent challenges with a luciferase-expressing Ad5 (Ad5-Luci) vector via eyedrop. We evaluated the adaptive immune response to Ad5 vector vaccination and confirmed a robust polyfunctional CD8 T cell response in splenic cells. Neutralizing Ad5 antibodies were also measured in the sera of vaccinated mice as well as Ad5 antibody in the eye wash solutions. Upon challenge with Ad5-Luci vector 8 weeks post the primary immunization, transduction was significantly reduced by > 70% in the vaccinated mice, which was slightly better in IM- vs. that in IN-vaccinated animals. Resistance to subsequent challenge was observed 10 months post primary IM vaccination, with sustained reduction up to 60% in the Ad5-Luci vector transduction. Passive immunization of naive mice with antisera from IM to vaccinated mice subsequently challenged with the Ad5-Luci vector resulted in approximately 40% loss in transduction efficiency. Furthermore, the mice that received IM immunization with or without CD8 T cell depletion showed > 40% and 70% reductions, respectively, in Ad8 genomic copies after Ad8 topical challenge. We conclude that Ad-vector vaccination successfully induced an adaptive immune response that prevented subsequent Ad transduction in the cornea and conjunctiva-associated tissues in a mouse model of adenovirus keratoconjunctivitis, and that both cellular and humoral immunity play an important role in preventing Ad transduction.
Collapse
Affiliation(s)
- Michiko Fukuda
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Jutaro Nakamura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Saori Ito
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | | | | | - Takeshi Teshigawara
- Department of Ophthalmology, Yokosuka Chuoh Eye Clinic, Yokosuka 238-0008, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
6
|
Snook AE, Baybutt TR, Xiang B, Abraham TS, Flickinger JC, Hyslop T, Zhan T, Kraft WK, Sato T, Waldman SA. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J Immunother Cancer 2019; 7:104. [PMID: 31010434 PMCID: PMC6477737 DOI: 10.1186/s40425-019-0576-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The colorectal cancer antigen GUCY2C exhibits unique split tolerance, evoking antigen-specific CD8+, but not CD4+, T-cell responses that deliver anti-tumor immunity without autoimmunity in mice. Here, the cancer vaccine Ad5-GUCY2C-PADRE was evaluated in a first-in-man phase I clinical study of patients with early-stage colorectal cancer to assess its safety and immunological efficacy. METHODS Ten patients with surgically-resected stage I or stage II (pN0) colon cancer received a single intramuscular injection of 1011 viral particles (vp) of Ad5-GUCY2C-PADRE. Safety assessment and immunomonitoring were carried out for 6 months following immunization. This trial employed continual monitoring of both efficacy and toxicity of subjects as joint primary outcomes. RESULTS All patients receiving Ad5-GUCY2C-PADRE completed the study and none developed adverse events greater than grade 1. Antibody responses to GUCY2C were detected in 10% of patients, while 40% exhibited GUCY2C-specific T-cell responses. GUCY2C-specific responses were exclusively CD8+ cytotoxic T cells, mimicking pre-clinical studies in mice in which GUCY2C-specific CD4+ T cells are eliminated by self-tolerance, while CD8+ T cells escape tolerance and mediate antitumor immunity. Moreover, pre-existing neutralizing antibodies (NAbs) to the Ad5 vector were associated with poor vaccine-induced responses, suggesting that Ad5 NAbs oppose GUCY2C immune responses to the vaccine in patients and supported by mouse studies. CONCLUSIONS Split tolerance to GUCY2C in cancer patients can be exploited to safely generate antigen-specific cytotoxic CD8+, but not autoimmune CD4+, T cells by Ad5-GUCY2C-PADRE in the absence of pre-existing NAbs to the viral vector. TRIAL REGISTRATION This trial (NCT01972737) was registered at ClinicalTrials.gov on October 30th, 2013. https://clinicaltrials.gov/ct2/show/NCT01972737.
Collapse
Affiliation(s)
- Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA.
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Bo Xiang
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Tingting Zhan
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Walter K Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| |
Collapse
|
7
|
Sharpe HR, Bowyer G, Brackenridge S, Lambe T. HLA-E: exploiting pathogen-host interactions for vaccine development. Clin Exp Immunol 2019; 196:167-177. [PMID: 30968409 PMCID: PMC6468186 DOI: 10.1111/cei.13292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses, when used as vectors for vaccine antigen delivery, can induce strong cellular and humoral responses against target epitopes. Recent work by Hansen et al. describes the use of a cytomegalovirus‐vectored vaccine, which is able to generate a stable effector‐memory T cell population at the sites of vaccination in rhesus macaques. This vaccine, targeted towards multiple epitopes in simian immunodeficiency virus (SIV), did not induce classical CD8+ T cells. However, non‐canonical CD8+ T cell induction occurred via major histocompatibility complex (MHC) class II and MHC‐E. The MHC‐E‐restricted T cells could recognize broad epitopes across the SIV peptides, and conferred protection against viral challenge to 55% of vaccinated macaques. The human homologue, human leucocyte antigen (HLA)‐E, is now being targeted as a new avenue for vaccine development. In humans, HLA‐E is an unusually oligomorphic class Ib MHC molecule, in comparison to highly polymorphic MHC class Ia. Whereas MHC class Ia presents peptides derived from pathogens to T cells, HLA‐E classically binds defined leader peptides from class Ia MHC peptides and down‐regulates NK cell cytolytic activity when presented on the cell surface. HLA‐E can also restrict non‐canonical CD8+ T cells during natural infection with various pathogens, although the extent to which they are involved in pathogen control is mostly unknown. In this review, an overview is provided of HLA‐E and its ability to interact with NK cells and non‐canonical T cells. Also discussed are the unforeseen beneficial effects of vaccination, including trained immunity of NK cells from bacille Calmette–Guérin (BCG) vaccination, and the broad restriction of non‐canonical CD8+ T cells by cytomegalovirus (CMV)‐vectored vaccines in pre‐clinical trials.
Collapse
Affiliation(s)
- H R Sharpe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - G Bowyer
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - S Brackenridge
- Nuffield Department of Medicine, NDM Research Building, University of Oxford, Oxford, UK
| | - T Lambe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Zhao H, Xu C, Luo X, Wei F, Wang N, Shi H, Ren X. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients. Front Immunol 2018; 9:335. [PMID: 29563911 PMCID: PMC5845880 DOI: 10.3389/fimmu.2018.00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/06/2018] [Indexed: 01/16/2023] Open
Abstract
Since the preclinical results about chimpanzee adenovirus serotype-68 (AdC68)-based vaccine showed an encouraging results, it reminded us that AdC68 may be a suitable cancer vaccine vector. Previous study indicated that the seroprevalence of neutralizing antibodies (NAbs) against adenovirus was different between cancer patients and healthy volunteers. Knowledge regarding the prevalence rates of AdC68 NAbs for cancer patients is lacking. Therefore, assessing the preexistence of NAbs against AdC68 in cancer patients could provide useful insights for developing future AdC68-based cancer vaccines. In this study, 440 patients with different pathological types of tumors and 204 healthy adult volunteers were enrolled to evaluate the NAbs against AdC68 and human adenovirus serotype-5 (AdHu5). The seroprevalence of NAbs against AdC68 was much lower than that against AdHu5 in cancer subjects (43.64 vs. 67.05%, P < 0.01). The seroprevalence rates of NAbs to AdC68 in the cancer subjects were statistically higher than those detected in the healthy adult volunteers (43.64 vs. 23.53%, P = 0.000). The seroprevalence rates of AdC68 NAbs were much lower in lung, laryngeal, esophageal, and cervical cancer patients compared with oropharyngeal, colon, and rectal cancer patients. Furthermore, the seroprevalence rates of AdC68 NAbs were much lower in lung adenocarcinoma patients than in lung squamous cell carcinoma patients (35.00 vs. 70.00%, P < 0.05). No significant difference in the AdC68 NAbs among patients with different clinical stages of cancer was detected. The percentage of NAbs against AdC68 was significantly lower than that against AdHu5 (P < 0.05) in stage-I, -II, and -III cancer patients. No significant difference between the percentage of NAbs against AdC68 and AdHu5 in the subjects with stage-IV cancer was detected. The study also demonstrated the distribution of AdHu5 and AdC68 NAb titers for the positive samples. It showed that very low NAb titers against AdC68 with respect to AdHu5 in both healthy subjects and cancer subjects, especially in lung, laryngeal, esophageal, gastric, and cervical carcinomas. Also, the titer of NAbs against AdC68 was significantly lower than that against AdHu5 in the same clinical stage and age group (P < 0.05). Taken together, the present study showed that NAbs against AdC68 is much lower than AdHu5, especially in lung adenocarcinoma, laryngeal cancer, esophageal cancer, and cervical cancer patients. These results provided strong support for candidating AdC68 as a suitable vector of cancer vaccines.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Can Xu
- Bioroc Pharmaceutical & Biotech Company, Tianjin, China.,Tianjin Genstar Vaccine Limited Liability Company, Tianjin, China
| | - Xiaoli Luo
- Bioroc Pharmaceutical & Biotech Company, Tianjin, China.,Tianjin Genstar Vaccine Limited Liability Company, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ning Wang
- Bioroc Pharmaceutical & Biotech Company, Tianjin, China.,Tianjin Genstar Vaccine Limited Liability Company, Tianjin, China
| | - Huiying Shi
- Bioroc Pharmaceutical & Biotech Company, Tianjin, China.,Tianjin Genstar Vaccine Limited Liability Company, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
9
|
Li Q, Liu Q, Huang W, Song A, Zhao C, Wu J, Wang Y. Neutralizing antibodies against adenovirus type 2 in normal and HIV-1-infected subjects: Implications for use of Ad2 vectors in vaccines. Hum Vaccin Immunother 2017; 13:1-8. [PMID: 28301274 DOI: 10.1080/21645515.2017.1281487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Pre-existing neutralizing antibodies (NAbs) directed against vaccine vectors have attracted considerable research attention. Therefore, our aim was to establish a high-throughput economical neutralization assay to investigate the epidemiology of adenovirus type 2 (Ad2)-specific immunity in China and developed countries, including in a Chinese Human immunodeficiency virus (HIV)-1-infected population, and to guide the application of Ad2-vectored vaccines. We established a FluoroSpot-based anti-Ad2-virus neutralization assay using a recombinant replication-deficient Ad2 that expresses enhanced green fluorescent protein and standardized the critical parameters, including the choice of cell line, cell concentration, viral infective dose, and incubation time. The sera of 561 healthy individuals from China and developed countries and from 230 HIV-1-infected Chinese individuals were screened with this assay for Nabs against Ad2. The prevalence of anti-Ad2 NAbs was high in both China (92.2%) and developed countries (86.9%). Of the Ad2-seropositive individuals, 64.6% in China and 77.4% in developed countries had high NAb titers (> 810). The frequency of anti-Ad2 NAbs was higher in Anhui (97.5%) than in Beijing (88.7%). Their prevalence differed significantly according to age in Beijing, but not in Anhui Province, but by sex in neither province. Ad2 seroprevalence was as high among HIV-1-infected individuals (88.7%) as among healthy individuals (92.2%) in China. In conclusion, a simple, intuitive, high-throughput, economical fluorescence-based neutralization assay was developed to determine anti-Ad2 NAbs titers. Ad2 exposure was high in both healthy and HIV-1-infected populations in China, so vectors based on Ad2 may be inappropriate for human vaccines.
Collapse
Affiliation(s)
- Qianqian Li
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Qiang Liu
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Weijing Huang
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Aijing Song
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Chenyan Zhao
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Jiajing Wu
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Youchun Wang
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
10
|
Quinn KM, Zak DE, Costa A, Yamamoto A, Kastenmuller K, Hill BJ, Lynn GM, Darrah PA, Lindsay RWB, Wang L, Cheng C, Nicosia A, Folgori A, Colloca S, Cortese R, Gostick E, Price DA, Gall JGD, Roederer M, Aderem A, Seder RA. Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling. J Clin Invest 2015; 125:1129-46. [PMID: 25642773 DOI: 10.1172/jci78280] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/23/2014] [Indexed: 12/13/2022] Open
Abstract
Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag). After rAd vaccination, we quantified Ag expression and performed expression profiling of innate immune response genes in the draining lymph node. Human-derived rAd5 and chimpanzee-derived chAd3 were the most potent rAds and induced high and persistent Ag expression with low innate gene activation, while less potent rAds induced less Ag expression and robustly induced innate immunity genes that were primarily associated with IFN signaling. Abrogation of type I IFN or stimulator of IFN genes (STING) signaling increased Ag expression and accelerated CD8 T cell response kinetics but did not alter memory responses or protection. These findings reveal that the magnitude of rAd-induced memory CD8 T cell immune responses correlates with Ag expression but is independent of IFN and STING and provide criteria for optimizing protective CD8 T cell immunity with rAd vaccines.
Collapse
|