1
|
Varricchi G, Poto R, Criscuolo G, Strisciuglio C, Nair P, Marone G. TL1A, a novel alarmin in airway, intestinal, and autoimmune disorders. J Allergy Clin Immunol 2025; 155:1420-1434. [PMID: 40010414 DOI: 10.1016/j.jaci.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
The term alarmin denotes a broad class of molecules rapidly released to alert the immune system through the engagement of specific receptors on immune cells. Three alarmin cytokines-thymic stromal lymphopoietin, IL-33, and IL-25-are released from epithelial and certain stromal cells. TNF-like cytokine 1A (TL1A) is a member of the TNF cytokine superfamily, first identified in human endothelial cells. TL1A is now considered a novel alarmin expressed by human and mouse bronchial and intestinal epithelial cells. TL1A exerts its biological activities by binding to a trimeric receptor DR3 (death receptor 3), expressed on a wide spectrum of immune and structural cells, including lung fibroblasts, endothelial cells, and bronchial epithelial cells. TL1A has been implicated in experimental and human inflammatory bowel diseases as well as in airway inflammation and remodeling in severe asthma. A monoclonal antibody anti-TL1A (tulisokibart) is effective in inducing clinical remission in ulcerative colitis patients. Increasing evidence suggests that TL1A is also involved in certain autoimmune disorders, such as rheumatoid arthritis and psoriasis. These emerging findings broaden the role of TL1A in various human inflammatory conditions. Several clinical trials are currently evaluating the safety and efficacy of monoclonal antibodies targeting TL1A in asthma or inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; World Allergy Organization (WAO) Center of Excellence (CoE), Naples, Italy; Istituto Endotipi in Oncologia, Metabolismo e Immunologia "G. Salvatore" (IEOMI), National Research Council (CNR), Naples, Italy.
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy; World Allergy Organization (WAO) Center of Excellence (CoE), Naples, Italy; Istituti Clinici Scientifici Maugeri-IRCCS Scientific Institute of Telese Terme, Benevento, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; World Allergy Organization (WAO) Center of Excellence (CoE), Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania "L. Vanvitelli," Naples, Italy
| | - Parameswaran Nair
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Research Institute of St Joe's Hamilton, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; World Allergy Organization (WAO) Center of Excellence (CoE), Naples, Italy
| |
Collapse
|
2
|
Bamias G, Menghini P, Pizarro TT, Cominelli F. Targeting TL1A and DR3: the new frontier of anti-cytokine therapy in IBD. Gut 2025; 74:652-668. [PMID: 39266053 PMCID: PMC11885054 DOI: 10.1136/gutjnl-2024-332504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain receptor 3 (DR3), are members of the TNF and TNFR superfamilies, respectively, with recognised roles in regulating innate and adaptive immune responses; additional existence of a decoy receptor, DcR3, indicates a tightly regulated cytokine system. The significance of TL1A:DR3 signalling in the pathogenesis of inflammatory bowel disease (IBD) is supported by several converging lines of evidence. Herein, we aim to provide a comprehensive understanding of what is currently known regarding the TL1A/DR3 system in the context of IBD. TL1A and DR3 are expressed by cellular subsets with important roles for the initiation and maintenance of intestinal inflammation, serving as potent universal costimulators of effector immune responses, indicating their participation in the pathogenesis of IBD. Recent evidence also supports a homoeostatic role for TL1A:DR3 via regulation of Tregs and innate lymphoid cells. TL1A and DR3 are also expressed by stromal cells and may contribute to inflammation-induced or inflammation-independent intestinal fibrogenesis. Finally, discovery of genetic polymorphisms with functional consequences may allow for patient stratification, including differential responses to TL1A-targeted therapeutics. In conclusion, TL1A:DR3 signalling plays a central and multifaceted role in the immunological pathways that underlie intestinal inflammation, such as that observed in IBD. Such evidence provides the foundation for developing pharmaceutical approaches targeting this ligand-receptor pair in IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Tan L, Lv W, Chen Y, Dong J, Mao D, Wei R. Modified Sanliangsan Improved Sjogren's Syndrome Complicated with Interstitial Lung Disease by Suppressing Serum MUC1 Levels. ACS OMEGA 2024; 9:30392-30403. [PMID: 39035955 PMCID: PMC11256294 DOI: 10.1021/acsomega.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES To clarify if the mechanism of Sanliangsan in improving Sjogren's syndrome complicated with interstitial lung disease (SS-ILD) involves MUC1 suppression, which is involved in SS-ILD pathogenesis. METHODS Fifty-six patients were randomly divided into two groups receiving Sanliangsan prescription (SP) therapy and conventional therapy (western medicine). In-depth transcriptome profiles from a large database of SS-ILD patients were collected and analyzed to identify candidate genes involved in SS pathogenesis. Clinical symptom scores, metabolic compositions, lung HRCT (high-resolution computed tomography) scores, and serum MUC1 levels were compared between the two groups before and after treatment. Network pharmacology, molecular docking, and ITC assays were performed to identify bioactive compounds of SP in improving SS. Metabolome analyzed the metabolic composition of serum associated with SS-ILD before and after SP treatment. RESULTS Transcriptome results identified the involvement of abnormal expression of genes relevant to the immune system, inflammatory responses, and signaling pathways. Numerous genes, including CD58, CD86, CTLA4, CXCL8, STAT1, and especially MUC1, were involved in SS pathogenesis and could be used to diagnose SS-ILD early. Both treatments improved the lung HRCT scores and clinical symptoms of SS-ILD. The SP therapy improved SS-ILD more effectively than conventional therapy. Moreover, Sanliangsan prescription therapy reduced serum MUC1 levels and restored the abnormal metabolisms, improving the abnormal inflammatory and immune responses of patients. Eugenol directly interacted with MUC1, suppressed related genes, and was the bioactive compound of SP. SP could partially restore the abnormal metabolisms associated with SS-ILD pathogenesis. CONCLUSION Based on conventional Western medicine treatment, modified Sanliangsan can significantly improve the clinical symptoms, signs, and lung function of patients; the mechanism may be due to eugenol and related to MUC1 regulation.
Collapse
Affiliation(s)
- Lihui Tan
- Department
of Rheumatology and Immunology, The People’s
Hospital of Suzhou New District, Suzhou 215000, China
| | - Wang Lv
- Department
of Traditional Chinese Medicine, The Cangzhou
central Hospital, Cangzhou 061000, China
| | - Yuqi Chen
- Department
of Rheumatology and Immunology, The People’s
Hospital of Suzhou New District, Suzhou 215000, China
| | - Jianjian Dong
- Department
of Rheumatology and Immunology, The People’s
Hospital of Suzhou New District, Suzhou 215000, China
| | - Dun Mao
- Department
of Orthopaedic, Community Health Service
Center of Suzhou Science and Technology City, Suzhou 215000, China
| | - Rong Wei
- Department
of Rheumatology and Immunology, The People’s
Hospital of Suzhou New District, Suzhou 215000, China
| |
Collapse
|
4
|
Zhan RR, Wang D, Zhang XL. Progress in research of TNF-like cytokine 1A as a therapeutic target for inflammatory bowel disease. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:397-404. [DOI: 10.11569/wcjd.v32.i6.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
|
5
|
Shimodaira Y, More SK, Hamade H, Blackwood AY, Abraham JP, Thomas LS, Miller JH, Stamps DT, Castanon SL, Jacob N, Ha CWY, Devkota S, Shih DQ, Targan SR, Michelsen KS. DR3 Regulates Intestinal Epithelial Homeostasis and Regeneration After Intestinal Barrier Injury. Cell Mol Gastroenterol Hepatol 2023; 16:83-105. [PMID: 37011811 PMCID: PMC10213104 DOI: 10.1016/j.jcmgh.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND & AIMS Tumor necrosis factor (TNF) superfamily member tumor necrosis factor-like protein 1A (TL1A) has been associated with the susceptibility and severity of inflammatory bowel diseases. However, the function of the tumor necrosis factor-like protein 1A and its receptor death receptor 3 (DR3) in the development of intestinal inflammation is incompletely understood. We investigated the role of DR3 expressed by intestinal epithelial cells (IECs) during intestinal homeostasis, tissue injury, and regeneration. METHODS Clinical phenotype and histologic inflammation were assessed in C57BL/6 (wild-type), Tl1a-/- and Dr3-/- mice in dextran sulfate sodium (DSS)-induced colitis. We generated mice with an IEC-specific deletion of DR3 (Dr3ΔIEC) and assessed intestinal inflammation and epithelial barrier repair. In vivo intestinal permeability was assessed by fluorescein isothiocyanate dextran uptake. Proliferation of IECs was analyzed by bromodeoxyuridine incorporation. Expression of DR3 messenger RNA was assessed by fluorescent in situ hybridization. Small intestinal organoids were used to determine ex vivo regenerative potential. RESULTS Dr3-/- mice developed more severe colonic inflammation than wild-type mice in DSS-induced colitis with significantly impaired IEC regeneration. Homeostatic proliferation of IECs was increased in Dr3-/- mice, but blunted during regeneration. Cellular localization and expression of the tight junction proteins Claudin-1 and zonula occludens-1 were altered, leading to increased homeostatic intestinal permeability. Dr3ΔIEC mice recapitulated the phenotype observed in Dr3-/- mice with increased intestinal permeability and IEC proliferation under homeostatic conditions and impaired tissue repair and increased bacterial translocation during DSS-induced colitis. Impaired regenerative potential and altered zonula occludens-1 localization also were observed in Dr3ΔIEC enteroids. CONCLUSIONS Our findings establish a novel function of DR3 in IEC homeostasis and postinjury regeneration independent of its established role in innate lymphoid cells and T-helper cells.
Collapse
Affiliation(s)
- Yosuke Shimodaira
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shyam K More
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Anna Y Blackwood
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jay P Abraham
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lisa S Thomas
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jordan H Miller
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dalton T Stamps
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sofi L Castanon
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Noam Jacob
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Connie W Y Ha
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - David Q Shih
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
6
|
Yang J, Su J, Chai K, Liu H. The role of Th9 CD4 + T cells and IL-9 during primary Sjogren's syndrome. J Clin Lab Anal 2022; 36:e24646. [PMID: 35944186 PMCID: PMC9459269 DOI: 10.1002/jcla.24646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE The objective of this study is to investigate the expression levels of Th9 CD4+ T cells and IL-9 secretion in peripheral blood mononuclear cells of patients with primary Sjogren's syndrome. Further, this study aimed to investigate the role of Th9 cells in the occurrence and development of pSS. METHODS A total of 20 pSS patients and 20 healthy people, matched with age and gender, were selected as the experimental and control group, respectively. Flow cytometry and ELISA were used to detect the expression of Th9 cytokines in peripheral blood mononuclear cells and IL-9 in serum, respectively. These factors were then correlated to other clinical indicators. RESULTS The levels of Th9 CD4+ T cells and IL-9 of pSS patients were significantly higher than those of the control group. Th9 CD4+ T cells and IL-9 levels in peripheral blood of pSS patients were negatively correlated with salivary flow rate, while IL-9 level was positively correlated with globulin. The transcription levels of IL-9 and immune-related genes including IL-4, IL-7, IL-17, SMAD3, STAT5 and JAK3 were dramatically increased in serum of pSS patients. CONCLUSION The expression levels of Th9 in peripheral blood and serum IL-9 of patients with pSS were significantly increased, which were correlated with clinical immunological indexes. Together, these data suggest that Th9 cells and IL-9 may be involved in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Jie Yang
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Juan Su
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Kexia Chai
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Huihui Liu
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
7
|
Zhang S, Mao C, Li X, Miao W, Teng J. Advances in Potential Cerebrospinal Fluid Biomarkers for Autoimmune Encephalitis: A Review. Front Neurol 2022; 13:746653. [PMID: 35937071 PMCID: PMC9355282 DOI: 10.3389/fneur.2022.746653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Autoimmune encephalitis (AE) is a severe inflammatory disease of the brain. Patients with AE demonstrate amnesia, seizures, and psychosis. Recent studies have identified numerous associated autoantibodies (e.g., against NMDA receptors (NMDARs), LGI1, etc.) involved in the pathogenesis of AE, and the levels of diagnosis and treatment are thus improved dramatically. However, there are drawbacks of clinical diagnosis and treatment based solely on antibody levels, and thus the application of additional biomarkers is urgently needed. Considering the important role of immune mechanisms in AE development, we summarize the relevant research progress in identifying cerebrospinal fluid (CSF) biomarkers with a focus on cytokines/chemokines, demyelination, and nerve damage.
Collapse
|
8
|
Xu WD, Li R, Huang AF. Role of TL1A in Inflammatory Autoimmune Diseases: A Comprehensive Review. Front Immunol 2022; 13:891328. [PMID: 35911746 PMCID: PMC9329929 DOI: 10.3389/fimmu.2022.891328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 01/10/2023] Open
Abstract
TL1A, also called TNFSF15, is a member of tumor necrosis factor family. It is expressed in different immune cell, such as monocyte, macrophage, dendritic cell, T cell and non-immune cell, for example, synovial fibroblast, endothelial cell. TL1A competitively binds to death receptor 3 or decoy receptor 3, providing stimulatory signal for downstream signaling pathways, and then regulates proliferation, activation, apoptosis of and cytokine, chemokine production in effector cells. Recent findings showed that TL1A was abnormally expressed in autoimmune diseases, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, primary biliary cirrhosis, systemic lupus erythematosus and ankylosing spondylitis. In vivo and in vitro studies further demonstrated that TL1A was involved in development and pathogenesis of these diseases. In this study, we comprehensively discussed the complex immunological function of TL1A and focused on recent findings of the pleiotropic activity conducted by TL1A in inflammatory autoimmune disease. Finish of the study will provide new ideas for developing therapeutic strategies for these diseases by targeting TL1A.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: An-Fang Huang,
| |
Collapse
|
9
|
Do-Thi VA, Lee JO, Lee H, Kim YS. Crosstalk between the Producers and Immune Targets of IL-9. Immune Netw 2020; 20:e45. [PMID: 33425430 PMCID: PMC7779872 DOI: 10.4110/in.2020.20.e45] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
IL-9 has been reported to play dual roles in the pathogenesis of autoimmune disorders and cancers. The collaboration of IL-9 with microenvironmental factors including the broader cytokine milieu and other cellular components may provide important keys to explain its conflicting effects in chronic conditions. In this review, we summarize recent findings on the cellular sources of, and immunological responders to IL-9, in order to interpret the role of IL-9 in the regulation of immune responses. This knowledge will provide new perspectives to improve clinical benefits and limit adverse effects of IL-9 when treating pathologic conditions.
Collapse
Affiliation(s)
- Van Anh Do-Thi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
10
|
Yang J, Yang X, Wang L, Li M. B cells control lupus autoimmunity by inhibiting Th17 and promoting Th22 cells. Cell Death Dis 2020; 11:164. [PMID: 32127533 PMCID: PMC7054432 DOI: 10.1038/s41419-020-2362-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 01/05/2023]
Abstract
B cells exert immunosuppressive effects and offer therapeutic potential for systemic lupus erythematosus (SLE), but the mechanism remains unclear. Here we analyzed the B cell regulation of Th17/Th22 cell differentiation in lupus and found that α-IgM- and α-CD40-activated B cells could inhibit Th17 and promote Th22 cell differentiation from naive T cells under Th17 cell culture conditions. B cell-induced Th22 cells demonstrated immunosuppressive effects and could decrease renal endothelial cell apoptosis in vitro. Moreover, activated B cell infusion relieved lupus injuries via IL-22 production in vivo. Mechanically, activated B cells affected Th17/Th22 cell differentiation by non-contact TNF-α secretion and mTOR activation. Finally, activated B cells could affect Th17/Th22 cell differentiation in human peripheral blood T cells. These data suggest that activated B cells might attenuate lupus autoimmunity by inhibiting Th17 but promoting Th22 cell differentiation, supporting B cell activation as a promising therapeutic for the treatment of lupus.
Collapse
Affiliation(s)
- Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, Basic Medical School, Fudan University, Shanghai, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Zhang X, Fisher R, Hou W, Shields D, Epperly MW, Wang H, Wei L, Leibowitz BJ, Yu J, Alexander LM, VAN Pijkeren JP, Watkins S, Wipf P, Greenberger JS. Second-generation Probiotics Producing IL-22 Increase Survival of Mice After Total Body Irradiation. In Vivo 2020; 34:39-50. [PMID: 31882461 PMCID: PMC6984118 DOI: 10.21873/invivo.11743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Intestinal damage induced by total body irradiation (TBI) reduces leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)-expressing stem cells, goblet, and Paneth cells, breaching the epithelial lining, and facilitating bacterial translocation, sepsis, and death. MATERIALS AND METHODS Survival was measured after TBI in animals that received wild-type or recombinant bacteria producing interleukin-22 (IL-22). Changes in survival due to microbially delivered IL-22 were measured. Lactobacillus reuteri producing IL-22, or Escherichia coli-IL-22 were compared to determine which delivery system is better. RESULTS C57BL/6 mice receiving IL-22 probiotics at 24 h after 9.25 Gy TBI, demonstrated green fluorescent protein-positive bacteria in the intestine, doubled the number of Lgr5+ intestinal stem cells, and increased 30-day survival. Bacteria were localized to the jejunum, ileum, and colon. CONCLUSION Second-generation probiotics appear to be valuable for mitigation of TBI, and radiation protection during therapeutic total abdominal irradiation.
Collapse
Affiliation(s)
- Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Liang Wei
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, U.S.A
| | | | - Simon Watkins
- Center for Imaging, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| |
Collapse
|
12
|
Sundrud MS, Hogan SP. What's old is new again: Batf transcription factors and Th9 cells. Mucosal Immunol 2019; 12:583-585. [PMID: 30833634 DOI: 10.1038/s41385-019-0155-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Mark S Sundrud
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, 33458, USA.
| | - Simon P Hogan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| |
Collapse
|
13
|
Tsuda M, Hamade H, Thomas LS, Salumbides BC, Potdar AA, Wong MH, Nunnelee JS, Stamps JT, Neutzsky-Wulff AV, Barrett RJ, Wang Y, Tang J, Funari VA, Targan SR, Michelsen KS. A role for BATF3 in T H9 differentiation and T-cell-driven mucosal pathologies. Mucosal Immunol 2019; 12:644-655. [PMID: 30617301 PMCID: PMC6462229 DOI: 10.1038/s41385-018-0122-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023]
Abstract
T helper 9 (TH9) cells are important for the development of inflammatory and allergic diseases. The TH9 transcriptional network converges signals from cytokines and antigen presentation but is incompletely understood. Here, we identified TL1A, a member of the TNF superfamily, as a strong inducer of mouse and human TH9 differentiation. Mechanistically, TL1A induced the expression of the transcription factors BATF and BATF3 and facilitated their binding to the Il9 promoter leading to enhanced secretion of IL-9. BATF- and BATF3-deficiencies impaired IL-9 secretion under TH9 and TH9-TL1A-polarizing conditions. In vivo, using a T-cell transfer model, we demonstrated that TL1A promoted IL-9-dependent, TH9 cell-induced intestinal and lung inflammation. Neutralizing IL-9 antibodies attenuated TL1A-driven mucosal inflammation. Batf3-/- TH9-TL1A cells induced reduced inflammation and cytokine expression in vivo compared to WT cells. Our results demonstrate that TL1A promotes TH9 cell differentiation and function and define a role for BATF3 in T-cell-driven mucosal inflammation.
Collapse
Affiliation(s)
- Masato Tsuda
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA,Current address: Food and Physiological Functions Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino Fujisawa-shi Kanagawa, 252-0880 Japan
| | - Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Lisa S. Thomas
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Brenda C. Salumbides
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Alka A. Potdar
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Michelle H. Wong
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Jordan S. Nunnelee
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Jasmine T. Stamps
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Anita Vibsig Neutzsky-Wulff
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Robert J. Barrett
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA,Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vincent A. Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA
| | - Kathrin S. Michelsen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Los Angeles, CA 90048, USA,To whom correspondence should be addressed: Kathrin S. Michelsen, Ph.D. F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Davis Research Building, RM 4066, 110 George Burns Road, Los Angeles, CA 90048, USA, Phone: (310) 423-0539 FAX: (310) 423-0224,
| |
Collapse
|
14
|
Valatas V, Kolios G, Bamias G. TL1A (TNFSF15) and DR3 (TNFRSF25): A Co-stimulatory System of Cytokines With Diverse Functions in Gut Mucosal Immunity. Front Immunol 2019; 10:583. [PMID: 30972074 PMCID: PMC6445966 DOI: 10.3389/fimmu.2019.00583] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
TL1A and its functional receptor DR3 are members of the TNF/TNFR superfamilies of proteins. Binding of APC-derived TL1A to lymphocytic DR3 provides co-stimulatory signals for activated lymphocytes. DR3 signaling affects the proliferative activity of and cytokine production by effector lymphocytes, but also critically influences the development and suppressive function of regulatory T-cells. DR3 was also found to be highly expressed by innate lymphoid cells (ILCS), which respond to stimulation by TL1A. Several recent studies with transgenic and knockout mice as well as neutralizing or agonistic antibodies for these two proteins, have clearly shown that TL1A/DR3 are important mediators of several chronic immunological disorders, including Inflammatory Bowel Disease (IBD). TL1A and DR3 are abundantly localized at inflamed intestinal areas of patients with IBD and mice with experimental ileitis or colitis and actively participate in the immunological pathways that underlie mucosal homeostasis and intestinal inflammation. DR3 signaling has demonstrated a dichotomous role in mucosal immunity. On the one hand, during acute mucosal injury it exerts protective functions by ameliorating the severity of acute inflammatory responses and facilitating tissue repair. On the other hand, it critically participates in the pro-inflammatory pathways that underlie chronic inflammatory responses, such as those that take place in IBD. These effects are mediated through modulation of the relative mucosal abundance and function of Th1, Th2, Th17, Th9, and Treg lymphocytes, but also of all types of ILCs. Recently, an important role was demonstrated for TL1A/DR3 as potential mediators of intestinal fibrosis that is associated with the presence of gut inflammation. These accumulating data have raised the possibility that TL1A/DR3 pathways may represent a valid therapeutic target for chronic immunological diseases. Nevertheless, applicability of such a therapeutic approach will greatly rely on the net result of TL1A/DR3 manipulation on the various cell populations that will be affected by this approach.
Collapse
Affiliation(s)
- Vassilis Valatas
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, Heraklion, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Giorgos Bamias
- GI-unit, National & Kapodistrian University of Athens, Third Department of Internal Medicine, Sotiria Hospital, Athens, Greece
| |
Collapse
|
15
|
Zeng C, Chen L, Chen B, Cai Y, Li P, Yan L, Zeng D. Th17 cells were recruited and accumulated in the cerebrospinal fluid and correlated with the poor prognosis of anti-NMDAR encephalitis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1266-1273. [PMID: 30418472 DOI: 10.1093/abbs/gmy137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 12/24/2022] Open
Abstract
Anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis is an autoimmune disorder characterized by memory deficits, psychiatric symptoms, and autonomic instability. The lack of suitable biomarkers targeting anti-NMDAR encephalitis makes the immunotherapy and prognosis challenging. In this study, we found that the Th17 cells were significantly accumulated in the cerebrospinal fluid (CSF) of anti-NMDAR encephalitis patients than that of control individuals. The concentration of the cytokines and chemokines including interleukin (IL)-1β, IL-17, IL-6, and CXCL-13 were significantly increased in the CSF of anti-NMDAR encephalitis patients. IL-6 and IL-17 were found to promote the differentiation of CD4+ T cells into Th17 lineage. The chemotaxis assay showed that CCL20 and CCL22 play essential roles in the migration of Th17 cells. Notably, the correlation between the expression of IL-17 and the outcome of anti-NMDAR encephalitis patients was analyzed. The data showed that high level of IL-17 was significantly correlated with the limited response to the treatment and relapse of anti-NMDAR encephalitis patients. Our results suggested the potential important involvement of IL-17 in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Chaosheng Zeng
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lin Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bocan Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yi Cai
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Pengxiang Li
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Limin Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Dehua Zeng
- Department of Neurology, Haikou People’s Hospital, Haikou, China
| |
Collapse
|
16
|
Anderson G, Vaillancourt C, Maes M, Reiter RJ. Breastfeeding and the gut-brain axis: is there a role for melatonin? Biomol Concepts 2017; 8:185-195. [DOI: 10.1515/bmc-2017-0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
AbstractThe benefits of breastfeeding over formula feed are widely appreciated. However, for many mothers breastfeeding is not possible, highlighting the need for a significant improvement in the contents of formula feed. In this article, the overlooked role of melatonin and the melatonergic pathways in breast milk and in the regulation of wider breast milk components are reviewed. There is a growing appreciation that the benefits of breastfeeding are mediated by its effects in the infant gut, with consequences for the development of the gut-brain axis and the immune system. The melatonergic pathways are intimately associated with highly researched processes in the gut, gut microbiome and gut-brain axis. As the melatonergic pathways are dependent on the levels of serotonin availability as a necessary precursor, decreased melatonin is linked to depression and depression-associated disorders. The association of breastfeeding and the gut-brain axis with a host of medical conditions may be mediated by their regulation of processes that modulate depression susceptibility. The biological underpinnings of depression include increased levels of pro-inflammatory cytokines, oxidative stress, kynurenine pathway activity and dysregulation of the hypothalamic-pituitary adrenal axis, all of which can decrease melatonergic pathway activity. The inclusion of the melatonergic pathways in the biological interactions of breast milk and gut development has significant theoretical and treatment implications, as well as being important to the prevention of a host of infant-, child- and adult-onset medical conditions.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SWIV 1PG, UK
| | - Cathy Vaillancourt
- INRS-Armand-Frappier Institute and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Laval, QC, Canada
| | - Michael Maes
- Deakin University, Department of Psychiatry, Geelong, Australia
| | | |
Collapse
|