1
|
Furuya K, Nakajima M, Tsunedomi R, Nakagami Y, Xu M, Matsui H, Tokumitsu Y, Shindo Y, Watanabe Y, Tomochika S, Maeda N, Iida M, Suzuki N, Takeda S, Hazama S, Ioka T, Hoshii Y, Ueno T, Nagano H. High serum proteinase-3 levels predict poor progression-free survival and lower efficacy of bevacizumab in metastatic colorectal cancer. BMC Cancer 2024; 24:165. [PMID: 38308214 PMCID: PMC10835931 DOI: 10.1186/s12885-024-11924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND To improve the prognosis of patients with metastatic colorectal cancer (mCRC), investigating predictive biomarkers of their prognosis and chemotherapeutic responsiveness is necessary. This study aimed to analyze the clinical significance of serum proteinase-3 (PRTN3) as a predictor for prognosis and chemosensitivity, especially to bevacizumab therapy, in mCRC. METHODS This single-center retrospective observational study enrolled 79 patients with mCRC in our hospital and 353 patients with colorectal cancer in the TCGA database. Preoperative serum PRTN3 levels were measured using an enzyme-linked immunosorbent assay. The clinicopathological characteristics and prognosis according to serum PRTN3 levels were then evaluated. PRTN3 expression in tumor and stromal cells was evaluated immunohistochemically. The impact of PRTN3 levels on angiogenesis and bevacizumab sensitivity was evaluated using the tube formation assay. RESULTS Serum PRTN3 levels were an independent poor prognostic factor for progression-free survival (PFS) (hazard ratio, 2.082; 95% confidence interval, 1.118-3.647; P=0.010) in patients with mCRC. Similarly, prognostic analysis with TCGA data sets showed poorer overall survival in patients with PRTN3 expression than that in patients without PRTN3 expression, especially in patients with stage IV. Immunohistochemical analysis of resected specimens revealed that stromal neutrophils expressed PRTN3, and their expression level was significantly correlated with serum PRTN3 levels. Interestingly, the effectiveness of first-line chemotherapy was significantly poorer in the high serum PRTN3 level group. High serum PRTN3 was significantly associated with poor PFS (hazard ratio, 3.027; 95% confidence interval, 1.175-7.793; P=0.0161) in patients treated with bevacizumab, an anti-angiogenic inhibitor. The tube formation assay revealed that PRTN3 administration notably augmented angiogenesis while simultaneously attenuating the anti-angiogenic influence exerted by bevacizumab therapy. CONCLUSIONS Serum PRTN3 levels could be a novel predictive biomarker of PFS of first-line chemotherapy, especially for bevacizumab therapy, in patients with mCRC.
Collapse
Affiliation(s)
- Kei Furuya
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yusaku Watanabe
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
2
|
Moura MC, Thompson GE, Nelson DR, Fussner LA, Hummel AM, Jenne DE, Emerling D, Fervenza FC, Kallenberg CGM, Langford CA, McCune WJ, Merkel PA, Monach PA, Seo P, Spiera RF, St. Clair EW, Ytterberg SR, Stone JH, Robinson WH, Specks U. Activation of a Latent Epitope Causing Differential Binding of Antineutrophil Cytoplasmic Antibodies to Proteinase 3. Arthritis Rheumatol 2023; 75:748-759. [PMID: 36515151 PMCID: PMC10191989 DOI: 10.1002/art.42418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Proteinase 3 (PR3) is the major antigen for antineutrophil cytoplasmic antibodies (ANCAs) in the systemic autoimmune vasculitis, granulomatosis with polyangiitis (GPA). PR3-targeting ANCAs (PR3-ANCAs) recognize different epitopes on PR3. This study was undertaken to study the effect of mutations on PR3 antigenicity. METHODS The recombinant PR3 variants, iPR3 (clinically used to detect PR3-ANCAs) and iHm5 (containing 3 point mutations in epitopes 1 and 5 generated for epitope mapping studies) immunoassays and serum samples from patients enrolled in ANCA-associated vasculitis (AAV) trials were used to screen for differential PR3-ANCA binding. A patient-derived monoclonal ANCA 518 (moANCA518) that selectively binds to iHm5 within the mutation-free epitope 3 and is distant from the point mutations of iHm5 was used as a gauge for remote epitope activation. Selective binding was determined using inhibition experiments. RESULTS Rather than reduced binding of PR3-ANCAs to iHm5, we found substantially increased binding of the majority of PR3-ANCAs to iHm5 compared to iPR3. This differential binding of PR3-ANCA to iHm5 is similar to the selective moANCA518 binding to iHm5. Binding of iPR3 to monoclonal antibody MCPR3-2 also induced recognition by moANCA518. CONCLUSION The preferential binding of PR3-ANCAs from patients, such as the selective binding of moANCA518 to iHm5, is conferred by increased antigenicity of epitope 3 on iHm5. This can also be induced on iPR3 when captured by monoclonal antibody MCPR2. This previously unrecognized characteristic of PR3-ANCA interactions with its target antigen has implications for studying antibody-mediated autoimmune diseases, understanding variable performance characteristics of immunoassays, and design of potential novel treatment approaches.
Collapse
Affiliation(s)
- Marta Casal Moura
- Mayo Clinic and Foundation, Rochester, MN, USA
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | | | - Lynn A. Fussner
- Mayo Clinic and Foundation, Rochester, MN, USA
- Ohio State University, Columbus, OH, USA
| | | | - Dieter E. Jenne
- Max-Planck-Institute for Biological Intelligence, 82152 Martinsried, Germany
| | | | | | | | | | | | | | - Paul A. Monach
- VA Boston Healthcare System, Rheumatology, Boston, MA, USA
| | - Philip Seo
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Defensin Interactions in Relation to Monoclonal and Disease-Related Proteinase 3 Antibodies Binding at the Catalytic Site. Antibodies (Basel) 2023; 12:antib12010023. [PMID: 36975370 PMCID: PMC10044823 DOI: 10.3390/antib12010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Proteinase 3 (PR3) is a neutrophil granulocyte enzyme and an autoantigen found in several forms of vasculitis. Due to the diagnostic and clinical importance of antibodies (Abs) to PR3, it is important to characterize the protein and the nature of its epitopes. Here, we have characterized PR3 monoclonal antibodies (MAbs) and disease-associated Abs and their dependency on the PR3 structure and modifications, especially interactions with α-defensins. Three MAbs (HYB 172-01, 172-04, 172-05), which bind to PR3 in its native and denatured forms and provide the disulphide bridges, were intact. α-1-antitrypsin (AT) binds to purified human neutrophil granulocyte PR3 and inhibits its proteolytic activity, towards a small synthetic peptide substrate and a large protein substrate (casein). AT also inhibited the binding of the three MAbs to PR3, indicating that they bind in a region affected by AT binding. However, the MAbs did not inhibit PR3 proteolytic activity with a small substrate, showing that they bound at the active site without restricting access to the substrate cleft. Patient-derived Abs showed essentially the same characteristics as the MAbs, with important implications for vasculitis diagnostics and pathophysiology. Current findings illustrate that PR3 epitopes depend on the three-dimensional structure of the PR3/defensin complex, and that the epitopes depend to a smaller or larger degree on PR3/defensin associations.
Collapse
|
4
|
Identification of proteinase 3 autoreactive CD4 +T cells and their T-cell receptor repertoires in antineutrophil cytoplasmic antibody-associated vasculitis. Kidney Int 2023; 103:973-985. [PMID: 36804380 DOI: 10.1016/j.kint.2023.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023]
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is an autoimmune disease involving autoreactivity to proteinase 3 (PR3) as demonstrated by presence of ANCAs. While autoantibodies are screened for diagnosis, autoreactive T cells and their features are less well-studied. Here, we investigated PR3-specific CD4+T cell responses and features of autoreactive T cells in patients with PR3-AAV, using a cohort of 72 patients with either active or inactive disease. Autoreactive PR3-specific CD4+T cells producing interferon γ in response to protein stimulation were found to express the G-protein coupled receptor 56 (GPR56), a cell surface marker that distinguishes T cells with cytotoxic capacity. GPR56+CD4+T cells were significantly more prominent in the blood of patients with inactive as compared to active disease, suggesting that these cells were affected by immunosuppression and/or that they migrated from the circulation to sites of organ involvement. Indeed, GPR56+CD4+T cells were identified in T-cell infiltrates of affected kidneys and an association with immunosuppressive therapy was found. Moreover, distinct TCR gene segment usage and shared (public) T cell clones were found for the PR3-reactive TCRs. Shared T cell clones were found in different patients with AAV carrying the disease-associated HLA-DP allele, demonstrating convergence of the autoreactive T cell repertoire. Thus, we identified a CD4+T cell signature in blood and in affected kidneys that display PR3 autoreactivity and associates with T cell cytotoxicity. Our data provide a basis for novel rationales for both immune monitoring and future therapeutic intervention in PR3-AAV.
Collapse
|
5
|
Singh M, Jayant K, Singh D, Bhutani S, Poddar NK, Chaudhary AA, Khan SUD, Adnan M, Siddiqui AJ, Hassan MI, Khan FI, Lai D, Khan S. Withania somnifera (L.) Dunal (Ashwagandha) for the possible therapeutics and clinical management of SARS-CoV-2 infection: Plant-based drug discovery and targeted therapy. Front Cell Infect Microbiol 2022; 12:933824. [PMID: 36046742 PMCID: PMC9421373 DOI: 10.3389/fcimb.2022.933824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has killed huge populations throughout the world and acts as a high-risk factor for elderly and young immune-suppressed patients. There is a critical need to build up secure, reliable, and efficient drugs against to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Bioactive compounds of Ashwagandha [Withania somnifera (L.) Dunal] may implicate as herbal medicine for the management and treatment of patients infected by SARS-CoV-2 infection. The aim of the current work is to update the knowledge of SARS-CoV-2 infection and information about the implication of various compounds of medicinal plant Withania somnifera with minimum side effects on the patients' organs. The herbal medicine Withania somnifera has an excellent antiviral activity that could be implicated in the management and treatment of flu and flu-like diseases connected with SARS-CoV-2. The analysis was performed by systematically re-evaluating the published articles related to the infection of SARS-CoV-2 and the herbal medicine Withania somnifera. In the current review, we have provided the important information and data of various bioactive compounds of Withania somnifera such as Withanoside V, Withanone, Somniferine, and some other compounds, which can possibly help in the management and treatment of SARS-CoV-2 infection. Withania somnifera has proved its potential for maintaining immune homeostasis of the body, inflammation regulation, pro-inflammatory cytokines suppression, protection of multiple organs, anti-viral, anti-stress, and anti-hypertensive properties. Withanoside V has the potential to inhibit the main proteases (Mpro) of SARS-CoV-2. At present, synthetic adjuvant vaccines are used against COVID-19. Available information showed the antiviral activity in Withanoside V of Withania somnifera, which may explore as herbal medicine against to SARS-CoV-2 infection after standardization of parameters of drug development and formulation in near future.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Kuldeep Jayant
- Department of Agricultural and Food Engineering, IIT Kharagpur, West Bengal, Kharagpur, India
| | - Dipti Singh
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Shivani Bhutani
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation 7 Peterlee Place, Hebersham, NSW, Australia
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Seth S, Batra J, Srinivasan S. COVID-19: Targeting Proteases in Viral Invasion and Host Immune Response. Front Mol Biosci 2020; 7:215. [PMID: 33195400 PMCID: PMC7581869 DOI: 10.3389/fmolb.2020.00215] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
An acute respiratory disorder (COVID-19) that accelerated across the globe has been found to be caused by a novel strain of coronaviruses (SARS-CoV-2). The absence of a specific antiviral drug or vaccination has promoted the development of immediate therapeutic responses against SARS-CoV-2. As increased levels of plasma chemokines and, cytokines and an uncontrolled influx of inflammatory cells were observed in lethal cases, it was concluded that the severity of the infection corresponded with the imbalanced host immunity against the virus. Tracing back the knowledge acquired from SERS and MERS infections, clinical evidence suggested similar host immune reactions and host ACE2 receptor-derived invasion by SARS-CoV-2. Further studies revealed the integral role of proteases (TMPRSS2, cathepsins, plasmin, etc.) in viral entry and the immune system. This review aims to provide a brief review on the latest research progress in identifying the potential role of proteases in SARS-CoV-2 viral spread and infection and combines it with already known information on the role of different proteases in providing an immune response. It further proposes a multidisciplinary clinical approach to target proteases specifically, through a combinatorial administration of protease inhibitors. This predictive review may help in providing a perspective to gain deeper insights of the proteolytic web involved in SARS-CoV-2 viral invasion and host immune response.
Collapse
Affiliation(s)
- Sanchit Seth
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Sundqvist M, Gibson KM, Bowers SM, Niemietz I, Brown KL. Anti-neutrophil cytoplasmic antibodies (ANCA): Antigen interactions and downstream effects. J Leukoc Biol 2020; 108:617-626. [PMID: 32421916 DOI: 10.1002/jlb.3vmr0220-438rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in circulation and are key "first responders" in the immune response to infectious and non-infectious stimuli. Unlike other immune cells, neutrophils can mount a robust response (including a change in surface markers and the production of extracellular traps and reactive oxygen species) just minutes after sensing a disturbance. It has been speculated that, in some individuals, the activation of neutrophils inadvertently leads to the generation of anti-neutrophil cytoplasmic autoantibodies (ANCA) against particular neutrophil proteins (antigens) such as myeloperoxidase (MPO) and proteinase 3 (PR3). In these individuals, continuous ANCA-antigen interactions are thought to drive persistent activation of neutrophils, chronic immune activation, and disease, most notably, small vessel vasculitis. There are significant gaps however in our understanding of the underlying mechanisms and even the pathogenicity of ANCA given that vasculitis can develop in the absence of ANCA, and that ANCA have been found in circulation in other conditions with no apparent contribution to disease. These gaps are particularly evident in the context of human studies. Herein, we review knowledge on neutrophil-derived ANCA antigens PR3 and MPO, ANCA generation, and ANCA-antigen interaction(s) that may promote immune activation and disease.
Collapse
Affiliation(s)
- Martina Sundqvist
- Department of Pediatrics, Division of Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristen M Gibson
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah M Bowers
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Iwona Niemietz
- British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly L Brown
- Department of Pediatrics, Division of Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Nemoto E, Tada H, Shimauchi H. Disruption of CD40/CD40 ligand interaction with cleavage of CD40 on human gingival fibroblasts by human leukocyte elastase resulting in down‐regulation of chemokine production. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Eiji Nemoto
- Division of Periodontics and Endodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Tada
- Division of Periodontics and Endodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hidetoshi Shimauchi
- Division of Periodontics and Endodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|