1
|
Hei C, Li X, Wang R, Peng J, Liu P, Dong X, Li PA, Zheng W, Niu J, Yang X. Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential targets for drug repurposing. Sci Rep 2025; 15:7035. [PMID: 40016488 PMCID: PMC11868568 DOI: 10.1038/s41598-024-83555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
The relationship between ischemic stroke (IS) and pyroptosis centers on the inflammatory response elicited by cerebral tissue damage during an ischemic stroke event. However, an in-depth mechanistic understanding of their connection remains limited. This study aims to comprehensively analyze the gene expression patterns of pyroptosis-related differentially expressed genes (PRDEGs) by employing integrated IS datasets and machine learning techniques. The primary objective was to develop classification models to identify crucial PRDEGs integral to the ischemic stroke process. Leveraging three distinct machine learning algorithms (LASSO, Random Forest, and Support Vector Machine), models were developed to differentiate between the Control and the IS patient samples. Through this approach, a core set of 10 PRDEGs consistently emerged as significant across all three machine learning models. Subsequent analysis of these genes yielded significant insights into their functional relevance and potential therapeutic approaches. In conclusion, this investigation underscores the pivotal role of pyroptosis pathways in ischemic stroke and identifies pertinent targets for therapeutic development and drug repurposing.
Collapse
Affiliation(s)
- Changchun Hei
- Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, China
| | - Xiaowen Li
- Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, China
| | - Ruochen Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiahui Peng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Liu
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xialan Dong
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Weifan Zheng
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, USA
| | - Jianguo Niu
- Key Laboratory for Craniocerebral Diseases of Ningxia Hui Autonomous Region, Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, China.
| | - Xiao Yang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Tran NM, Truong AT, Nguyen DT, Dang TT. Profiling Pro-Inflammatory Proteases as Biomolecular Signatures of Material-Induced Subcutaneous Host Response in Immuno-Competent Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2309709. [PMID: 39630111 PMCID: PMC11792001 DOI: 10.1002/advs.202309709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/19/2024] [Indexed: 02/05/2025]
Abstract
Proteases are important modulators of inflammation, but they remain understudied in material-induced immune response, which is critical to clinical success of biomedical implants. Herein, molecular expression and proteolytic activity of three distinct proteases, namely neutrophil elastase, matrix metalloproteinases, cysteine cathepsins (cathepsin-K and cathepsin-B) are comprehensively profiled, in the subcutaneous host response of immuno-competent mice against different biomaterial implants. Quantitative non-invasive monitoring with activatable fluorescent probes reveals that different microparticulate materials induce distinct levels of protease activity with degradable poly(lactic-co-glycolic) acid inducing the strongest signal compared to nondegradable materials such as polystyrene and silica oxide. Furthermore, protein expression of selected proteases, attributable to both their inactive and active forms, notably deviates from their activities associated only with their active forms. Protease activity exhibits positive correlations with protein expression of pro-inflammatory cytokines tumor necrosis factor α and interleukin 6 but negative correlation with pro-fibrotic cytokine transforming growth factor β1. This study also demonstrates the predictive utility of protease activity as a non-invasive, pro-inflammatory parameter for evaluation of the anti-inflammatory effects of model bioactive compounds on material-induced host response. Overall, the findings provide new insights into protease presence in material-induced immune responses, facilitating future biomaterial assessment to evoke appropriate host responses for implant applications.
Collapse
Affiliation(s)
- Nam M.P. Tran
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Anh T.H. Truong
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Dang T. Nguyen
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Tram T. Dang
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| |
Collapse
|
3
|
Feješ A, Šebeková K, Borbélyová V. Pathophysiological Role of Neutrophil Extracellular Traps in Diet-Induced Obesity and Metabolic Syndrome in Animal Models. Nutrients 2025; 17:241. [PMID: 39861371 PMCID: PMC11768048 DOI: 10.3390/nu17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation. Neutrophils are first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are web-like DNA structures of nuclear or mitochondrial DNA associated with cytosolic antimicrobial proteins. The primary function of NETosis is preventing the dissemination of pathogens. However, neutrophils may occasionally misidentify host molecules as danger-associated molecular patterns, triggering NET formation. This can lead to further recruitment of neutrophils, resulting in propagation and a vicious cycle of persistent systemic inflammation. This scenario may occur when neutrophils infiltrate expanded obese adipose tissue. Thus, NETosis is implicated in the pathophysiology of autoimmune and metabolic disorders, including obesity. This review explores the role of NETosis in obesity and two obesity-associated conditions-hypertension and liver steatosis. With the rising prevalence of obesity driving research into its pathophysiology, particularly through diet-induced obesity models in rodents, we discuss insights gained from both human and animal studies. Additionally, we highlight the potential offered by rodent models and the opportunities presented by genetically modified mouse strains for advancing our understanding of obesity-related inflammation.
Collapse
Affiliation(s)
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia; (A.F.); (V.B.)
| | | |
Collapse
|
4
|
Dai Q, Yao X, Zhang Y, Chai Q, Feng X, Zhu H, Zhao L. CTSG is a prognostic marker involved in immune infiltration and inhibits tumor progression though the MAPK signaling pathway in non-small cell lung cancer. J Cancer Res Clin Oncol 2024; 151:21. [PMID: 39724501 PMCID: PMC11671429 DOI: 10.1007/s00432-024-06051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE This study aims to investigate the biological roles and molecular mechanisms of Cathepsin G (CTSG) in the progression of non-small cell lung cancer (NSCLC). METHODS Western blotting and immunohistochemistry analyses of clinical samples were performed to determine the expression levels of CTSG in patients with NSCLC. Bioinformatic analysis of clinical datasets was conducted to evaluate the correlation between CTSG and lymph node metastasis, tumor stage, and immune cell infiltration. Gain-of-function assays and tumor implantation experiments were employed to determine the effects of CTSG on malignant behaviors of NSCLC cells. Transcriptome sequencing and subsequent bioinformatic analysis were performed to explore the signaling pathways regulated by CTSG. Western blotting and qPCR were utilized to assess the influence of CTSG on the MAPK and EMT signaling pathways. RESULTS CTSG is expressed at low levels and serves as a prognostic marker in NSCLC. The downregulation of CTSG expression was associated with lymph node metastasis, tumor stage, and immune cell infiltration. CTSG inhibits NSCLC cell proliferation, migration, and invasion as well as tumor growth in nude mice. There exists a significant correlation between CTSG expression and endoplasmic reticulum function, cell cycling, and the IL-17 signaling pathway. CTSG suppresses the MAPK and EMT signaling pathways in NSCLC cells. Moreover, DNA methylation and histone deacetylation have been identified as crucial mechanisms contributing to the decreased expression of CTSG. CONCLUSION CTSG inhibits NSCLC development by suppressing the MAPK signaling pathway and is also associated with tumor immunity.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Animals
- Prognosis
- Mice
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- MAP Kinase Signaling System/physiology
- Disease Progression
- Female
- Male
- Mice, Nude
- Cell Proliferation
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
- Cell Line, Tumor
Collapse
Affiliation(s)
- Qian Dai
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xufeng Yao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanke Zhang
- Department of Respiratory Medicine, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Qian Chai
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, Anhui, China
- Department of Respiratory Medicine, Anhui Public Health Clinical Center, Hefei, 230012, Anhui, China
| | - Xueyi Feng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongbin Zhu
- Department of Respiratory Medicine, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China.
| | - Lei Zhao
- Department of Respiratory Medicine, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, Anhui, China.
- Department of Respiratory Medicine, Anhui Public Health Clinical Center, Hefei, 230012, Anhui, China.
| |
Collapse
|
5
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
6
|
Yiu JYT, Hally KE, Larsen PD, Holley AS. Neutrophil-Enriched Biomarkers and Long-Term Prognosis in Acute Coronary Syndrome: a Systematic Review and Meta-analysis. J Cardiovasc Transl Res 2024; 17:426-447. [PMID: 37594719 PMCID: PMC11052791 DOI: 10.1007/s12265-023-10425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Activated neutrophils release a range of inflammatory products that represent potential biomarkers, and there is interest in the prognostic value of these in acute coronary syndrome (ACS) patients. We conducted a systematic review to examine neutrophil-enriched biomarkers and the occurrence of major adverse cardiovascular events (MACE) in patients with ACS. We identified twenty-seven studies including 17,831 patients with ACS. The most studied biomarkers were neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase (MPO). Meta-analyses showed that elevated NGAL was associated with higher MACE rates (unadjusted risk ratio (RR) 1.52, 95% CI 1.12-2.06, p = 0.006) as were elevated MPO levels (unadjusted RR 1.61, 95% CI 1.22-2.13, p = 0.01). There was limited data suggesting that increased levels of calprotectin, proteinase-3 and double-stranded DNA were also associated with MACE. These results suggest that higher levels of neutrophil-enriched biomarkers may be predictive of MACE in patients with ACS, although higher-quality studies are needed to confirm these observations.
Collapse
Affiliation(s)
- Jaquelina Y T Yiu
- Wellington Cardiovascular Research Group, Department of Surgery & Anaesthesia, University of Otago, PO Box 7343, Wellington, New Zealand
| | - Kathryn E Hally
- Wellington Cardiovascular Research Group, Department of Surgery & Anaesthesia, University of Otago, PO Box 7343, Wellington, New Zealand
| | - Peter D Larsen
- Wellington Cardiovascular Research Group, Department of Surgery & Anaesthesia, University of Otago, PO Box 7343, Wellington, New Zealand
| | - Ana S Holley
- Wellington Cardiovascular Research Group, Department of Surgery & Anaesthesia, University of Otago, PO Box 7343, Wellington, New Zealand.
| |
Collapse
|
7
|
Algharib SA, Dawood AS, Huang L, Guo A, Zhao G, Zhou K, Li C, Liu J, Gao X, Luo W, Xie S. Basic concepts, recent advances, and future perspectives in the diagnosis of bovine mastitis. J Vet Sci 2024; 25:e18. [PMID: 38311330 PMCID: PMC10839174 DOI: 10.4142/jvs.23147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 02/07/2024] Open
Abstract
Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.
Collapse
Affiliation(s)
- Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Ali Sobhy Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xin Gao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Lu Zhou, Sichuan 646000, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Alkarni M, Lipman M, Lowe DM. The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Ann Clin Microbiol Antimicrob 2023; 22:14. [PMID: 36800956 PMCID: PMC9938600 DOI: 10.1186/s12941-023-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is an increasingly recognised global health issue. Studies have suggested that neutrophils may play an important role in controlling NTM infection and contribute to protective immune responses within the early phase of infection. However, these cells are also adversely associated with disease progression and exacerbation and can contribute to pathology, for example in the development of bronchiectasis. In this review, we discuss the key findings and latest evidence regarding the diverse functions of neutrophils in NTM infection. First, we focus on studies that implicate neutrophils in the early response to NTM infection and the evidence reporting neutrophils' capability to kill NTM. Next, we present an overview of the positive and negative effects that characterise the bidirectional relationship between neutrophils and adaptive immunity. We consider the pathological role of neutrophils in driving the clinical phenotype of NTM-PD including bronchiectasis. Finally, we highlight the current promising treatments in development targeting neutrophils in airways diseases. Clearly, more insights on the roles of neutrophils in NTM-PD are needed in order to inform both preventative strategies and host-directed therapy for these important infections.
Collapse
Affiliation(s)
- Meyad Alkarni
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| | - Marc Lipman
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - David M. Lowe
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| |
Collapse
|
9
|
Adini A, Ko VH, Puder M, Louie SM, Kim CF, Baron J, Matthews BD. PR1P, a VEGF-stabilizing peptide, reduces injury and inflammation in acute lung injury and ulcerative colitis animal models. Front Immunol 2023; 14:1168676. [PMID: 37187742 PMCID: PMC10175756 DOI: 10.3389/fimmu.2023.1168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) and Ulcerative Colitis (UC) are each characterized by tissue damage and uncontrolled inflammation. Neutrophils and other inflammatory cells play a primary role in disease progression by acutely responding to direct and indirect insults to tissue injury and by promoting inflammation through secretion of inflammatory cytokines and proteases. Vascular Endothelial Growth Factor (VEGF) is a ubiquitous signaling molecule that plays a key role in maintaining and promoting cell and tissue health, and is dysregulated in both ARDS and UC. Recent evidence suggests a role for VEGF in mediating inflammation, however, the molecular mechanism by which this occurs is not well understood. We recently showed that PR1P, a 12-amino acid peptide that binds to and upregulates VEGF, stabilizes VEGF from degradation by inflammatory proteases such as elastase and plasmin thereby limiting the production of VEGF degradation products (fragmented VEGF (fVEGF)). Here we show that fVEGF is a neutrophil chemoattractant in vitro and that PR1P can be used to reduce neutrophil migration in vitro by preventing the production of fVEGF during VEGF proteolysis. In addition, inhaled PR1P reduced neutrophil migration into airways following injury in three separate murine acute lung injury models including from lipopolysaccharide (LPS), bleomycin and acid. Reduced presence of neutrophils in the airways was associated with decreased pro-inflammatory cytokines (including TNF-α, IL-1β, IL-6) and Myeloperoxidase (MPO) in broncho-alveolar lavage fluid (BALF). Finally, PR1P prevented weight loss and tissue injury and reduced plasma levels of key inflammatory cytokines IL-1β and IL-6 in a rat TNBS-induced colitis model. Taken together, our data demonstrate that VEGF and fVEGF may each play separate and pivotal roles in mediating inflammation in ARDS and UC, and that PR1P, by preventing proteolytic degradation of VEGF and the production of fVEGF may represent a novel therapeutic approach to preserve VEGF signaling and inhibit inflammation in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Avner Adini
- Vascular Biology Program, Children’s Hospital Boston and Harvard Medical School, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
- *Correspondence: Avner Adini,
| | - Victoria H. Ko
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States
| | - Mark Puder
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States
| | - Sharon M. Louie
- Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Carla F. Kim
- Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Joseph Baron
- Janus Biotherapeutics, Inc, Wellesley, MA, United States
| | - Benjamin D. Matthews
- Vascular Biology Program, Children’s Hospital Boston and Harvard Medical School, Boston, MA, United States
- Department of Medicine, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Quaglia M, Dellepiane S, Guglielmetti G, Merlotti G, Castellano G, Cantaluppi V. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Front Immunol 2020; 11:74. [PMID: 32180768 PMCID: PMC7057849 DOI: 10.3389/fimmu.2020.00074] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are known immune-modulators exerting a critical role in kidney transplantation (KT). EV bioactive cargo includes graft antigens, costimulatory/inhibitory molecules, cytokines, growth factors, and functional microRNAs (miRNAs) that may modulate expression of recipient cell genes. As paracrine factors, neutrophil- and macrophage-derived EVs exert immunosuppressive and immune-stimulating effects on dendritic cells, respectively. Dendritic cell-derived EVs mediate alloantigen spreading and modulate antigen presentation to T lymphocytes. At systemic level, EVs exert pleiotropic effects on complement and coagulation. Depending on their biogenesis, they can amplify complement activation or shed complement inhibitors and prevent cell lysis. Likewise, endothelial- and platelet-derived EVs can exert procoagulant/prothrombotic effects and also promote endothelial survival and angiogenesis after ischemic injury. Kidney endothelial- and tubular-derived EVs play a key role in ischemia-reperfusion injury (IRI) and during the healing process; additionally, they can trigger rejection by inducing both alloimmune and autoimmune responses. Endothelial EVs have procoagulant/pro-inflammatory effects and can release sequestered self-antigens, generating a tissue-specific autoimmunity. Renal tubule-derived EVs shuttle pro-fibrotic mediators (TGF-β and miR-21) to interstitial fibroblasts and modulate neutrophil and T-lymphocyte influx. These processes can lead to peritubular capillary rarefaction and interstitial fibrosis-tubular atrophy. Different EVs, including those from mesenchymal stromal cells (MSCs), have been employed as a therapeutic tool in experimental models of rejection and IRI. These particles protect tubular and endothelial cells (by inhibition of apoptosis and inflammation-fibrogenesis or by inducing autophagy) and stimulate tissue regeneration (by triggering angiogenesis, cell proliferation, and migration). Finally, urinary and serum EVs represent potential biomarkers for delayed graft function (DGF) and acute rejection. In conclusion, EVs sustain an intricate crosstalk between graft tissue and innate/adaptive immune systems. EVs play a major role in allorecognition, IRI, autoimmunity, and alloimmunity and are promising as biomarkers and therapeutic tools in KT.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Sergio Dellepiane
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, The Tisch Cancer Institute, New York, NY, United States
| | - Gabriele Guglielmetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- *Correspondence: Vincenzo Cantaluppi
| |
Collapse
|
11
|
McElvaney OJ, Wade P, Murphy M, Reeves EP, McElvaney NG. Targeting airway inflammation in cystic fibrosis. Expert Rev Respir Med 2019; 13:1041-1055. [PMID: 31530195 DOI: 10.1080/17476348.2019.1666715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: The major cause of morbidity and mortality in patients with cystic fibrosis (CF) is lung disease. Inflammation in the CF airways occurs from a young age and contributes significantly to disease progression and shortened life expectancy. Areas covered: In this review, we discuss the key immune cells involved in airway inflammation in CF, the contribution of the intrinsic genetic defect to the CF inflammatory phenotype, and anti-inflammatory strategies designed to overcome what is a critical factor in the pathogenesis of CF lung disease. Review of the literature was carried out using the MEDLINE (from 1975 to 2018), Google Scholar and The Cochrane Library databases. Expert opinion: Therapeutic interventions specifically targeting the defective CF transmembrane conductance regulator (CFTR) protein have changed the clinical landscape and significantly improved the outlook for CF. As survival estimates for people with CF increase, long-term management has become an important focus, with an increased need for therapies targeted at specific elements of inflammation, to complement CFTR modulator therapies.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Patricia Wade
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
12
|
Hiroyasu S, Turner CT, Richardson KC, Granville DJ. Proteases in Pemphigoid Diseases. Front Immunol 2019; 10:1454. [PMID: 31297118 PMCID: PMC6607946 DOI: 10.3389/fimmu.2019.01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
13
|
Treffers LW, Hiemstra IH, Kuijpers TW, van den Berg TK, Matlung HL. Neutrophils in cancer. Immunol Rev 2017; 273:312-28. [PMID: 27558343 DOI: 10.1111/imr.12444] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophils play an important role in cancer. This does not only relate to the well-established prognostic value of the presence of neutrophils, either in the blood or in tumor tissue, in the context of cancer progression or for the monitoring of therapy, but also to their active role in the progression of cancer. In the current review, we describe what is known in general about the role of neutrophils in cancer. What is emerging is a complex, rather heterogeneous picture with both pro- and anti-tumorigenic roles, which apparently differs with cancer type and disease stage. Furthermore, we will discuss the well-known role of neutrophils as myeloid-derived suppressor cells (MDSC), and also on the role of neutrophils as important effector cells during antibody therapy in cancer. It is clear that neutrophils contribute substantially to cancer progression in multiple ways, and this includes both direct effects on the cancer cells and indirect effect on the tumor microenvironment. While in many cases neutrophils have been shown to promote tumor progression, for instance by acting as MDSC, there are also protective effects, particularly when antibody immunotherapy is performed. A better understanding of the role of neutrophils is likely to provide opportunities for immunomodulation and for improving the treatment of cancer patients.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ida H Hiemstra
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Kumar A, Kingdon E, Norman J. The isoprostane 8-iso-PGF2alpha suppresses monocyte adhesion to human microvascular endothelial cells via two independent mechanisms. FASEB J 2005; 19:443-5. [PMID: 15640282 DOI: 10.1096/fj.03-1364fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Isoprostanes, produced in vivo by non-enzymatic free-radical-induced lipid peroxidation, are markers of oxidative stress. Elevated serum and urine levels of 8-iso-PGF2alpha have been reported in a variety of diseases, many of which are characterized by early perivascular inflammatory infiltrates. It has been suggested that, in addition to being markers of oxidative stress, isoprostanes may have pathogenic functions. In this study, we investigated the potential role of 8-iso-PGF2alpha in inflammation, focusing on its effects on adhesion of monocytes to microvascular endothelial cells, an early event in the inflammatory response. In monocyte adhesion assays, 8-iso-PGF2alpha (>10(-8) M) suppressed both basal and TNF-alpha-induced monocyte adhesion to quiescent or proliferating human dermal (HMEC) and rat renal microvascular endothelial cells. In contrast, 8-iso-PGF2alpha stimulated monocyte adhesion to human umbilical vein endothelial cells (HUVEC) as also reported by others. 8-Iso-PGF2alpha had no effect on the viability (Trypan Blue exclusion) of U937 monocytes or HMEC. 8-Iso-PGF2alpha also had no effect on HMEC surface expression of ICAM-1 or VCAM-1. Exposure of HMEC to 8-iso-PGF2alpha for 1-2 h was sufficient to reduce monocyte adhesion to the cell surface, and this effect was independent of de novo protein synthesis by HMEC. The effect of 8-iso-PGF2alpha was mimicked by a thromboxane receptor (TP) agonist (U46619) and blocked by a TP antagonist (SQ29548), indicating a TP-mediated process. Signal transduction pathway inhibitors (SB203580, curcumin, and PD98059) implicated p38 and JNK, but not ERK, in 8-iso-PGF2alpha-induced suppression of monocyte adhesion. In addition to a direct effect, conditioned medium (CM) transfer experiments suggest that 8-iso-PGF2alpha induces a secondary mediator, which also suppresses monocyte adhesion but via an alternative mechanism initiated between 3-4 h, which is TP-independent, requires new protein synthesis, and is primarily dependent on activation of p38. The data show that 8-iso-PGF2alpha can suppress the attachment of monocytes to HMECs via two independent pathways, indicating a potential anti-inflammatory effect of 8-iso-PGF2alpha in the microvasculature.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic
- Cell Adhesion/drug effects
- Cell Line
- Culture Media, Conditioned
- Dinoprost/analogs & derivatives
- Dinoprost/pharmacology
- Dinoprost/physiology
- Dose-Response Relationship, Drug
- Endothelial Cells/chemistry
- Endothelial Cells/physiology
- Fatty Acids, Unsaturated
- Humans
- Hydrazines/pharmacology
- Inflammation/pathology
- Intercellular Adhesion Molecule-1/analysis
- JNK Mitogen-Activated Protein Kinases/metabolism
- Kidney/blood supply
- MAP Kinase Kinase 4
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Monocytes/physiology
- Protein Synthesis Inhibitors/pharmacology
- Rats
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/physiology
- Signal Transduction
- Skin/blood supply
- Tumor Necrosis Factor-alpha/pharmacology
- U937 Cells
- Umbilical Veins
- Vascular Cell Adhesion Molecule-1/analysis
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Anila Kumar
- Centre for Nephrology, Division of Medicine, Royal Free and University College Medical School, London, UK
| | | | | |
Collapse
|
15
|
Nemoto E, Tada H, Shimauchi H. Disruption of CD40/CD40 ligand interaction with cleavage of CD40 on human gingival fibroblasts by human leukocyte elastase resulting in down‐regulation of chemokine production. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Eiji Nemoto
- Division of Periodontics and Endodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Tada
- Division of Periodontics and Endodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hidetoshi Shimauchi
- Division of Periodontics and Endodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|