1
|
Zhu Z, Chu Z, Fei F, Wu C, Fei Z, Sun Y, Chen Y, Lu P. Neo-BCV: A Novel Bacterial Liquid Complex Vaccine for Enhancing Dendritic Cell-Mediated Immune Responses Against Lung Cancer. Vaccines (Basel) 2025; 13:64. [PMID: 39852843 PMCID: PMC11768841 DOI: 10.3390/vaccines13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND In the past decade, immunotherapy has become a major choice for the treatment of lung cancer, yet its therapeutic efficacy is still relatively limited due to the various immune escape mechanisms of tumors. Based on this, we introduce Neo-BCV, a novel bacterial composite vaccine designed to enhance immune responses against lung cancer. METHODS We investigated the immune enhancing effect of Neo-BCV through in vivo and in vitro experiments, including flow cytometry, RNA-seq, and Western blot. RESULTS We have demonstrated that Neo-BCV can promote Dendritic cells (DCs) maturation and induce DCs differentiation into pro-inflammatory subgroups, significantly enhancing cytotoxic T lymphocyte (CTL)-mediated anti-tumor responses. Transcriptome sequencing revealed that Neo-BCV exerts its effects by specifically inhibiting the JAK2-STAT3 signaling pathway, a crucial regulator of cancer progression, metabolism, and inflammation. Moreover, Neo-BCV significantly improved the immune microenvironment in both tumor and spleen tissues without inducing notable toxic effects in major organs. CONCLUSIONS These findings highlight Neo-BCV's potential as a safe and effective therapeutic strategy, offering a novel avenue for clinical translation in lung cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Chen
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; (Z.Z.); (Z.C.); (F.F.); (C.W.); (Z.F.); (Y.S.)
| | - Peihua Lu
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; (Z.Z.); (Z.C.); (F.F.); (C.W.); (Z.F.); (Y.S.)
| |
Collapse
|
2
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Han B, He J, Chen Q, Yuan M, Zeng X, Li Y, Zeng Y, He M, Zhou Q, Feng D, Ma D. ELFN1-AS1 promotes GDF15-mediated immune escape of colorectal cancer from NK cells by facilitating GCN5 and SND1 association. Discov Oncol 2023; 14:56. [PMID: 37147528 PMCID: PMC10163203 DOI: 10.1007/s12672-023-00675-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The ability of colorectal cancer (CRC) cells to escape from natural killer (NK) cell immune surveillance leads to anti-tumor treatment failure. The long non-coding RNA (lncRNA) ELFN1-AS1 is aberrantly expressed in multiple tumors suggesting a role as an oncogene in cancer development. However, whether ELFN1-AS1 regulates immune surveillance in CRC is unclear. Here, we determined that ELFN1-AS1 enhanced the ability of CRC cells to escape from NK cell surveillance in vitro and in vivo. In addition, we confirmed that ELFN1-AS1 in CRC cells attenuated the activity of NK cell by down-regulating NKG2D and GZMB via the GDF15/JNK pathway. Furthermore, mechanistic investigations demonstrated that ELFN1-AS1 enhanced the interaction between the GCN5 and SND1 protein and this influenced H3k9ac enrichment at the GDF15 promotor to stimulate GDF15 production in CRC cells. Taken together, our findings indicate that ELFN1-AS1 in CRC cells suppresses NK cell cytotoxicity and ELFN1-AS1 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Bin Han
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jinsong He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qing Chen
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Min Yuan
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xi Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuanting Li
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yan Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meibo He
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Qilin Zhou
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dan Feng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Daiyuan Ma
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
4
|
Chen D, Gao J, Ren L, Chen P, Yang Y, She S, Xie Y, Liao W, Chen H. A signature based on NKG2D ligands to predict the recurrence of hepatocellular carcinoma after radical resection. Cancer Med 2023; 12:6337-6347. [PMID: 36210637 PMCID: PMC10028019 DOI: 10.1002/cam4.5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Due to the high recurrence, the HCC prognosis remains poor. Yet, the biomarkers for predicting the recurrence of high-risk patients are currently lacking. We aimed to develop a signature to predict the recurrence of HCC based on NKG2D ligands. METHODS The multivariate Cox proportional hazards regression was used to select recurrence-related variables of NKG2D ligands in HCC patients from The Cancer Genome Atlas (TCGA). HCC patients from the OEP000321 dataset and Guilin cohort were used to validate the predictive signature. The mRNA expression of NKG2D ligands was measured by QRT-PCR. Immunohistochemistry analysis of HCC tissue microarray samples was used to identify the expression of NKG2D ligands. RESULTS In this study, NKG2D ligands expression in the mRNA and protein level was both abnormally expressed in HCC and associated with recurrence-free survival (RFS). Then, the recurrence-related variables of NKG2D ligands in HCC were selected by the multivariate Cox proportional hazards regression. Among the eight NKG2D ligands, MICA (HR = 1.347; 95% CI = 1.012-1.793; p = 0.041), ULBP3 (HR = 0.453; 95% CI = 0.231-0.889; p = 0.021) and ULBP5 (HR = 3.617; 95% CI = 1.819-7.194; p < 0.001) were significantly correlated with RFS in the TCGA-LIHC cohort. Then, the signature was constructed by the three NKG2D ligands. The predictive effectiveness of this signature was also validated in the OEP000321 dataset and Guilin cohort. Further, HCC patients were classified into low-risk and high-risk subgroups by the predictive score. Compared with the low-risk group, the high-risk group had poor RFS in both training and validation cohorts. Importantly, compared with the low-risk patients with the G1-G2 stage, the levels of infiltrated NK-activated cells and NKG2D expression were both lower in the high-risk patients. CONCLUSIONS The signature based on MICA, ULBP3, and ULBP5 could predict HCC recurrence.
Collapse
Affiliation(s)
- Dongbo Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Liying Ren
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Pu Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Yao Yang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Shaoping She
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Yong Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Da Ren Biotech Limited, Hong Kong, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hongsong Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| |
Collapse
|
5
|
Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical Stimulation for Immune Modulation in Cancer Treatments. Front Bioeng Biotechnol 2022; 9:795300. [PMID: 35087799 PMCID: PMC8788921 DOI: 10.3389/fbioe.2021.795300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient's body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Sofia Langou
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Pooja Prasad
- Department of Cell and Molecular Biology, University of Connecticut, Mansfield, CT, United States
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
6
|
Jeffery HC, Braitch MK, Bagnall C, Hodson J, Jeffery LE, Wawman RE, Wong LL, Birtwistle J, Bartlett H, Lohse AW, Hirschfield GM, Dyson J, Jones D, Hubscher SG, Klenerman P, Adams DH, Oo YH. Changes in natural killer cells and exhausted memory regulatory T Cells with corticosteroid therapy in acute autoimmune hepatitis. Hepatol Commun 2018; 2:421-436. [PMID: 29619420 PMCID: PMC5880196 DOI: 10.1002/hep4.1163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated liver disease currently treated by immunosuppressive medications with significant side effects. Thus, novel mechanistic treatments are greatly needed. We performed prospective deep immunophenotyping of blood immune cells in patients with acute AIH before and after corticosteroid therapy. Blood samples from 26 patients with acute AIH (United Kingdom-AIH Consortium) were phenotyped by flow cytometry at baseline and 4 months after starting corticosteroids. Pretreatment liver tissues were stained for forkhead box P3-positive (FOXP3POS) regulatory T cells (Tregs), clusters of differentiation (CD)56POS natural killer (NK) cells, and chemokine (C-X-C motif) ligand 10. Chemokine secretion by cultured primary hepatocyte and biliary epithelial cells was measured by enzyme-linked immunosorbent assay. Functional coculture assays with stimulated NK cells and Tregs were performed. CD161 ligand, lectin-like transcript-1 expression by intrahepatic immune cells was demonstrated with flow cytometry. Frequencies of NKbright cells declined with therapy (P < 0.001) and correlated with levels of alanine aminotransferase (P = 0.023). The Treg:NKbright ratio was lower pretreatment, and Tregs had an activated memory phenotype with high levels of CD39, cytotoxic T lymphocyte antigen 4, and FOXP3 but also high programmed death ligand 1, indicating exhaustion. Coculture experiments suggested the Tregs could not efficiently suppress interferon-γ secretion by NK cells. Both Tregs and NK cells had high expression of liver infiltration and T helper 17 plasticity-associated marker CD161 (P = 0.04). Pretreatment and CD161pos NK cells expressed high levels of perforin and granzyme B, consistent with an activated effector phenotype (P < 0.05). Lectin-like transcript 1, a ligand for CD161, is expressed on intrahepatic B cells, monocytes, and neutrophils. Conclusion: Activated effector NK cells, which correlate with biochemical measurements of hepatitis, and exhausted memory Tregs are increased in the blood of patients with treatment-naive AIH and decline with corticosteroid therapy. Inadequate regulation of NK cells by exhausted FOXP3pos Tregs may play a role in AIH pathogenesis and contribute to liver injury. (Hepatology Communications 2018;2:421-436).
Collapse
Affiliation(s)
- Hannah C. Jeffery
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
| | - Manjit K. Braitch
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
| | - Chris Bagnall
- Human Biomaterials Resource CentreUniversity of BirminghamUnited Kingdom
| | - James Hodson
- Institute of Translational MedicineUniversity Hospitals Birmingham National Health Services Foundation Trust, University of BirminghamBirminghamUnited Kingdom
| | - Louisa E. Jeffery
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
| | - Rebecca E. Wawman
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- School of Life Sciences, Faculty of Health and Life SciencesCoventry UniversityCoventryUnited Kingdom
| | - Lin Lee Wong
- Newcastle Biomedical Research Centre and Newcastle UniversityNewcastleUnited Kingdom
| | - Jane Birtwistle
- Clinical Immunology DepartmentUniversity of BirminghamBirminghamUnited Kingdom
| | - Helen Bartlett
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Gideon M. Hirschfield
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- Liver Transplantation and Hepatobiliary Unit, Queen Elizabeth HospitalUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Jessica Dyson
- Newcastle Biomedical Research Centre and Newcastle UniversityNewcastleUnited Kingdom
| | - David Jones
- Newcastle Biomedical Research Centre and Newcastle UniversityNewcastleUnited Kingdom
| | - Stefan G. Hubscher
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- Department of Histopathology, Queen Elizabeth HospitalUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building of Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - David H. Adams
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- Liver Transplantation and Hepatobiliary Unit, Queen Elizabeth HospitalUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Ye H. Oo
- Centre for Liver Research, Institute of Immunology and Immunotherapy and National Institute of Health Research Inflammation Biomedical Research Centre BirminghamUniversity of BirminghamBirminghamUnited Kingdom
- Liver Transplantation and Hepatobiliary Unit, Queen Elizabeth HospitalUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| |
Collapse
|
7
|
Brown DL. Immunopathology of the Hepatobiliary System. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2017:329-417. [DOI: 10.1007/978-3-319-47385-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Chambers BJ, Ljunggren H. Unique features of NK cell development during ontogeny revealed in studies of
RAG‐1
‐deficient mice. Immunol Cell Biol 2009; 88:105-6. [DOI: 10.1038/icb.2009.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benedict J Chambers
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Stockholm 141 86 Sweden
| | - Hans‐Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Stockholm 141 86 Sweden
| |
Collapse
|
9
|
Andrews DM, Smyth MJ. A potential role for RAG-1 in NK cell development revealed by analysis of NK cells during ontogeny. Immunol Cell Biol 2009; 88:107-16. [PMID: 19949422 DOI: 10.1038/icb.2009.94] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Little is known regarding natural killer (NK) cell development in hematopoietic and visceral organs during ontogeny. We sought to determine NK cell accumulation during ontogeny and whether organ-specific niches altered development. Neonatal NK cells in the bone marrow, spleen and lung exist as immature CD27(+)/CD11B(lo) cells. The first appearance of mature CD27(lo)/CD11B(+) cells occurs at 3 weeks of age whereas maturation is complete by 8 weeks. In contrast, maturation of liver NK cells is essentially finished at 2 weeks. A role for RAG-1 (recombination-activating gene-1 product) in NK cell development was suggested as RAG-1-deficient mice accumulated NK cells differently. Surprisingly, bone marrow and spleen NK cells are absent in neonatal RAG-1(-/-) mice and an overrepresentation of a precursor NK cell subset, found normally in the liver, was observed in the bone marrow of RAG-1(-/-) mice. As mice lacking specific adaptive immune elements, including T and/or B cells, have normal NK cell repertoires, a more direct role for RAG during NK cell development cannot be excluded. Liver NK cells may represent an independent pool of cells from those developing out of the bone marrow, and RAG-1 itself may have a significant role in NK cell development.
Collapse
Affiliation(s)
- Daniel M Andrews
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | | |
Collapse
|