1
|
Taghi Khani A, Kumar A, Sanchez Ortiz A, Radecki KC, Aramburo S, Lee SJ, Hu Z, Damirchi B, Lorenson MY, Wu X, Gu Z, Stohl W, Sanz I, Meffre E, Müschen M, Forman SJ, Koff JL, Walker AM, Swaminathan S. Isoform-specific knockdown of long and intermediate prolactin receptors interferes with evolution of B-cell neoplasms. Commun Biol 2023; 6:295. [PMID: 36941341 PMCID: PMC10027679 DOI: 10.1038/s42003-023-04667-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Prolactin (PRL) is elevated in B-cell-mediated lymphoproliferative diseases and promotes B-cell survival. Whether PRL or PRL receptors drive the evolution of B-cell malignancies is unknown. We measure changes in B cells after knocking down the pro-proliferative, anti-apoptotic long isoform of the PRL receptor (LFPRLR) in vivo in systemic lupus erythematosus (SLE)- and B-cell lymphoma-prone mouse models, and the long plus intermediate isoforms (LF/IFPRLR) in human B-cell malignancies. To knockdown LF/IFPRLRs without suppressing expression of the counteractive short PRLR isoforms (SFPRLRs), we employ splice-modulating DNA oligomers. In SLE-prone mice, LFPRLR knockdown reduces numbers and proliferation of pathogenic B-cell subsets and lowers the risk of B-cell transformation by downregulating expression of activation-induced cytidine deaminase. LFPRLR knockdown in lymphoma-prone mice reduces B-cell numbers and their expression of BCL2 and TCL1. In overt human B-cell malignancies, LF/IFPRLR knockdown reduces B-cell viability and their MYC and BCL2 expression. Unlike normal B cells, human B-cell malignancies secrete autocrine PRL and often express no SFPRLRs. Neutralization of secreted PRL reduces the viability of B-cell malignancies. Knockdown of LF/IFPRLR reduces the growth of human B-cell malignancies in vitro and in vivo. Thus, LF/IFPRLR knockdown is a highly specific approach to block the evolution of B-cell neoplasms.
Collapse
Affiliation(s)
- Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Soraya Aramburo
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Sung June Lee
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Zunsong Hu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Behzad Damirchi
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Mary Y Lorenson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Eric Meffre
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale School of Medicine, 300 George Street, 06520, New Haven, CT, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
2
|
Ramos-Martínez E, Ramos-Martínez I, Valencia J, Ramos-Martínez JC, Hernández-Zimbrón L, Rico-Luna A, Pérez-Campos E, Pérez-Campos Mayoral L, Cerbón M. Modulatory role of prolactin in type 1 diabetes. Horm Mol Biol Clin Investig 2023; 44:79-88. [PMID: 35852366 DOI: 10.1515/hmbci-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Patients with type 1 diabetes mellitus have been reported to have elevated prolactin levels and a possible relationship between prolactin levels and the development of the disease has been proposed. However, some studies show that prolactin mediates beneficial functions in beta cells. Therefore, we review information on the roles of prolactin in type 1 diabetes mellitus. CONTENT Here we summarize the functions of prolactin in the immune system and in pancreatic beta cells, in addition, we describe studies related to PRL levels, its regulation and alterations of secretion in patients with type 1 diabetes mellitus. SUMMARY Studies in murine models have shown that prolactin protects beta cells from apoptosis, stimulates their proliferation and promotes pancreatic islet revascularization. In addition, some studies in patients with type 1 diabetes mellitus have shown that elevated prolactin levels correlate with better disease control. OUTLOOK Prolactin treatment appears to be a promising strategy to improve beta-cell vascularization and proliferation in transplantation and immunotherapies.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ivan Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jorge Valencia
- Endocrine Research Unit, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Juan Carlos Ramos-Martínez
- Cardiology Department, Hospital General Regional Lic Ignacio Garcia Tellez IMSS, Mérida, Yucatán, México
| | - Luis Hernández-Zimbrón
- Escuela Nacional de Estudios Superiores, Licenciatura en Optometría, Unidad León, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Anaiza Rico-Luna
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Laura Pérez-Campos Mayoral
- Research Centre Medicine UNAM-UABJO. Facultad de Medicina, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, México
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana. Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
3
|
Naz F, Malik A, Riaz M, Mahmood Q, Mehmood MH, Rasool G, Mahmood Z, Abbas M. Bromocriptine Therapy: Review of mechanism of action, safety and tolerability. Clin Exp Pharmacol Physiol 2022; 49:903-922. [DOI: 10.1111/1440-1681.13678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy University of the Punjab Lahore Pakistan
| | - Abdul Malik
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences University of Sargodha Sargodha Pakistan
| | - Qaisar Mahmood
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Government College University Faisalabad Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences University of Sargodha Sargodha Pakistan
| | - Zahed Mahmood
- Department of Biochemistry Government College University Faisalabad Pakistan
| | - Mazhar Abbas
- Department of Biochemistry College of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences (Jhang Campus) Lahore Pakistan
| |
Collapse
|
4
|
Borba VV, Zandman-Goddard G, Shoenfeld Y. Prolactin and autoimmunity: The hormone as an inflammatory cytokine. Best Pract Res Clin Endocrinol Metab 2019; 33:101324. [PMID: 31564625 DOI: 10.1016/j.beem.2019.101324] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, more than 80 autoimmune disorders are recognized, in which an aberrant immune response against different organs and tissues plays a crucial role. Hormonal homeostasis has great influence in achieving competent and healthy immune system function. Prolactin has a bioactive function acting as a hormone and a cytokine. It influences the immune system modulation, mainly inhibiting the negative selection of autoreactive B lymphocytes. Hyperprolactinemia has been detected in many patients with different autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, Sjögren syndrome, multiple sclerosis, autoimmune thyroid disease, systemic sclerosis, among others, and its believed to play a crucial role in disease pathogenesis. A direct correlation between prolactin levels and disease activity was not clear. Genetic factors may have a role in humans as in animal models. Dopamine agonists have proven to offer clinical benefits among autoimmune patients and represent a promising therapy to be explored. In this review, the authors attempt to provide a critical overview on the role of prolactin in the immune system, exploring its contribution to the development of autoimmune diseases.
Collapse
Affiliation(s)
- Vânia Vieira Borba
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gisele Zandman-Goddard
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Department of Medicine C, Wolfson Medical Center, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Russia.
| |
Collapse
|
5
|
Auriemma RS, De Alcubierre D, Pirchio R, Pivonello R, Colao A. The effects of hyperprolactinemia and its control on metabolic diseases. Expert Rev Endocrinol Metab 2018; 13:99-106. [PMID: 30058862 DOI: 10.1080/17446651.2018.1434412] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Hyperprolactinaemia has been implicated in the pathogenesis of obesity and glucose intolerance and is reportedly associated with impaired metabolic profile and metabolic syndrome in approximately one third of patients. AREAS COVERED Suppression of dopaminergic tone has been proposed as a potential mechanism responsible for weight gain and metabolic abnormalities in such patients. Dopamine receptor type 2 (D2R) is abundantly expressed on human pancreatic β-cell and adipocytes, suggesting a regulatory role for peripheral dopamine in insulin and adipose functions. Medical treatment with the dopamine-agonists bromocriptine and cabergoline has been shown to significantly improve gluco-insulinemic and lipid profile, also reducing the prevalence of metabolic syndrome. In patients with concomitant hypogonadism, simultaneous correction of both PRL excess and testosterone deficiency is mandatory to improve insulin resistance and metabolic abnormalities. EXPERT COMMENTARY Hyperprolactinemia promotes metabolic alterations. Control of PRL excess by dopamine agonists is mandatory to induce weight loss and to improve metabolic profile, and replacement treatment for concomitant hypogonadism effectively ameliorates insulin resistance and metabolic syndrome.
Collapse
Affiliation(s)
- Renata S Auriemma
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| | - Dario De Alcubierre
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| | - Rosa Pirchio
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| | - Rosario Pivonello
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| | - Annamaria Colao
- a Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia , University of Naples Federico II , Naples , Italy
| |
Collapse
|
6
|
Wallace DJ. Management of nonrenal and non–central nervous system lupus. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Correale J, Farez MF, Ysrraelit MC. Role of prolactin in B cell regulation in multiple sclerosis. J Neuroimmunol 2014; 269:76-86. [DOI: 10.1016/j.jneuroim.2014.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
|
8
|
Pacheco R, Contreras F, Zouali M. The dopaminergic system in autoimmune diseases. Front Immunol 2014; 5:117. [PMID: 24711809 PMCID: PMC3968755 DOI: 10.3389/fimmu.2014.00117] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/05/2014] [Indexed: 01/02/2023] Open
Abstract
Bidirectional interactions between the immune and the nervous systems are of considerable interest both for deciphering their functioning and for designing novel therapeutic strategies. The past decade has brought a burst of insights into the molecular mechanisms involved in neuroimmune communications mediated by dopamine. Studies of dendritic cells (DCs) revealed that they express the whole machinery to synthesize and store dopamine, which may act in an autocrine manner to stimulate dopamine receptors (DARs). Depending on specific DARs stimulated on DCs and T cells, dopamine may differentially favor CD4+ T cell differentiation into Th1 or Th17 inflammatory cells. Regulatory T cells can also release high amounts of dopamine that acts in an autocrine DAR-mediated manner to inhibit their suppressive activity. These dopaminergic regulations could represent a driving force during autoimmunity. Indeed, dopamine levels are altered in the brain of mouse models of multiple sclerosis (MS) and lupus, and in inflamed tissues of patients with inflammatory bowel diseases or rheumatoid arthritis (RA). The distorted expression of DARs in peripheral lymphocytes of lupus and MS patients also supports the importance of dopaminergic regulations in autoimmunity. Moreover, dopamine analogs had beneficial therapeutic effects in animal models, and in patients with lupus or RA. We propose models that may underlie key roles of dopamine and its receptors in autoimmune diseases.
Collapse
Affiliation(s)
- Rodrigo Pacheco
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida , Santiago , Chile ; Programa de Biomedicina, Universidad San Sebastián , Santiago , Chile
| | - Francisco Contreras
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida , Santiago , Chile ; Universidad Andrés Bello, Facultad de Ciencias Biológicas , Santiago , Chile
| | - Moncef Zouali
- INSERM UMR 1132 , Paris , France ; University Paris Diderot , Paris , France
| |
Collapse
|
9
|
Zhang LN, Shi TY, Yang YJ, Zhang FC. An SLE patient with prolactinoma and recurrent granulomatous mastitis successfully treated with hydroxychloroquine and bromocriptine. Lupus 2014; 23:417-20. [PMID: 24446305 DOI: 10.1177/0961203313520059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Granulomatous mastitis (GM) is a rare benign mammary lesion in which autoimmunity and hyperprolactinemia are considered possible etiological factors. GM has a high frequency of relapse and may lead to chronic ulceration and fistula if not treated properly. Here we report a case of a 22-year-old systemic lupus erythematosus (SLE) patient with three years' disease duration, stable on prednisone and hydroxychloroquine, who was found to have prolactinoma and recurrent GM after she discontinued medication on her own accord. The patient subsequently recovered and remained free of GM relapse under treatment of prednisone, hydroxychloroquine and bromocriptine. Though autoimmune disorders and prolactinoma were reported in GM, a coexisting condition of SLE, prolactinoma, and granulomatous mastitis has rarely been observed in one patient. We suggest our case as an illustrative example of the complex interaction between autoimmunity, neuroendocrine dysfunction, and manifestations in the breast: Immunological disturbances in the background of SLE, coupled with elevated prolactin levels secondary to a prolactinoma, may have predisposed the patient to the development of GM. The mammary lesion recovered and maintained free of relapse under immunosuppressive and antiprolactinemic therapy.
Collapse
Affiliation(s)
- L-N Zhang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | | | | | | |
Collapse
|
10
|
Cardiovascular and renal effects of bromocriptine in diabetic patients with stage 4 chronic kidney disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:104059. [PMID: 23984312 PMCID: PMC3747336 DOI: 10.1155/2013/104059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 01/09/2023]
Abstract
Objective. The objective of this study was to investigate the effect of bromocriptine (BEC) on left ventricular mass index (LVMI) and residual renal function (RRF) in chronic kidney disease (CKD) patients with type 2 diabetes (T2D). Research Design and Methods. A 6-month double-blind randomized controlled trial was conducted in 28 patients with T2D and stage 4 CKD with increased LVMI. Fourteen patients received BEC (2.5 mg, initially 1 tablet with subsequent increase to three times a day) and 14 received a placebo (PBO; initially 1 tablet with subsequent increase to three times a day). Cardiovascular changes were assessed by monitoring 24 h ambulatory blood pressure, two-dimensional-guided M-mode echocardiography, and N-terminal brain natriuretic peptide (NT-proBNP) plasma levels. RRF was evaluated by creatinine clearance and cystatin-C plasma levels. Results. Both BEC and PBO groups decreased blood pressure—but the effect was more pronounced in the BEC group. Average 24 h, diurnal and nocturnal blood pressures, and circadian profile showed improved values compared to the PBO group; LVMI decreased by 14% in BEC and increased by 8% in PBO group. NT-proBNP decreased in BEC (0.54 ± 0.15 to 0.32 ± 0.17 pg/mL) and increased in PBO (0.37 ± 0.15 to 0.64 ± 0.17 pg/mL). Creatinine clearance did not change in the BEC group and decreased in the PBO group. Conclusions. BEC resulted in a decrease on blood pressure and LVMI. BEC also prevented the progression of CKD while maintaining the creatinine clearance unchanged.
Collapse
|
11
|
Gender Disparity in Systemic Lupus Erythematosus, Thoughts After the 8th International Congress on Systemic Lupus Erythematosus, Shanghai, China, 2007. J Clin Rheumatol 2008; 14:185-7. [DOI: 10.1097/rhu.0b013e3181778ce0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Diogenes A, Patwardhan AM, Jeske NA, Ruparel NB, Goffin V, Akopian AN, Hargreaves KM. Prolactin modulates TRPV1 in female rat trigeminal sensory neurons. J Neurosci 2006; 26:8126-36. [PMID: 16885226 PMCID: PMC6673790 DOI: 10.1523/jneurosci.0793-06.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sex dependency in pain perception is well documented and is thought to be attributable to the effect of reproductive hormones on nociceptive processing. In the present study, we evaluated whether estradiol alters gene transcription in the trigeminal ganglia (TG) of ovariectomized rats (OVX). These experiments demonstrated a dramatic (40-fold) upregulation of prolactin (PRL) expression in TG by 17-beta-estradiol (E2). PRL expression was restricted to TG neurons and was highly overlapped with transient potential receptor vanilloid type 1 (TRPV1) (approximately 90%) in TG. Additionally, PRL is released from neurons during stimulation. Both forms of PRL receptors (PRLRs), short and long, were also present in TG neurons. Moreover, expression of the long PRLRs was under control of estradiol. We next evaluated the novel hypothesis that PRL acts as a neuromodulator of sensory neurons. PRL pretreatment significantly enhanced capsaicin-evoked inward currents, calcium influx, and immunoreactive calcitonin gene-related peptide release from cultured TG neurons. This PRL modulation of capsaicin responses was abolished by withdrawal of E2 from TG cultures. Biochemical analysis demonstrated that PRL increased (>50%) phosphorylation levels of TRPV1 in TG. In a behavioral test, PRL pretreatment significantly potentiated capsaicin-evoked nocifensive behavior in female rats at proestrous and in OVX rats after E2 treatment. The in vivo potentiating effect of PRL on capsaicin responses was also dependent on E2. Collectively, these data demonstrate that PRL is a novel modulator of sensory neurons tightly regulated by E2. These findings are consistent with the hypothesis that PRL could contribute to the development of certain pain disorders, possibly including those modulated by estrogen.
Collapse
|
13
|
Goffin V, Bernichtein S, Touraine P, Kelly PA. Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 2005; 26:400-22. [PMID: 15814850 DOI: 10.1210/er.2004-0016] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a large body of literature showing that prolactin (PRL) exerts growth-promoting activities in breast cancer, and possibly in prostate cancer and prostate hyperplasia. In addition, increasing evidence argues for the involvement of locally produced (autocrine) PRL, perhaps even more than pituitary-secreted (endocrine) PRL, in tumor growth. Because dopamine analogs are unable to inhibit PRL production in extrapituitary sites, alternative strategies need investigation. To that end, several PRL receptor antagonists have been developed by introducing various mutations into its natural ligands. For all but one of these analogs, the mechanism of action involves a competition with endogenous PRL for receptor binding. Such compounds are thus candidates to counteract the undesired actions of PRL, not only in tumors, but also in dopamine-resistant prolactinomas. In this review, we describe the different versions of antagonists that have been developed, with emphasis on the controversies regarding their characterization, and the limits for their potential development as a drug. The most recently developed antagonist, Delta1-9-G129R-hPRL, is the only one that is totally devoid of residual agonistic activity, meaning it acts as pure antagonist. We discuss to what extent this new molecule could be considered as a lead compound for inhibiting the actions of human PRL in the above-mentioned diseases. We also speculate on the multiple questions that could be addressed with respect to the therapeutic use of PRL receptor antagonists in patients.
Collapse
Affiliation(s)
- Vincent Goffin
- Institut National de la Santé et de la Recherche Médicale Unit 584, Faculté de Médecine Necker, 156, rue de Vaugirard, 75730 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
14
|
Szyper-Kravitz M, Zandman-Goddard G, Lahita RG, Shoenfeld Y. The Neuroendocrine–Immune Interactions in Systemic Lupus Erythematosus: A Basis for Understanding Disease Pathogenesis and Complexity. Rheum Dis Clin North Am 2005; 31:161-75, x. [PMID: 15639061 DOI: 10.1016/j.rdc.2004.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Much progress has been made in the understanding of the impact of the neuroendocrine immune interactions and the pathogenic role in systemic lupus erythematosus, clinically and at the molecular level. This article focuses on the intertwining networks that involve the hypothalamic-pituitary-adrenal axis, cytokines within the central nervous system, and the sympathetic system. Hormones (estrogen, prolactin, gonadotropin-releasing hormone, and leptin) play an important role as immunomodulatory agents.
Collapse
|
15
|
Méndez I, Alcocer-Varela J, Parra A, Lava-Zavala A, de la Cruz DA, Alarcón-Segovia D, Larrea F. Neuroendocrine dopaminergic regulation of prolactin release in systemic lupus erythematosus: a possible role of lymphocyte-derived prolactin. Lupus 2004; 13:45-53. [PMID: 14870917 DOI: 10.1191/0961203304lu487oa] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prolactin (PRL) secretion by the pituitary is under the control of dopamine. Hyperprolactinemia has been found in patients with systemic lupus erythematosus (SLE) and seems to be associated with clinical activity. T-lymphocytes express PRL and those from SLE patients appear to secrete more PRL than controls. In this study, immuno-(RIA) and bio-(BIO) assayable PRL in both serum and culture media of peripheral blood mononuclear cells (PBMNC) from SLE and control subjects were evaluated in the basal state and in response to 10 mg oral administration of metoclopramide, a dopamine receptor antagonist. Prolactin size heterogeneity in serum and culture media and PRL gene transcription in PBMNC were also studied. Basal serum RIA-PRL, BIO-PRL and the BIO/RIA ratio were similar in both groups. The serum BIO-PRL response after metoclopramide was higher than RIA-PRL in SLE, and this increment was also greater than in control subjects. PBMNC from SLE subjects secreted and produced more BIO-PRL. After metoclopramide, secretion and production of PRL increased only in PBMNC from control women and not in those from SLE patients. Our results demonstrated an increased central dopaminergic tone in SLE and suggest that lymphocyte-derived PRL might contribute to alter the functional activity of the hypothalamic dopaminergic system in SLE attempting to maintain serum PRL within a physiological range.
Collapse
Affiliation(s)
- I Méndez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
16
|
Carreño L, López-Longo FJ, González CM, Monteagudo I. Treatment options for juvenile-onset systemic lupus erythematosus. Paediatr Drugs 2002; 4:241-56. [PMID: 11960513 DOI: 10.2165/00128072-200204040-00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory chronic disease characterized by the presence of activated helper T-cells that induce a B-cell response, resulting in the secretion of pathogenic autoantibodies and the formation of immune complexes. SLE in children is a disease of low prevalence with a wide range of clinical manifestations, which means that the number of randomized controlled studies are few and usually involve a small number of patients. In recent years, new therapeutic agents have appeared and the role of older treatments has been clarified. Many of these treatments are designed to reduce inflammation. The spectrum is broad and ranges from traditional nonsteroidal anti-inflammatory drugs (NSAIDs) to cytotoxic agents that have anti-inflammatory effects. The current treatment of children or adults depends on the clinical expression of the disease. Minor manifestations usually respond to the administration of NSAIDs, low doses of corticosteroids, hydroxychloroquine, or methotrexate. Thalidomide could be used for refractory skin lesions. Major manifestations can endanger the patient's life and require early, aggressive treatment. Kidney disease and other manifestations have been related to the formation or deposit of tissular immune complexes. Therefore, for years the main aim of treatment has been to suppress the immune response. The immunosuppressant treatments used in children with SLE include high doses of corticosteroids, azathioprine, methotrexate, cyclosporine, and cyclophosphamide. Several combinations of medications have been used to obtain a rapid remission or to reduce the risk of toxicity of prolonged administration of cytotoxic agents. Intravenous gamma-globulin has been successfully used in the treatment of lupus nephritis, vasculitis, and acute thrombocytopenia. In spite of numerous published studies, the use of these drugs is still controversial. The immunosuppression achieved with these treatments is nonspecific, not always effective, and associated with significant toxicities; the most significant being growth retardation, accelerated atherosclerosis and severe infectious complications. The purpose of new biological therapies is to achieve specific immunosuppression, which makes it possible to design more effective and less toxic therapeutic strategies. Mycophenolate mofetil is a promising alternative in patients who do not respond to high doses of cyclophosphamide or azathioprine. Some recently developed monoclonal antibodies such as anti-CD40L or anti-IL-10, or other molecules such as LJP394 may prove useful in the near future. Finally, stem cell transplantation may be proposed in patients with severe juvenile-onset SLE who do not respond to any treatment.
Collapse
Affiliation(s)
- Luis Carreño
- Service of Rheumatology, General University Hospital Gregorio Mara, Complutense University of Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
Abstract
Prolactin, a peptide hormone, acts as a cytokine. It has been hypothesized that bromocriptine, a dopamine analog that suppresses pituitary secretion of prolactin, suppresses circulating prolactin and, through this mechanism, has the potential to suppress autoimmune disease. This rationale has been applied to the treatment of systemic lupus erythematosus (SLE), a prototype autoimmune illness that occurs spontaneously in animal models such as the F1 hybrid NZBxNZW mouse, and in humans. Treatment with bromocriptine was effective in treating some induced and spontaneous autoimmune disease in experimental models. Bromocriptine did slow the course of SLE in NZBxNZW mice when treatment was started before the appearance of clinical disease. In addition, bromocriptine was effective in treating established disease in this model. In three separate clinical trials, bromocriptine showed evidence that it had a therapeutic effect in treating human lupus. Bromocriptine is currently considered an unproven therapy for SLE. Its use is entirely experimental. The fact that bromocriptine was effective in treating NZBxNZW mice, the beneficial therapeutic effects in human trials, and the low toxicity of the drug form a solid rationale for undertaking further therapeutic trials.
Collapse
Affiliation(s)
- S E Walker
- Department of Internal Medicine, The University of Missouri-Columbia, 65212, USA.
| |
Collapse
|