1
|
Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 2023; 29:93. [PMID: 37415097 DOI: 10.1186/s10020-023-00684-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
2
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
3
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
4
|
Sun S, Li L, Wu X, Tang R, Lei C, Wang HH, Huang Y, Nie Z, Yao S. Dual-Product Synergistically Enhanced Colorimetric Assay for Sensitive Detection of Lipid Transferase Activity. Anal Chem 2020; 92:15236-15243. [PMID: 33140958 DOI: 10.1021/acs.analchem.0c03973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid transferase-catalyzed protein lipidation plays critical roles in many physiological processes and it has been an increasingly attractive therapeutic target from cancer to neurodegeneration, while sensitive detection of lipid transferase activity in biological samples remains challenging. Here, we presented an AuNP-based colorimetric method with dual-product synergistically enhanced sensitivity for convenient detection of lipid transferase activity. Homo sapiens N-myristoyltransferase 1 (HsNMT1), a key lipid transferase, was selected as the model. Accordingly, positively charged substrate peptides (Pep) of HsNMT1 can induce the aggregation of AuNPs through disrupting their electrostatic repulsion, while the HsNMT1-catalyzed lipid modification generates aggregated lipidated peptides (C14-Pep) and negatively charged HS-CoA, which will eliminate the disruption and stabilize the AuNPs by the formation of Au-S bonds, respectively. Consequently, charge reversal of the biomolecules and the formation of Au-S bonds synergistically contribute to the stability of AuNPs in the presence of HsNMT1. Therefore, the HsNMT1 activity can be visually detected by the naked eye through the color change of the AuNPs originated from the change in their distance-dependent surface plasmon resonance absorptions. Here, the A520/A610 ratio can sensitively reflect the activity of HsNMT1 in the linear range of 2-75 nM with a low detection limit of 0.56 nM. Moreover, the method was successfully applied for probing the HsNMT1 activities in different cell lysates and inhibitor screening. Furthermore, given the replaceability of the substrate peptide, the proposed assay is promising for universal application to other lipid transferases and exhibits great potential in lipid transferase-targeted drug development.
Collapse
Affiliation(s)
- Sujuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Liangwen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Xianhua Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
5
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Kallemeijn WW, Lueg GA, Faronato M, Hadavizadeh K, Goya Grocin A, Song OR, Howell M, Calado DP, Tate EW. Validation and Invalidation of Chemical Probes for the Human N-myristoyltransferases. Cell Chem Biol 2019; 26:892-900.e4. [PMID: 31006618 PMCID: PMC6593224 DOI: 10.1016/j.chembiol.2019.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
On-target, cell-active chemical probes are of fundamental importance in chemical and cell biology, whereas poorly characterized probes often lead to invalid conclusions. Human N-myristoyltransferase (NMT) has attracted increasing interest as target in cancer and infectious diseases. Here we report an in-depth comparison of five compounds widely applied as human NMT inhibitors, using a combination of quantitative whole-proteome N-myristoylation profiling, biochemical enzyme assays, cytotoxicity, in-cell protein synthesis, and cell-cycle assays. We find that N-myristoylation is unaffected by 2-hydroxymyristic acid (100 μM), D-NMAPPD (30 μM), or Tris-DBA palladium (10 μM), with the latter compounds causing cytotoxicity through mechanisms unrelated to NMT. In contrast, drug-like inhibitors IMP-366 (DDD85646) and IMP-1088 delivered complete and specific inhibition of N-myristoylation in a range of cell lines at 1 μM and 100 nM, respectively. This study enables the selection of appropriate on-target probes for future studies and suggests the need for reassessment of previous studies that used off-target compounds.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Gregor A Lueg
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Faronato
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kate Hadavizadeh
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dinis P Calado
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Research Science Hub, 80 Wood Lane, London W12 0BZ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
7
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Rampoldi F, Bonrouhi M, Boehm ME, Lehmann WD, Popovic ZV, Kaden S, Federico G, Brunk F, Gröne HJ, Porubsky S. Immunosuppression and Aberrant T Cell Development in the Absence of N-Myristoylation. THE JOURNAL OF IMMUNOLOGY 2015; 195:4228-43. [DOI: 10.4049/jimmunol.1500622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/01/2015] [Indexed: 01/01/2023]
|
9
|
Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 2014; 38:26-35. [PMID: 25282404 DOI: 10.1016/j.tins.2014.09.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023]
Abstract
Autophagy is an important biological process that is essential for the removal of damaged organelles and toxic or aggregated proteins by delivering them to the lysosome for degradation. Consequently, autophagy has become a primary target for the treatment of neurodegenerative diseases that involve aggregating proteins. In Huntington disease (HD), an expansion of the polyglutamine (polyQ) tract in the N-terminus of the huntingtin (HTT) protein leads to protein aggregation. However, HD is unique among the neurodegenerative proteinopathies in that autophagy is not only dysfunctional but wild type (wt) HTT also appears to play several roles in regulating the dynamics of autophagy. Herein, we attempt to integrate the recently described novel roles of wtHTT and altered autophagy in HD.
Collapse
Affiliation(s)
- Dale D O Martin
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Safia Ladha
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Roberts A, Torrie L, Wyllie S, Fairlamb A. Biochemical and genetic characterization of Trypanosoma cruzi N-myristoyltransferase. Biochem J 2014; 459:323-32. [PMID: 24444291 PMCID: PMC3969225 DOI: 10.1042/bj20131033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/20/2022]
Abstract
Co- and post-translational N-myristoylation is known to play a role in the correct subcellular localization of specific proteins in eukaryotes. The enzyme that catalyses this reaction, NMT (N-myristoyltransferase), has been pharmacologically validated as a drug target in the African trypanosome, Trypanosoma brucei. In the present study, we evaluate NMT as a potential drug target in Trypanosoma cruzi, the causative agent of Chagas' disease, using chemical and genetic approaches. Replacement of both allelic copies of TcNMT (T. cruzi NMT) was only possible in the presence of a constitutively expressed ectopic copy of the gene, indicating that this gene is essential for survival of T. cruzi epimastigotes. The pyrazole sulphonamide NMT inhibitor DDD85646 is 13-23-fold less potent against recombinant TcNMT than TbNMT (T. brucei NMT), with Ki values of 12.7 and 22.8 nM respectively, by scintillation proximity or coupled assay methods. DDD85646 also inhibits growth of T. cruzi epimastigotes (EC50=6.9 μM), but is ~1000-fold less potent than that reported for T. brucei. On-target activity is demonstrated by shifts in cell potency in lines that over- and under-express NMT and by inhibition of intracellular N-myristoylation of several proteins in a dose-dependent manner. Collectively, our findings suggest that N-myristoylation is an essential and druggable target in T. cruzi.
Collapse
Key Words
- chagas’ disease
- click chemistry
- drug target
- n-myristoylation
- trypanosoma cruzi
- validation
- cap5.5, cytoskeleton-associated protein 5.5
- dig, digoxigenin
- dko, double knockout
- dmem, dulbecco’s modified eagle’s medium
- hyg, hygromycin phosphotransferase
- nmt, n-myristoyltransferase
- nmtoe, nmt overexpressor
- pac, puromycin n-acetyltransferase
- rth/fbs, rpmi 1640 medium supplemented with trypticase, haemin, hepes and 10% heat-inactivated fbs
- sko, single knockout
- tbnmt, trypanosoma brucei nmt
- tcep, tris-(2-carboxyethyl)phosphine
- tcnmt, trypanosoma cruzi nmt
- tctryr, trypanosoma cruzi trypanothione reductase
- wt, wild-type
Collapse
Affiliation(s)
- Adam J. Roberts
- *Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Leah S. Torrie
- *Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Susan Wyllie
- *Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Alan H. Fairlamb
- *Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
11
|
Najumudeen AK, Köhnke M, Šolman M, Alexandrov K, Abankwa D. Cellular FRET-Biosensors to Detect Membrane Targeting Inhibitors of N-Myristoylated Proteins. PLoS One 2013; 8:e66425. [PMID: 23824448 PMCID: PMC3688908 DOI: 10.1371/journal.pone.0066425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Hundreds of eukaryotic signaling proteins require myristoylation to functionally associate with intracellular membranes. N-myristoyl transferases (NMT) responsible for this modification are established drug targets in cancer and infectious diseases. Here we describe NANOMS (NANOclustering and Myristoylation Sensors), biosensors that exploit the FRET resulting from plasma membrane nanoclustering of myristoylated membrane targeting sequences of Gαi2, Yes- or Src-kinases fused to fluorescent proteins. When expressed in mammalian cells, NANOMS report on loss of membrane anchorage due to chemical or genetic inhibition of myristoylation e.g. by blocking NMT and methionine-aminopeptidase (Met-AP). We used Yes-NANOMS to assess inhibitors of NMT and a cherry-picked compound library of putative Met-AP inhibitors. Thus we successfully confirmed the activity of DDD85646 and fumagillin in our cellular assay. The developed assay is unique in its ability to identify modulators of signaling protein nanoclustering, and is amenable to high throughput screening for chemical or genetic inhibitors of functional membrane anchorage of myristoylated proteins in mammalian cells.
Collapse
Affiliation(s)
| | - Monika Köhnke
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Kirill Alexandrov
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
- * E-mail: (DA); (KA)
| |
Collapse
|