1
|
Raffin J, Rolland Y, Genoux A, Combes G, Croyal M, Perret B, Guyonnet S, Vellas B, Martinez LO, de Souto Barreto P. Associations between physical activity levels and ATPase inhibitory factor 1 concentrations in older adults. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:409-418. [PMID: 37748689 PMCID: PMC11116968 DOI: 10.1016/j.jshs.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Adenosine triphosphatase inhibitory factor 1 (IF1) is a key protein involved in energy metabolism. IF1 has been linked to various age-related diseases, although its relationship with physical activity (PA) remains unclear. Additionally, the apolipoprotein A-I (apoA-I), a PA-modulated lipoprotein, could play a role in this relationship because it shares a binding site with IF1 on the cell-surface ATP synthase. We examined here the associations between chronic PA and plasma IF1 concentrations among older adults, and we investigated whether apoA-I mediated these associations. METHODS In the present work, 1096 healthy adults (63.8% females) aged 70 years and over who were involved in the Multidomain Alzheimer Prevention Trial study were included. IF1 plasma concentrations (square root of ng/mL) were measured at the 1-year visit of the Multidomain Alzheimer Prevention Trial, while PA levels (square root of metabolic equivalent task min/week) were assessed using questionnaires administered each year from baseline to the 3-year visit. Multiple linear regressions were performed to investigate the associations between the first-year mean PA levels and IF1 concentrations. Mediation analyses were conducted to examine whether apoA-I mediated these associations. Mixed-effect linear regressions were carried out to investigate whether the 1-year visit IF1 concentrations predicted subsequent changes in PA. RESULTS Multiple linear regressions indicated that first-year mean PA levels were positively associated with IF1 concentrations (B = 0.021; SE = 0.010; p = 0.043). Mediation analyses revealed that about 37.7% of this relationship was mediated by apoA-I (Bab = 0.008; SE = 0.004; p = 0.023). Longitudinal investigations demonstrated that higher concentrations of IF1 at the 1-year visit predicted a faster decline in PA levels over the subsequent 2 years (time × IF1: B = -0.148; SE = 0.066; p = 0.025). CONCLUSION This study demonstrates that regular PA is associated with plasma IF1 concentrations, and it suggests that apoA-I partly mediates this association. Additionally, this study finds that baseline concentrations of IF1 can predict future changes in PA. However, further research is needed to fully understand the mechanisms underlying these observations.
Collapse
Affiliation(s)
- Jérémy Raffin
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France.
| | - Yves Rolland
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France; Centre d'Epidémiologie et de Recherche en Santé des Populations, Unité Mixte de Recherche 1295, Institut National de la Santé et de la Recherche Médicale, Université Toulouse-III-Paul-Sabatier, Toulouse 31000, France
| | - Annelise Genoux
- LimitAging Team, Institut des Maladies Métaboliques et Cardiovasculaires, Unité Mixte de Recherche 1297, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III - Paul Sabatier, Toulouse 31432, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31300, France
| | - Guillaume Combes
- LimitAging Team, Institut des Maladies Métaboliques et Cardiovasculaires, Unité Mixte de Recherche 1297, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III - Paul Sabatier, Toulouse 31432, France
| | - Mikael Croyal
- L'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Centre Hospitalo-Universitaire de Nantes, Nantes Université, Nantes 44000, France; BioCore, US16, Structure Fédérative de Recherche Bonamy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Centre Hospitalo-Universitaire de Nantes, Nantes Université, Nantes 44000, France; Plate-forme de spectrométrie de masse, Centre de Recherche en Nutrition HumaineOuest, Nantes 44000, France
| | - Bertrand Perret
- LimitAging Team, Institut des Maladies Métaboliques et Cardiovasculaires, Unité Mixte de Recherche 1297, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III - Paul Sabatier, Toulouse 31432, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31300, France
| | - Sophie Guyonnet
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France; Centre d'Epidémiologie et de Recherche en Santé des Populations, Unité Mixte de Recherche 1295, Institut National de la Santé et de la Recherche Médicale, Université Toulouse-III-Paul-Sabatier, Toulouse 31000, France
| | - Bruno Vellas
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France; Centre d'Epidémiologie et de Recherche en Santé des Populations, Unité Mixte de Recherche 1295, Institut National de la Santé et de la Recherche Médicale, Université Toulouse-III-Paul-Sabatier, Toulouse 31000, France
| | - Laurent O Martinez
- LimitAging Team, Institut des Maladies Métaboliques et Cardiovasculaires, Unité Mixte de Recherche 1297, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III - Paul Sabatier, Toulouse 31432, France.
| | - Philipe de Souto Barreto
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse 31000, France; Centre d'Epidémiologie et de Recherche en Santé des Populations, Unité Mixte de Recherche 1295, Institut National de la Santé et de la Recherche Médicale, Université Toulouse-III-Paul-Sabatier, Toulouse 31000, France
| |
Collapse
|
2
|
Andraski AB, Sacks FM, Aikawa M, Singh SA. Understanding HDL Metabolism and Biology Through In Vivo Tracer Kinetics. Arterioscler Thromb Vasc Biol 2024; 44:76-88. [PMID: 38031838 PMCID: PMC10842918 DOI: 10.1161/atvbaha.123.319742] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
HDL (high-density lipoprotein), owing to its high protein content and small size, is the densest circulating lipoprotein. In contrast to lipid-laden VLDL (very-low-density lipoprotein) and LDL (low-density lipoprotein) that promote atherosclerosis, HDL is hypothesized to mitigate atherosclerosis via reverse cholesterol transport, a process that entails the uptake and clearance of excess cholesterol from peripheral tissues. This process is mediated by APOA1 (apolipoprotein A-I), the primary structural protein of HDL, as well as by the activities of additional HDL proteins. Tracer-dependent kinetic studies are an invaluable tool to study HDL-mediated reverse cholesterol transport and overall HDL metabolism in humans when a cardiovascular disease therapy is investigated. Unfortunately, HDL cholesterol-raising therapies have not been successful at reducing cardiovascular events suggesting an incomplete picture of HDL biology. However, as HDL tracer studies have evolved from radioactive isotope- to stable isotope-based strategies that in turn are reliant on mass spectrometry technologies, the complexity of the HDL proteome and its metabolism can be more readily addressed. In this review, we outline the motivations, timelines, advantages, and disadvantages of the various tracer kinetics strategies. We also feature the metabolic properties of select HDL proteins known to regulate reverse cholesterol transport, which in turn underscore that HDL lipoproteins comprise a heterogeneous particle population whose distinct protein constituents and kinetics likely determine its function and potential contribution to cholesterol clearance.
Collapse
Affiliation(s)
- Allison B. Andraski
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Chen YT, Liao WR, Wang HT, Chen HW, Chen SF. Targeted protein quantitation in human body fluids by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2379-2403. [PMID: 35702881 DOI: 10.1002/mas.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Human body fluids (biofluids) contain various proteins, some of which reflect individuals' physiological conditions or predict diseases. Therefore, the analysis of biofluids can provide substantial information on novel biomarkers for clinical diagnosis and prognosis. In the past decades, mass spectrometry (MS)-based technologies have been developed as proteomic strategies not only for the identification of protein biomarkers but also for biomarker verification/validation in body fluids for clinical applications. The main advantage of targeted MS-based methodologies is the accurate and specific simultaneous quantitation of multiple biomarkers with high sensitivity. Here, we review MS-based methodologies that are currently used for the targeted quantitation of protein components in human body fluids, especially in plasma, urine, cerebrospinal fluid, and saliva. In addition, the currently used MS-based methodologies are summarized with a specific focus on applicable clinical sample types, MS configurations, and acquisition modes.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Rou Liao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Ting Wang
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Wei Chen
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
4
|
Küster A, Croyal M, Moyon T, Darmaun D, Ouguerram K, Ferchaud-Roucher V. Characterization of lipoproteins and associated lipidome in very preterm infants: a pilot study. Pediatr Res 2023; 93:938-947. [PMID: 35739258 DOI: 10.1038/s41390-022-02159-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm birth is associated with higher risks of suboptimal neurodevelopment and cardiometabolic disease later in life. Altered maternal-fetal lipid supply could play a role in such risks. Our hypothesis was that very preterm infants born with very low birth weight (VLBW) have altered lipidome and apolipoprotein profiles, compared with term infants. METHODS Seven mothers of VLBW infants born at <32 GA and 8 full-term mother-infant dyads were included. Cholesterol and triglycerides in lipoproteins were determined in maternal plasma and in the two blood vessels of the umbilical cord (vein (UV) and artery (UA)) following FPLC isolation. Apolipoprotein concentrations in lipoproteins and plasma lipidomic analysis were performed by LC-MS/MS. RESULTS We found higher cholesterol and VLDL-cholesterol in UV and UA and lower apolipoprotein A-I in HDL2 in UV in preterm neonates. Phosphatidylcholine (PC) containing saturated and monounsaturated fatty acids and specific sphingomyelin species were increased in UV and UA, whereas PC containing docosahexaenoic acid (DHA) was reduced in UV of VLBW neonates. CONCLUSIONS Lower DHA-PC suggests a lower DHA bioavailability and may contribute to the impaired neurodevelopment. Altered HDL-2, VLDL, and sphingomyelin profile reflect an atherogenic risk and increased metabolic risk at adulthood in infants born prematurely. IMPACT Lower ApoA-I in HDL2, and increased specific sphingomyelin and phosphatidylcholine containing saturated and monounsaturated fatty acid could explain the accumulation of cholesterol in umbilical vein in VLBW preterm neonates. Decreased phosphatidylcholine containing DHA suggest a reduced DHA availability for brain development in VLBW preterm infants. Characterization of alterations in fetal lipid plasma and lipoprotein profiles may help to explain at least in part the causes of the elevated cardiovascular risk known in people born prematurely and may suggest that a targeted nutritional strategy based on the composition of fatty acids carried by phosphatidylcholine may be promising in infants born very early.
Collapse
Affiliation(s)
- Alice Küster
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
- Division of Inborn Errors of Metabolism and Neurometabolism, CHU Nantes, INSERM, Centre d'Investigation Clinique, 44000, Nantes, France
| | - Mikael Croyal
- Nantes Université, CNRS, INSERM, l'institut du Thorax, 44000, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Thomas Moyon
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | - Dominique Darmaun
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | - Khadija Ouguerram
- Nantes University INRAe, UMR 1280 PhAN, CHU Nantes, CRNH Ouest, IMAD, 44000, Nantes, France
| | | |
Collapse
|
5
|
Whitacre BE, Howles P, Street S, Morris J, Swertfeger D, Davidson WS. Apolipoprotein E content of VLDL limits LPL-mediated triglyceride hydrolysis. J Lipid Res 2022; 63:100157. [PMID: 34863862 PMCID: PMC8953696 DOI: 10.1016/j.jlr.2021.100157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022] Open
Abstract
High levels of circulating triglycerides (TGs), or hypertriglyceridemia, are key components of metabolic diseases, such as type 2 diabetes, metabolic syndrome, and CVD. As TGs are carried by lipoproteins in plasma, hypertriglyceridemia can result from overproduction or lack of clearance of TG-rich lipoproteins (TRLs) such as VLDLs. The primary driver of TRL clearance is TG hydrolysis mediated by LPL. LPL is regulated by numerous TRL protein components, including the cofactor apolipoprotein C-II, but it is not clear how their effects combine to impact TRL hydrolysis across individuals. Using a novel assay designed to mimic human plasma conditions in vitro, we tested the ability of VLDL from 15 normolipidemic donors to act as substrates for human LPL. We found a striking 10-fold difference in hydrolysis rates across individuals when the particles were compared on a protein or a TG basis. While VLDL TG contents moderately correlated with hydrolysis rate, we noticed substantial variations in non-apoB proteins within these particles by MS. The ability of LPL to hydrolyze VLDL TGs did not correlate with apolipoprotein C-II content, but it was strongly inversely correlated with apolipoprotein E (APOE) and, to a lesser extent, apolipoprotein A-II. Addition of exogenous APOE inhibited LPL lipolysis in a dose-dependent manner. The APOE3 and (particularly) APOE4 isoforms were effective at limiting LPL hydrolysis, whereas APOE2 was not. We conclude that APOE on VLDL modulates LPL activity and could be a relevant factor in the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Brynne E Whitacre
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Scott Street
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Debi Swertfeger
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Ying Q, Chan DC, Barrett PHR, Watts GF. Unravelling lipoprotein metabolism with stable isotopes: tracing the flow. Metabolism 2021; 124:154887. [PMID: 34508741 DOI: 10.1016/j.metabol.2021.154887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Dysregulated lipoprotein metabolism is a major cause of atherosclerotic cardiovascular disease (ASCVD). Use of stable isotope tracers and compartmental modelling have provided deeper understanding of the mechanisms underlying lipid disorders in patients at high risk of ASCVD, including familial hypercholesterolemia (FH), elevated lipoprotein(a) [Lp(a)] and metabolic syndrome (MetS). In patients with FH, deficiency in low-density lipoprotein (LDL) receptor activity not only impairs the catabolism of LDL, but also induces hepatic overproduction and decreases catabolism of triglyceride-rich lipoproteins (TRLs). Patients with elevated Lp(a) are characterized by increased hepatic secretion of Lp(a) particles. Atherogenic dyslipidemia in MetS patients relates to a combination of overproduction of very-low density lipoprotein-apolipoprotein (apo) B-100, decreased catabolism of apoB-100-containing particles, and increased catabolism of high-density lipoprotein-apoA-I particles, as well as to impaired clearance of TRLs in the postprandial state. Kinetic studies show that weight loss, fish oils, statins and fibrates have complementary modes of action that correct atherogenic dyslipidemia. Defining the kinetic mechanisms of action of proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 inhibitors on lipid and lipoprotein mechanism in dyslipidemic subjects will further our understanding of these therapies in decreasing the development of ASCVD. "Everything changes but change itself. Everything flows and nothing remains the same... You cannot step twice into the same river, for other waters and yet others go flowing ever on." Heraclitus (c.535- c. 475 BCE).
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - P Hugh R Barrett
- Faculty of Medicine and Health, University of New England, Armidale, Australia
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
7
|
Characterization of Affitin proteolytic digestion in biorelevant media and improvement of their stabilities via protein engineering. Sci Rep 2020; 10:19703. [PMID: 33184451 PMCID: PMC7661517 DOI: 10.1038/s41598-020-76855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Affitins are a novel class of small 7 kDa artificial proteins which can be used as antibody substitutes in therapeutic, diagnostic and biotechnological applications. One challenge for this type of protein agent is their behaviour in the context of oral administration. The digestive system is central, and biorelevant media have fast emerged as relevant and reliable tools for evaluating the bioavailability of drugs. This study describes, for the first time, the stability of Affitins under simulated gastric and intestinal digestion conditions. Affitins appear to be degraded into stable fragments in in vitro gastric medium. We identified cleavage sites generated by pepsin that were silenced by site-directed mutagenesis. This protein engineering allowed us to enhance Affitin properties. We showed that a mutant M1 containing a double mutation of amino acid residues 6 and 7 in H4 and C3 Affitins acquired a resistance against proteolytic digestion. In addition, these mutations were beneficial for target affinity, as well as for production yield. Finally, we found that the mutated residues kept or increased the important pH and temperature stabilities of Affitins. These improvements are particularly sought after in the development of engineered binding proteins for research tools, preclinical studies and clinical applications.
Collapse
|
8
|
A reference measurement of circulating ATPase inhibitory factor 1 (IF1) in humans by LC-MS/MS: Comparison with conventional ELISA. Talanta 2020; 219:121300. [DOI: 10.1016/j.talanta.2020.121300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
|
9
|
Blanchard V, Garçon D, Jaunet C, Chemello K, Billon-Crossouard S, Aguesse A, Garfa A, Famchon G, Torres A, Le May C, Pichelin M, Bigot-Corbel E, Lambert G, Cariou B, Hadjadj S, Krempf M, Bach-Ngohou K, Croyal M. A high-throughput mass spectrometry-based assay for large-scale profiling of circulating human apolipoproteins. J Lipid Res 2020; 61:1128-1139. [PMID: 32404332 DOI: 10.1194/jlr.d120000835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Indexed: 12/20/2022] Open
Abstract
Apolipoproteins govern lipoprotein metabolism and are promising biomarkers of metabolic and cardiovascular diseases. Unlike immunoassays, MS enables the quantification and phenotyping of multiple apolipoproteins. Hence, here, we aimed to develop a LC-MS/MS assay that can simultaneously quantitate 18 human apolipoproteins [A-I, A-II, A-IV, A-V, B48, B100, C-I, C-II, C-III, C-IV, D, E, F, H, J, L1, M, and (a)] and determined apoE, apoL1, and apo(a) phenotypes in human plasma and serum samples. The plasma and serum apolipoproteins were trypsin digested through an optimized procedure and peptides were extracted and analyzed by LC-MS/MS. The method was validated according to standard guidelines in samples spiked with known peptide amounts. The LC-MS/MS results were compared with those obtained with other techniques, and reproducibility, dilution effects, and stabilities were also assessed. Peptide markers were successfully selected for targeted apolipoprotein quantification and phenotyping. After optimization, the assay was validated for linearity, lower limits of quantification, accuracy (biases: -14.8% to 12.1%), intra-assay variability [coefficients of variation (CVs): 1.5-14.2%], and inter-assay repeatability (CVs: 4.1-14.3%). Bland-Altman plots indicated no major statistically significant differences between LC-MS/MS and other techniques. The LC-MS/MS results were reproducible over five repeated experiments (CVs: 1.8-13.7%), and we identified marked differences among the plasma and serum samples. The LC-MS/MS assay developed here is rapid, requires only small sampling volumes, and incurs reasonable costs, thus making it amenable for a wide range of studies of apolipoprotein metabolism. We also highlight how this assay can be implemented in laboratories.
Collapse
Affiliation(s)
- Valentin Blanchard
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France. mailto:
| | - Damien Garçon
- L'Institut du Thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | | | - Kevin Chemello
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France
| | - Stéphanie Billon-Crossouard
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France; CRNH-O Mass Spectrometry Core Facility, Nantes, France
| | - Audrey Aguesse
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France; CRNH-O Mass Spectrometry Core Facility, Nantes, France
| | - Aya Garfa
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
| | | | - Amada Torres
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France
| | - Cédric Le May
- L'Institut du Thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - Matthieu Pichelin
- L'Institut du Thorax, INSERM, CNRS, University of Nantes, CHU Nantes, Nantes, France
| | | | - Gilles Lambert
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France
| | - Bertrand Cariou
- L'Institut du Thorax, INSERM, CNRS, University of Nantes, CHU Nantes, Nantes, France
| | - Samy Hadjadj
- CRNH-O Mass Spectrometry Core Facility, Nantes, France; L'Institut du Thorax, INSERM, CNRS, University of Nantes, CHU Nantes, Nantes, France
| | - Michel Krempf
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France; CRNH-O Mass Spectrometry Core Facility, Nantes, France; ELSAN, Clinique Bretéché, Nantes, France
| | - Kalyane Bach-Ngohou
- Department of Biochemistry, CHU de Nantes, France; INSERM U1235, University of Nantes, Nantes, France
| | - Mikaël Croyal
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France; CRNH-O Mass Spectrometry Core Facility, Nantes, France
| |
Collapse
|
10
|
Croyal M, Blanchard V, Ouguerram K, Chétiveaux M, Cabioch L, Moyon T, Billon-Crossouard S, Aguesse A, Bernardeau K, Le May C, Flet L, Lambert G, Hadjadj S, Cariou B, Krempf M, Nobécourt-Dupuy E. VLDL (Very-Low-Density Lipoprotein)-Apo E (Apolipoprotein E) May Influence Lp(a) (Lipoprotein [a]) Synthesis or Assembly. Arterioscler Thromb Vasc Biol 2020; 40:819-829. [DOI: 10.1161/atvbaha.119.313877] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective:
To clarify the association between PCSK9 (proprotein convertase subtilisin/kexin type 9) and Lp(a) (lipoprotein [a]), we studied Lp(a) kinetics in patients with loss-of-function and gain-of-function
PCSK9
mutations and in patients in whom extended-release niacin reduced Lp(a) and PCSK9 concentrations.
Approach and Results:
Six healthy controls, 9 heterozygous patients with familial hypercholesterolemia (5 with low-density lipoprotein receptor [
LDLR
] mutations and 4 with
PCSK9
gain-of-function mutations) and 3 patients with heterozygous dominant-negative
PCSK9
loss-of-function mutations were included in the preliminary study. Eight patients were enrolled in a second study assessing the effects of 2 g/day extended-release niacin. Apolipoprotein kinetics in VLDL (very-low-density lipoprotein), LDL (low-density lipoprotein), and Lp(a) were studied using stable isotope techniques. Plasma Lp(a) concentrations were increased in
PCSK9
-gain-of-function and familial hypercholesterolemia-
LDLR
groups compared with controls and
PCSK9
-loss-of-function groups (14±12 versus 5±4 mg/dL;
P
=0.04), but no change was observed in Lp(a) fractional catabolic rate. Subjects with
PCSK9
-loss-of-function mutations displayed reduced apoE (apolipoprotein E) concentrations associated with a VLDL-apoE absolute production rate reduction. Lp(a) and VLDL-apoE absolute production rates were correlated (
r
=0.50;
P
<0.05). ApoE-to-apolipoprotein (a) molar ratios in Lp(a) increased with plasma Lp(a) (
r
=0.96;
P
<0.001) but not with PCSK9 levels. Extended-release niacin-induced reductions in Lp(a) and VLDL-apoE absolute production rate were correlated (
r
=0.83;
P
=0.015). In contrast, PCSK9 reduction (−35%;
P
=0.008) was only correlated with that of VLDL-apoE absolute production rate (
r
=0.79;
P
=0.028).
Conclusions:
VLDL-apoE production could determine Lp(a) production and/or assembly. As PCSK9 inhibitors reduce plasma apoE and Lp(a) concentrations, apoE could be the link between PCSK9 and Lp(a).
Collapse
Affiliation(s)
- Mikaël Croyal
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Valentin Blanchard
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France (V.B., G.L.)
| | - Khadija Ouguerram
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Maud Chétiveaux
- L’institut du thorax, INSERM, CNRS, University of Nantes, France (M. Chétiveaux, C.L.M.)
| | - Léa Cabioch
- Biogenouest-Corsaire platform, Saint Gilles, France (L.C.)
| | - Thomas Moyon
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Stéphanie Billon-Crossouard
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Audrey Aguesse
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Karine Bernardeau
- P2R «Production de protéines recombinantes», CRCINA, SFR-Santé, INSERM, CNRS, UNIV Nantes, CHU Nantes, France (K.B.)
| | - Cédric Le May
- L’institut du thorax, INSERM, CNRS, University of Nantes, France (M. Chétiveaux, C.L.M.)
| | - Laurent Flet
- Pharmacy Department, Nantes University Hospital, France (L.F.)
| | - Gilles Lambert
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France (V.B., G.L.)
| | - Samy Hadjadj
- L’institut du thorax, INSERM, CNRS, University of Nantes, CHU Nantes, France (S.H., B.C.)
| | - Bertrand Cariou
- L’institut du thorax, INSERM, CNRS, University of Nantes, CHU Nantes, France (S.H., B.C.)
| | - Michel Krempf
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
- ELSAN, clinique Bretéché, Nantes, France (M.K.)
| | | |
Collapse
|
11
|
PCSK9 inhibition with alirocumab reduces lipoprotein(a) levels in nonhuman primates by lowering apolipoprotein(a) production rate. Clin Sci (Lond) 2018; 132:1075-1083. [DOI: 10.1042/cs20180040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 12/24/2022]
Abstract
Therapeutic antibodies targeting proprotein convertase subtilisin kexin type 9 (PCSK9) (e.g. alirocumab) lower low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp(a)] levels in clinical trials. We recently showed that PCSK9 enhances apolipoprotein(a) [apo(a)] secretion from primary human hepatocytes but does not affect Lp(a) cellular uptake. Here, we aimed to determine how PCSK9 neutralization modulates Lp(a) levels in vivo.
Six nonhuman primates (NHP) were treated with alirocumab or a control antibody (IgG1) in a crossover protocol. After the lowering of lipids reached steady state, NHP received an intravenous injection of [2H3]-leucine, and blood samples were collected sequentially over 48 h. Enrichment of apolipoproteins in [2H3]-leucine was assessed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Kinetic parameters were calculated using numerical models with the SAAMII software. Compared with IgG1, alirocumab significantly reduced total cholesterol (TC) (−28%), LDL-C (−67%), Lp(a) (−56%), apolipoprotein B100 (apoB100) (−53%), and apo(a) (−53%). Alirocumab significantly increased the fractional catabolic rate of apoB100 (+29%) but not that of apo(a). Conversely, alirocumab sharply and significantly reduced the production rate (PR) of apo(a) (−42%), but not significantly that of apoB100, compared with IgG1, respectively.
In line with the observations made in human hepatocytes, the present kinetic study establishes that PCSK9 neutralization with alirocumab efficiently reduces circulating apoB100 and apo(a) levels by distinct mechanisms: apoB primarily by enhancing its catabolism and apo(a) primarily by lowering its production.
Collapse
|
12
|
Blanchard V, Ramin-Mangata S, Billon-Crossouard S, Aguesse A, Durand M, Chemello K, Nativel B, Flet L, Chétiveaux M, Jacobi D, Bard JM, Ouguerram K, Lambert G, Krempf M, Croyal M. Kinetics of plasma apolipoprotein E isoforms by LC-MS/MS: a pilot study. J Lipid Res 2018. [PMID: 29540575 DOI: 10.1194/jlr.p083576] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human apoE exhibits three major isoforms (apoE2, apoE3, and apoE4) corresponding to polymorphism in the APOE gene. Total plasma apoE concentrations are closely related to these isoforms, but the underlying mechanisms are unknown. We aimed to describe the kinetics of apoE individual isoforms to explore the mechanisms for variable total apoE plasma concentrations. We used LC-MS/MS to discriminate between isoforms by identifying specific peptide sequences in subjects (three E2/E3, three E3/E3, and three E3/E4 phenotypes) who received a primed constant infusion of 2H3-leucine for 14 h. apoE concentrations and leucine enrichments were measured hourly in plasma. Concentrations of apoE2 were higher than apoE3, and concentrations of apoE4 were lower than apoE3. There was no difference between apoE3 and apoE4 catabolic rates and between apoE2 and apoE3 production rates (PRs), but apoE2 catabolic rates and apoE4 PRs were lower. The mechanisms leading to the difference in total plasma apoE concentrations are therefore related to contrasted kinetics of the isoforms. Production or catabolic rates are differently affected according to the specific isoforms. On these grounds, studies on the regulation of the involved biochemical pathways and the impact of pathological environments are now warranted.
Collapse
Affiliation(s)
- Valentin Blanchard
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INSERM, UMR 1188 DéTROI, University of La Réunion, F-97490 Sainte Clotilde, France
| | | | - Stéphanie Billon-Crossouard
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INRA, UMR 1280 PhAN, F-44000 Nantes, France
| | - Audrey Aguesse
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INRA, UMR 1280 PhAN, F-44000 Nantes, France
| | - Manon Durand
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,L'institut du Thorax, INSERM, CNRS, UNIV Nantes, F-44000 Nantes, France
| | - Kevin Chemello
- INSERM, UMR 1188 DéTROI, University of La Réunion, F-97490 Sainte Clotilde, France
| | - Brice Nativel
- INSERM, UMR 1188 DéTROI, University of La Réunion, F-97490 Sainte Clotilde, France
| | - Laurent Flet
- Pharmacy Department, Nantes University Hospital, F-44093 Nantes, France
| | - Maud Chétiveaux
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France
| | - David Jacobi
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, F-44000 Nantes, France.,L'institut du Thorax, CHU Nantes, F-44093 Nantes, France
| | - Jean-Marie Bard
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,University of Nantes, Mer, Molécules, Santé (MMS) - EA 2160 and Institut Universitaire Mer et Littoral (IUML) - FR3473 CNRS, F-44000 Nantes, France, and Department of Biopathology, Institute of Cancer and Oncology, F-44800 Saint-Herblain, France
| | - Khadija Ouguerram
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INRA, UMR 1280 PhAN, F-44000 Nantes, France
| | - Gilles Lambert
- INSERM, UMR 1188 DéTROI, University of La Réunion, F-97490 Sainte Clotilde, France
| | - Michel Krempf
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INRA, UMR 1280 PhAN, F-44000 Nantes, France.,L'institut du Thorax, CHU Nantes, F-44093 Nantes, France
| | - Mikaël Croyal
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France .,INRA, UMR 1280 PhAN, F-44000 Nantes, France
| |
Collapse
|
13
|
Croyal M, Kaabia Z, León L, Ramin-Mangata S, Baty T, Fall F, Billon-Crossouard S, Aguesse A, Hollstein T, Sullivan D, Nobecourt E, Lambert G, Krempf M. Fenofibrate decreases plasma ceramide in type 2 diabetes patients: A novel marker of CVD? DIABETES & METABOLISM 2018; 44:143-149. [DOI: 10.1016/j.diabet.2017.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/30/2017] [Accepted: 04/13/2017] [Indexed: 02/05/2023]
|
14
|
Charpentier M, Croyal M, Carbonnelle D, Fortun A, Florenceau L, Rabu C, Krempf M, Labarrière N, Lang F. IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens. Oncotarget 2018; 7:59704-59713. [PMID: 27486971 PMCID: PMC5312342 DOI: 10.18632/oncotarget.10923] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023] Open
Abstract
MELOE-1 and MELOE-2, two highly specific melanoma antigens involved in T cell immunosurveillance are produced by IRES-dependent translation of the long « non coding » and polycistronic RNA, meloe. In the present study, we document the expression of an additional ORF, MELOE-3, located in the 5' region of meloe. Data from in vitro translation experiments and transfection of melanoma cells with bicistronic vectors documented that MELOE-3 is exclusively translated by the classical cap-dependent pathway. Using a sensitive tandem mass spectrometry technique, we detected the presence of MELOE-3 in total lysates of both melanoma cells and normal melanocytes. This contrasts with our previous observation of the melanoma-restricted expression of MELOE-1 and MELOE-2. Furthermore, in vitro stimulation of PBMC from 6 healthy donors with overlapping peptides from MELOE-1 or MELOE-3 revealed a very scarce MELOE-3 specific T cell repertoire as compared to the abundant repertoire observed against MELOE-1. The poor immunogenicity of MELOE-3 and its expression in melanocytes is consistent with an immune tolerance towards a physiologically expressed protein. In contrast, melanoma-restricted expression of IRES-dependent MELOE-1 may explain its high immunogenicity. In conclusion, within the MELOE family, IRES-dependent antigens represent the best T cell targets for immunotherapy of melanoma.
Collapse
Affiliation(s)
- Maud Charpentier
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Mikael Croyal
- UMR INRA 1280, CHU, Nantes, France.,West Human Nutrition Research Center, CHU, Nantes, France
| | | | - Agnès Fortun
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Laetitia Florenceau
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,CHU, Nantes, France
| | - Catherine Rabu
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Michel Krempf
- UMR INRA 1280, CHU, Nantes, France.,West Human Nutrition Research Center, CHU, Nantes, France.,CHU, Nantes, France
| | - Nathalie Labarrière
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,CHU, Nantes, France
| | - François Lang
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
15
|
Croyal M, Billon-Crossouard S, Goulitquer S, Aguesse A, León L, Fall F, Chétiveaux M, Moyon T, Blanchard V, Ouguerram K, Lambert G, Nobécourt E, Krempf M. Stable Isotope Kinetic Study of ApoM (Apolipoprotein M). Arterioscler Thromb Vasc Biol 2017; 38:255-261. [PMID: 29146748 DOI: 10.1161/atvbaha.117.310208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/30/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE ApoM (apolipoprotein M) binds primarily to high-density lipoprotein before to be exchanged with apoB (apolipoprotein B)-containing lipoproteins. Low-density lipoprotein (LDL) receptor-mediated clearance of apoB-containing particles could influence plasma apoM kinetics and decrease its antiatherogenic properties. In humans, we aimed to describe the interaction of apoM kinetics with other components of lipid metabolism to better define its potential benefit on atherosclerosis. APPROACH AND RESULTS Fourteen male subjects received a primed infusion of 2H3-leucine for 14 hours, and analyses were performed by liquid chromatography-tandem mass spectrometry from the hourly plasma samples. Fractional catabolic rates and production rates within lipoproteins were calculated using compartmental models. ApoM was found not only in high-density lipoprotein (59%) and LDL (4%) but also in a non-lipoprotein-related compartment (37%). The apoM distribution was heterogeneous within LDL and non-lipoprotein-related compartments according to plasma triglycerides (r=0.86; P<0.001). The relationships between sphingosine-1-phosphate and apoM were confirmed in all compartments (r range, 0.55-0.89; P<0.05). ApoM fractional catabolic rates and production rates were 0.16±0.07 pool/d and 0.14±0.06 mg/kg per day in high-density lipoprotein and 0.56±0.10 pool/d and 0.03±0.01 mg/kg per day in LDL, respectively. Fractional catabolic rates of LDL-apoM and LDL-apoB100 were correlated (r=0.55; P=0.042). Significant correlations were found between triglycerides and production rates of LDL-apoM (r=0.73; P<0.004). CONCLUSIONS In humans, LDL kinetics play a key role in apoM turnover. Plasma triglycerides act on both apoM and sphingosine-1-phosphate distributions between lipoproteins. These results confirmed that apoM could be bound to high-density lipoprotein after secretion and then quickly exchanged with a non-lipoprotein-related compartment and to LDL to be slowly catabolized.
Collapse
Affiliation(s)
- Mikaël Croyal
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Stéphanie Billon-Crossouard
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Sophie Goulitquer
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Audrey Aguesse
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Luis León
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Fanta Fall
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Maud Chétiveaux
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Thomas Moyon
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Valentin Blanchard
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Khadija Ouguerram
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Gilles Lambert
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Estelle Nobécourt
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Michel Krempf
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.).
| |
Collapse
|
16
|
Lee LH, Andraski AB, Pieper B, Higashi H, Sacks FM, Aikawa M, Singh SA. Automation of PRM-dependent D3-Leu tracer enrichment in HDL to study the metabolism of apoA-I, LCAT and other apolipoproteins. Proteomics 2017; 17. [PMID: 27862954 DOI: 10.1002/pmic.201600085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/09/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
We developed an automated quantification workflow for PRM-enabled detection of D3-Leu labeled apoA-I in high-density lipoprotein (HDL) isolated from humans. Subjects received a bolus injection of D3-Leu and blood was drawn at eight time points over three days. HDL was isolated and separated into six size fractions for subsequent proteolysis and PRM analysis for the detection of D3-Leu signal from ∼0.03 to 0.6% enrichment. We implemented an intensity-based quantification approach that takes advantage of high-resolution/accurate mass PRM scans to identify the D3-Leu 2HM3 ion from non-specific peaks. Our workflow includes five modules for extracting the targeted PRM peak intensities (XPIs): Peak centroiding, noise removal, fragment ion matching using Δm/z windows, nine intensity quantification options, and validation and visualization outputs. We optimized the XPI workflow using in vitro synthesized and clinical samples of D0/D3-Leu labeled apoA-I. Three subjects' apoA-I enrichment curves in six HDL size fractions, and LCAT, apoA-II and apoE from two size fractions were generated within a few hours. Our PRM strategy and automated quantification workflow will expedite the turnaround of HDL apoA-I metabolism data in clinical studies that aim to understand and treat the mechanisms behind dyslipidemia.
Collapse
Affiliation(s)
- Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Allison B Andraski
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brett Pieper
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. RECENT FINDINGS Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. SUMMARY Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Collapse
Affiliation(s)
- Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Plasma PCSK9 measurement by liquid chromatography-Tandem mass spectrometry and comparison with conventional ELISA. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1044-1045:24-29. [PMID: 28064066 DOI: 10.1016/j.jchromb.2016.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 11/22/2022]
Abstract
The combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and trypsin proteolysis is an effective tool for accurate quantitation of multiple proteins in a single run. However, expensive samples pre-treatment as immunoenrichment are often required to analyze low abundant proteins. Plasma proprotein convertase subtilisin/kexin type 9 (PCSK9), a circulating regulator of low-density lipoprotein metabolism, was studied as an example of a low abundant plasma protein. We investigated post-proteolysis solid-phase extraction (SPE) as an alternative strategy to improve its detection. After optimization of pretreatment, including denaturation, reduction, alkylation, tryptic digestion and selective SPE concentration, 91±7% of PCSK9 was recovered from human plasma samples and coefficients of variation were less than 13.2% with a lower limit of quantification of 37.5ng/ml. This LC-MS/MS method was compared with standard enzyme-linked immunosorbent assay in 30 human plasma samples with a broad range of PCSK9 concentrations. Both methods were significantly correlated (r=0.936, p<0.001) with less than 7% of the values out of the 95% confidence interval and similar concentrations were measured using either LC-MS/MS or ELISA methods (514.2±217.2 vs. 504.2±231.0ng/ml, respectively- p=NS). This method involving SPE is an effective measurement tool for low abundant plasma protein analysis that could be easily included in multiplexed assays.
Collapse
|
19
|
Singh SA, Aikawa E, Aikawa M. Current Trends and Future Perspectives of State-of-the-Art Proteomics Technologies Applied to Cardiovascular Disease Research. Circ J 2016; 80:1674-83. [PMID: 27430298 DOI: 10.1253/circj.cj-16-0499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of mass spectrometry (MS)-dependent protein research is increasing in the cardiovascular sciences. A major reason for this is the versatility of and ability for MS technologies to accommodate a variety of biological questions such as those pertaining to basic research and clinical applications. In addition, mass spectrometers are becoming easier to operate, and require less expertise to run standard proteomics experiments. Nonetheless, despite the increasing interest in proteomics, many non-expert end users may not be as familiar with the variety of mass spectrometric tools and workflows available to them. We therefore review the major strategies used in unbiased and targeted MS, while providing specific applications in cardiovascular research. Because MS technologies are developing rapidly, it is important to understand the core concepts, strengths and weaknesses. Most importantly, we hope to inspire the further integration of this exciting technology into everyday research in the cardiovascular sciences. (Circ J 2016; 80: 1674-1683).
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School
| | | | | |
Collapse
|
20
|
Rimbert A, Pichelin M, Lecointe S, Marrec M, Le Scouarnec S, Barrak E, Croyal M, Krempf M, Le Marec H, Redon R, Schott JJ, Magré J, Cariou B. Identification of novel APOB mutations by targeted next-generation sequencing for the molecular diagnosis of familial hypobetalipoproteinemia. Atherosclerosis 2016; 250:52-6. [PMID: 27179706 DOI: 10.1016/j.atherosclerosis.2016.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Familial hypobetalipoproteinemia (FHBL) is a co-dominant disorder characterized by decreased plasma levels of LDL-cholesterol and apolipoprotein B (ApoB). Currently, genetic diagnosis in FHBL relies largely on Sanger sequencing to identify APOB and PCSK9 gene mutations and on western blotting to detect truncated ApoB species. METHODS Here, we applied targeted enrichment and next-generation sequencing (NGS) on a panel of three FHBL genes and two abetalipoproteinemia genes (APOB, PCSK9, ANGPTL3, MTTP and SAR1B). RESULTS In this study, we identified five likely pathogenic heterozygous rare variants. These include four novel nonsense mutations in APOB (p.Gln845*, p.Gln2571*, p.Cys2933* and p.Ser3718*) and a rare variant in PCSK9 (Minor Allele Frequency <0.1%). The affected family members tested were shown to be carriers, suggesting co-segregation with low LDL-C. CONCLUSIONS Our study further demonstrates that NGS is a reliable and practical approach for the molecular screening of FHBL-causative genes that may provide a mean for deciphering the genetic basis in FHBL.
Collapse
Affiliation(s)
- Antoine Rimbert
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France
| | - Matthieu Pichelin
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France; CHU Nantes, l'institut du Thorax, Nantes, F-44000, France; CIC Thorax, CHU Nantes, l'institut du Thorax, Nantes, F-44000, France
| | - Simon Lecointe
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France; CHU Nantes, l'institut du Thorax, Nantes, F-44000, France
| | - Marie Marrec
- CHU Nantes, l'institut du Thorax, Nantes, F-44000, France; CIC Thorax, CHU Nantes, l'institut du Thorax, Nantes, F-44000, France
| | - Solena Le Scouarnec
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France
| | - Elias Barrak
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France; CHU Nantes, l'institut du Thorax, Nantes, F-44000, France
| | - Mikael Croyal
- Centre de Recherche en Nutrition Humaine de l'Ouest (CRNHO, INRA UMR1280), Nantes, F-44093, France
| | - Michel Krempf
- Université de Nantes, Nantes, F-44000, France; CHU Nantes, l'institut du Thorax, Nantes, F-44000, France; Centre de Recherche en Nutrition Humaine de l'Ouest (CRNHO, INRA UMR1280), Nantes, F-44093, France
| | - Hervé Le Marec
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France; CHU Nantes, l'institut du Thorax, Nantes, F-44000, France
| | - Richard Redon
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France; CHU Nantes, l'institut du Thorax, Nantes, F-44000, France
| | - Jean-Jacques Schott
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France; CHU Nantes, l'institut du Thorax, Nantes, F-44000, France.
| | - Jocelyne Magré
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France
| | - Bertrand Cariou
- INSERM, UMR1087, l'institut du thorax, Nantes, F-44000, France; CNRS, UMR 6291, Nantes, F-44000, France; Université de Nantes, Nantes, F-44000, France; CHU Nantes, l'institut du Thorax, Nantes, F-44000, France; CIC Thorax, CHU Nantes, l'institut du Thorax, Nantes, F-44000, France.
| |
Collapse
|