1
|
Nguyen DPL, Le HT, Kim DH, Lee CW, Li J, Lim CW, Kim KP, Kim TW. Enrichment and MALDI-TOF-MS/MS analysis of phosphatidylinositol bisphosphates in brain tissue. Anal Biochem 2025; 698:115749. [PMID: 39719188 DOI: 10.1016/j.ab.2024.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Triazolium α-cyclodextrin click cluster-magnetic agarose bead conjugate (+CCC-MAB) was used to enrich phosphatidylinositol bisphosphates in brain tissue. The enriched sample was phosphate-methylated and analyzed by MALDI-TOF-MS/MS in positive ion mode. +CCC-MAB effectively removed weak-binding interferences from the phosphoinositide extract and improved the signal-to-noise ratio. The MALDI-TOF-MS/MS fragment ion revealed sodium adducts of polar head groups, exhibiting a converse fragmentation pattern compared to LC-ESI fragmentation. Our +CCC-MAB-based phosphoinositide enrichment method enabled MALDI-TOF-MS/MS to assign 38 peaks in brain tissue and identify two phosphatidylinositol monophosphates, fifteen bisphosphates, and two trisphosphates. To our knowledge, this is the first study to analyze phosphatidylinositol bisphosphates in brain tissue using specific PIP enrichment and phosphate-methylation with MALDI-TOF-MS/MS.
Collapse
Affiliation(s)
- Dinh Phi Long Nguyen
- Dept. of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hoa Thi Le
- Dept. of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea; VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, 123105, Viet Nam
| | - Dae Ho Kim
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang-Wook Lee
- Dept. of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Jiao Li
- Dept. of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Choon Woo Lim
- Department of Chemistry, College of Life Science and Nano-technology, Hannam University, Daejeon, 34430, Republic of Korea
| | - Kwang Pyo Kim
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Tae Woo Kim
- Dept. of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
2
|
Okeoma CM, Naushad W, Okeoma BC, Gartner C, Santos-Ortega Y, Vary C, Carregari VC, Larsen MR, Noghero A, Grassi-Oliveira R, Walss-Bass C. Lipidomic and Proteomic Insights from Extracellular Vesicles in Postmortem Dorsolateral Prefrontal Cortex Reveal Substance Use Disorder-Induced Brain Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607388. [PMID: 39211229 PMCID: PMC11360920 DOI: 10.1101/2024.08.09.607388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to glial activation and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD. In particular, our study investigated neuroinflammatory signatures in SUD by isolating EVs from the dorsolateral prefrontal cortex (dlPFC) Brodmann's area 9 (BA9) in postmortem subjects. We isolated BA9-derived EVs from postmortem brain tissues of eight individuals (controls: n=4, SUD: n=4). The EVs were analyzed for physical properties (concentration, size, zeta potential, morphology) and subjected to integrative multi-omics analysis to profile the lipidomic and proteomic characteristics. We assessed the interactions and bioactivity of EVs by evaluating their uptake by glial cells. We further assessed the effects of EVs on complement mRNA expression in glial cells as well as their effects on microglial migration. No significant differences in EV concentration, size, zeta potential, or surface markers were observed between SUD and control groups. However, lipidomic analysis revealed significant enrichment of glycerophosphoinositol bisphosphate (PIP2) in SUD EVs. Proteomic analysis indicates downregulation of SERPINB12, ACYP2, CAMK1D, DSC1, and FLNB, and upregulation of C4A, C3, and ALB in SUD EVs. Gene ontology and protein-protein interactome analyses highlight functions such as cell motility, focal adhesion, and acute phase response signaling that is associated with the identified proteins. Both control and SUD EVs increased C3 and C4 mRNA expression in microglia, but only SUD EVs upregulated these genes in astrocytes. SUD EVs also significantly enhanced microglial migration in a wound healing assay.This study successfully isolated EVs from postmortem brains and used a multi-omics approach to identify EV-associated lipids and proteins in SUD. Elevated C3 and C4 in SUD EVs and the distinct effects of EVs on glial cells suggest a crucial role in acute phase response signaling and neuroinflammation.
Collapse
|
3
|
Le HT, Nguyen DPL, Jung GT, Kim E, Yang SH, Lee SM, Lee EA, Jung W, Kim TW, Kim KP. Enrichment and MALDI-TOF MS Analysis of Phosphoinositides in Brain Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1069-1075. [PMID: 38603805 DOI: 10.1021/jasms.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Triazolium cyclodextrin click cluster (+CCC) is an ideal scaffold to specifically bind phosphoinositides (PIPs) via multivalent electrostatic interaction. A new enrichment material, triazolium cyclodextrin click cluster-magnetic agarose bead conjugate (+CCC-MAB), was synthesized and applied to the PIP enrichment of brain tissue. The enriched sample was analyzed using MALDI-TOF MS in negative ion mode without any derivatization. The PIP extract of brain tissue is known to contain abundant lipid interferences. By employing magnetic pull-down separation using +CCC-MAB, we effectively removed the weak-binding interferences in the PIP extract, thereby improving the signal-to-noise ratio (S/N) of the PIPs. Our +CCC-MAB-based PIP enrichment enabled us to analyze 16 PIP species in brain tissue. Six species with high S/N were assigned by MS/MS, while the remaining 10 species with low S/N were characterized by an empirical selection guide based on the biological relevance of PIPs. We conclude that +CCC-MAB-based PIP enrichment is a promising MALDI sample preparation method for specific PIP analysis in brain tissue.
Collapse
Affiliation(s)
- Hoa Thi Le
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Faculty of Chemical Technology, Hanoi University of Industry, 298 Minh Khai, Bac Tu Liem, Ha Noi 143510, Vietnam
| | - Dinh Phi Long Nguyen
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Gun Tae Jung
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunju Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seon Hee Yang
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sun Min Lee
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Ah Lee
- Impedance Imaging Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Jung
- Department of Emergency Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Woo Kim
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Seubnooch P, Montani M, Tsouka S, Claude E, Rafiqi U, Perren A, Dufour JF, Masoodi M. Characterisation of hepatic lipid signature distributed across the liver zonation using mass spectrometry imaging. JHEP Rep 2023; 5:100725. [PMID: 37284141 PMCID: PMC10240278 DOI: 10.1016/j.jhepr.2023.100725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 06/08/2023] Open
Abstract
Background & Aims Lipid metabolism plays an important role in liver pathophysiology. The liver lobule asymmetrically distributes oxygen and nutrition, resulting in heterogeneous metabolic functions. Periportal and pericentral hepatocytes have different metabolic functions, which lead to generating liver zonation. We developed spatial metabolic imaging using desorption electrospray ionisation mass spectrometry to investigate lipid distribution across liver zonation with high reproducibility and accuracy. Methods Fresh frozen livers from healthy mice with control diet were analysed using desorption electrospray ionisation mass spectrometry imaging. Imaging was performed at 50 μm × 50 μm pixel size. Regions of interest (ROIs) were manually created by co-registering with histological data to determine the spatial hepatic lipids across liver zonation. The ROIs were confirmed by double immunofluorescence. The mass list of specific ROIs was automatically created, and univariate and multivariate statistical analysis were performed to identify statistically significant lipids across liver zonation. Results A wide range of lipid species was identified, including fatty acids, phospholipids, triacylglycerols, diacylglycerols, ceramides, and sphingolipids. We characterised hepatic lipid signatures in three different liver zones (periportal zone, midzone, and pericentral zone) and validated the reproducibility of our method for measuring a wide range of lipids. Fatty acids were predominantly detected in the periportal region, whereas phospholipids were distributed in both the periportal and pericentral zones. Interestingly, phosphatidylinositols, PI(36:2), PI(36:3), PI(36:4), PI(38:5), and PI(40:6) were located predominantly in the midzone (zone 2). Triacylglycerols and diacylglycerols were detected mainly in the pericentral region. De novo triacylglycerol biosynthesis appeared to be the most influenced pathway across the three zones. Conclusions The ability to accurately assess zone-specific hepatic lipid distribution in the liver could lead to a better understanding of lipid metabolism during the progression of liver disease. Impact and Implications Zone-specific hepatic lipid metabolism could play an important role in lipid homoeostasis during disease progression. Herein, we defined the zone-specific references of hepatic lipid species in the three liver zones using molecular imaging. The de novo triacylglycerol biosynthesis was highlighted as the most influenced pathway across the three zones.
Collapse
Affiliation(s)
- Patcharamon Seubnooch
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Matteo Montani
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Sofia Tsouka
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Umara Rafiqi
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Francois Dufour
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
5
|
ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep 2022; 40:111364. [PMID: 36130504 DOI: 10.1016/j.celrep.2022.111364] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that the main physiological localization of the lipid transfer proteins ORP5 and ORP8 is at mitochondria-associated ER membrane (MAM) subdomains, physically linked to the mitochondrial intermembrane space bridging (MIB)/mitochondrial contact sites and cristae junction organizing system (MICOS) complexes that bridge the two mitochondrial membranes. We also show that ORP5/ORP8 mediate non-vesicular transport of phosphatidylserine (PS) lipids from the ER to mitochondria by cooperating with the MIB/MICOS complexes. Overall our study reveals a physical and functional link between ER-mitochondria contacts involved in lipid transfer and intra-mitochondrial membrane contacts maintained by the MIB/MICOS complexes.
Collapse
|
6
|
Li P, Lämmerhofer M. Isomer Selective Comprehensive Lipidomics Analysis of Phosphoinositides in Biological Samples by Liquid Chromatography with Data Independent Acquisition Tandem Mass Spectrometry. Anal Chem 2021; 93:9583-9592. [PMID: 34191474 DOI: 10.1021/acs.analchem.1c01751] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphoinositides (PIPx) play central roles in membrane dynamics and signal transduction of key functions like cellular growth, proliferation, differentiation, migration, and adhesion. They are highly regulated through a network of distinct phosphatidylinositol phosphates consisting of seven groups and three regioisomers in two groups (PIP and PIP2), which arise from phosphorylation at 3', 4', and 5' positions of the inositol ring. Numerous studies have revealed the importance of both fatty acyl chains, degree of phosphorylation, and phosphorylation positions under physiological and pathological states. However, a comprehensive analytical method that allows differentiation of all regioisomeric forms with different acyl side chains and degrees of phosphorylation is still lacking. Here, we present an integrated comprehensive workflow of PIPx analysis utilizing a chiral polysaccharide stationary phase coupled with electrospray ionization high-resolution mass spectrometry with a data independent acquisition technique using the SWATH technology. Correspondingly, a targeted data mining strategy in the untargeted comprehensively acquired MS and MS/MS data was developed. This powerful highly selective method gives a full picture of PIPx profiles in biological samples. Herein, we present for the first time the full PIPx profiles of NIST SRM1950 plasma, Pichia pastoris lipid extract, and HeLa cell extract, including profile changes upon treatment with potential PI3K inhibitor wortmannin. We also illustrate using this inhibitor that measurements of the PIPx profile averaged over the distinct regioisomers by analytical procedures, which cannot differentiate between the individual PIPx isomers, can easily lead to biased conclusions.
Collapse
Affiliation(s)
- Peng Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| |
Collapse
|
7
|
Mass Spectrometry-based Metabolomics in Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:509-531. [PMID: 33834448 DOI: 10.1007/978-981-33-6064-8_19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metabolomics is the systematic study of metabolite profiles of complex biological systems, and involves the systematic identification and quantification of metabolites. Metabolism is integrated with all biochemical reactions in biological systems; thus metabolite profiles provide collective information on biochemical processes induced by genetic or environmental perturbations. Transcriptomes or proteomes may not be functionally active and not always reflect phenotypic variations. The metabolome, however, consists of the biomolecules closest to the phenotype of living organisms, and is often called the molecular phenotype of biological systems. Thus, metabolome alterations can easily result in disease states, providing important clues to understand pathophysiological mechanisms contributing to various biomedical symptoms. The metabolome and metabolomics have been emphasized in translational research related to biomarker discovery, drug target discovery, drug responses, and disease mechanisms. This review describes the basic concepts, workflows, and applications of mass spectrometry-based metabolomics in translational research.
Collapse
|
8
|
Xia T, Ren H, Zhang W, Xia Y. Lipidome-wide characterization of phosphatidylinositols and phosphatidylglycerols on CC location level. Anal Chim Acta 2020; 1128:107-115. [PMID: 32825894 DOI: 10.1016/j.aca.2020.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023]
Abstract
Phosphatidylglycerol (PG) and phosphatidylinositol (PI) are two essential classes of glycerophospholipids (GPs), playing versatile roles such as signalling messengers and lipid-protein interaction ligands in cell. Although a majority of PG and PI molecular species contain unsaturated fatty acyl chain(s), conventional tandem mass spectrometry (MS/MS) methods cannot discern isomers different in carbon-carbon double bond (CC) locations. In this work, we paired phosphate methylation with acetone Paternò-Büchi (PB) reaction, aiming to provide a solution for sensitive and structurally informative analysis of these two important classes of GPs down to the location of CC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow was established. Offline methylated PG or PI mixtures were subjected to hydrophilic interaction chromatographic separation, online acetone PB reaction, and MS/MS via collision-induced dissociation (CID) for CC location determination in positive ion mode. This method was sensitive, offering limit of identification at 5 nM for both PG and PI standards down to CC locations. On molecular species level, 49 PI and 31 PG were identified from bovine liver, while 61 PIs were identified from human plasma. This workflow also enabled ratiometric comparisons of CC location isomers (C18:1 Δ9 vs. Δ11) of a series of PIs from type 2 diabetes (T2D) plasma to that of normal plasma samples. PI 16:0_18:1 and PI 18:0_18:1 were found to exhibit significant changes in CC isomeric ratios between T2D and normal plasma samples. The above results demonstrate that the developed LC-PB-MS/MS workflow is applicable to different classes of lipids and compatible with other established lipid derivatization methods to achieve comprehensive lipid analysis.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hanlin Ren
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Eghlimi R, Shi X, Hrovat J, Xi B, Gu H. Triple Negative Breast Cancer Detection Using LC-MS/MS Lipidomic Profiling. J Proteome Res 2020; 19:2367-2378. [PMID: 32397718 DOI: 10.1021/acs.jproteome.0c00038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) is a heterogeneous malignancy that is responsible for a great portion of female cancer cases and cancer-related deaths in the United States. In comparison to other major BC subtypes, triple negative breast cancer (TNBC) presents with a relatively low survival rate and a high rate of metastasis. This has led to a strong, though largely unmet, need for more sensitive and specific methods of early-stage TNBC (ES-TNBC) detection to combat its high-grade pathology and relatively low survival rate. The current study employs a liquid chromatography-tandem mass spectrometry assay capable of targeted, highly specific, and sensitive detection of lipids to propose two diagnostic biomarker panels for TNBC/ES-TNBC. Using this approach, 110 lipids were reliably detected in 166 human plasma samples, 45 controls, and 121 BC (96 non-TNBC and 25 TNBC) subjects. Univariate and multivariate analyses allowed the construction and application of a 19-lipid biomarker panel capable of distinguishing TNBC (and ES-TNBC) from controls, as well as a 5-lipid biomarker panel capable of differentiating TNBC from non-TNBC and ES-TNBC from ES-non-TNBC. Receiver operating characteristic curves with notable classification performances were generated from the biomarker panels according to their orthogonal partial least-squares discrimination analysis models. TNBC was distinguished from controls with an area under the receiving operating characteristic curve (AUROC) = 0.93, sensitivity = 0.96, and specificity = 0.76 and ES-TNBC from controls with an AUROC = 0.96, sensitivity = 0.95, and specificity = 0.89. TNBC was differentiated from non-TNBC with an AUROC = 0.88, sensitivity = 0.88, and specificity = 0.79 and ES-TNBC from ES-non-TNBC with an AUROC = 0.95, sensitivity = 0.95, and specificity = 0.87. A pathway enrichment analysis between TNBC and controls also revealed significant disturbances in choline metabolism, sphingolipid signaling, and glycerophospholipid metabolism. To the best of our knowledge, this is the first study to propose a diagnostic lipid biomarker panel for TNBC detection. All raw mass spectrometry data have been deposited to MassIVE (dataset identifier MSV000085324).
Collapse
Affiliation(s)
- Ryan Eghlimi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Jonathan Hrovat
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Bowei Xi
- Department of Statistics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| |
Collapse
|
10
|
Lee JC, Yang JS, Moon MH. Simultaneous Relative Quantification of Various Polyglycerophospholipids with Isotope-Labeled Methylation by Nanoflow Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2019; 91:6716-6723. [PMID: 31008580 DOI: 10.1021/acs.analchem.9b00800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we introduce a comprehensive analytical method for the separation and relative quantification of polyglycerophospholipids (PGPLs), including phosphatidylglycerol (PG), bis(monoacylglycero)phosphate (BMP), bis(diacylglycero)phosphate (BDP), Hemi BDP, cardiolipin (CL), monolysocardiolipin (MLCL), and dilysocardiolipin (DLCL), using isotope-labeled methylation (ILM) with nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (nUHPLC-ESI-MS/MS). Abnormal levels of BMP and CL have been associated with the pathology of lysosomal storage and neurodegenerative diseases. Thus, simultaneous analysis of all PGPLs is important to understand the mechanisms and pathologies of such diseases. In this study, improved separation and MS detection of PGPLs, including their regioisomers, was achieved by the methylation of PGPL. ILM-based relative quantification was applied to lipid extracts from a dopaminergic cell line (SH-SY5Y) treated with drugs commonly used for Parkinson's disease (PD), resulting in the identification of 229 unique PGPLs, including 121 CLs, 71 MLCLs, and 16 Hemi BDP species. The drug treatment induced significant increases in the amount of CLs containing polyunsaturated fatty acyl chains, including 20:4 and 22:6, as well as decreased levels of BMP, Hemi BDP, and BDP species, demonstrating the feasibility of using ILM for the comprehensive and high-speed relative quantification of PGPLs.
Collapse
Affiliation(s)
- Jong Cheol Lee
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Korea
| | - Joon Seon Yang
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Korea
| | - Myeong Hee Moon
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Korea
| |
Collapse
|
11
|
Alagumuthu M, Dahiya D, Singh Nigam P. Phospholipid—the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future. AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
12
|
Bui HH, Sanders PE, Bodenmiller D, Kuo MS, Donoho GP, Fischl AS. Direct analysis of PI(3,4,5)P 3 using liquid chromatography electrospray ionization tandem mass spectrometry. Anal Biochem 2018; 547:66-76. [PMID: 29470948 DOI: 10.1016/j.ab.2018.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
Abstract
Phosphatidylinositol (3,4,5) trisphosphate (PIP3) is a biologically active membrane phospholipid that is essential for the growth and survival of all eukaryotic cells. We describe a new method that directly measures PIP3 and describe the HPLC separation and measurement of the positional isomers of phosphatidylinositol bisphosphate, PI(3,5)P2, PI(3,4)P2 and PI(4,5)P2. Mass spectrometric analyses were performed online using ultra-high performance liquid chromatography (UHPLC)-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the negative multiple-reaction monitoring (MRM) modes. Rapid separation of PIP3 from PI, phosphatidylinositol phosphate (PIP) and PIP2 was accomplished by C18 reverse phase chromatography with the addition of the ion pairing reagents diisopropylethanolamine (DiiPEA) and ethylenediamine tetraacetic acid tetrasodium salt dihydrate (EDTA) to the samples and mobile phase with a total run time, including equilibration, of 12 min. Importantly, these chromatography conditions result in no carryover of PIP, PIP2, and PIP3 between samples. To validate the new method, U87MG cancer cells were serum starved and treated with PDGF to stimulate PIP3 biosynthesis in the presence or absence of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Results generated with the LC/MS method were in excellent agreement with results generated using [33P] phosphate radiolabeled U87MG cells and anion exchange chromatography analysis, a well validated method for measuring PIP3. To demonstrate the usefulness of the new method, we generated reproducible IC50 data for several well-characterized PI3K small molecule inhibitors using a U87MG cell-based assay as well as showing PIP3 can be measured from additional cancer cell lines. Together, our results demonstrate this novel method is sensitive, reproducible and can be used to directly measure PIP3 without radiolabeling or complex lipid derivatization.
Collapse
Affiliation(s)
- Hai H Bui
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Phillip E Sanders
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Diane Bodenmiller
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Ming Shang Kuo
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Gregory P Donoho
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Anthony S Fischl
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
13
|
Lee JC, Byeon SK, Moon MH. Relative Quantification of Phospholipids Based on Isotope-Labeled Methylation by Nanoflow Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry: Enhancement in Cardiolipin Profiling. Anal Chem 2017; 89:4969-4977. [PMID: 28399627 DOI: 10.1021/acs.analchem.7b00297] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, lipid analysis based on isotope-labeled methlylation (ILM) was performed by nanoflow ultrahigh performance liquid chromatography-eletrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS) for enhanced detection and quantification of targeted phospholipids. ILM depends on methylation of phosphate groups by (trimethylsilyl)diazomethane, and the ILM based quantitation with reversed phase nUPLC-ESI-MS/MS provides advantages in PL profiling such as enhanced detectability of methylated PLs owing to increased hydrophobicity and substantial increase in resolution due to the increase of retention. Efficacy of ILM in nUPLC-ESI-MS/MS analysis was evaluated in the selected reaction monitoring (SRM) method by varying the mixing ratio of H-/D-methylated PL standards, which resulted in the successful quantification of 24 species, including phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylglycerol (PG), ceramide-1-phosphate (Cer1P), phosphoinositides, and cardiolipin (CL), with ∼6.6% variation in the calculated ratio of H-/D-methylated PLs. The method was applied to the lipid extracts from a DU145 cell line after D-allose treatment, resulting in the quantification of 83 PLs of which results were not statistically different from those obtained by conventional quantification methods. Morever, detection and quantification of CLs and PAs were evidenced to be highly effective when used with the ILM method as 43 CLs and 20 PAs from cellular lipid extracts were analyzed while only 18 CLs and 12 PAs were identified when conventional methods were carried out. This proves the ILM combined with LC-MS to be a promising method for analysis of the aforementioned classes of lipids. Overall, the study highlighted the applicability of targeted quantification by the ILM method in lipidomic analysis and demonstrated an improvement in the detection of less abundant anionic PLs.
Collapse
Affiliation(s)
- Jong Cheol Lee
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seul Kee Byeon
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|