1
|
Cook JR, Kohan AB, Haeusler RA. An Updated Perspective on the Dual-Track Model of Enterocyte Fat Metabolism. J Lipid Res 2022; 63:100278. [PMID: 36100090 PMCID: PMC9593242 DOI: 10.1016/j.jlr.2022.100278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
The small intestinal epithelium has classically been envisioned as a conduit for nutrient absorption, but appreciation is growing for a larger and more dynamic role for enterocytes in lipid metabolism. Considerable gaps remain in our knowledge of this physiology, but it appears that the enterocyte's structural polarization dictates its behavior in fat partitioning, treating fat differently based on its absorption across the apical versus the basolateral membrane. In this review, we synthesize existing data and thought on this dual-track model of enterocyte fat metabolism through the lens of human integrative physiology. The apical track includes the canonical pathway of dietary lipid absorption across the apical brush-border membrane, leading to packaging and secretion of those lipids as chylomicrons. However, this track also reserves a portion of dietary lipid within cytoplasmic lipid droplets for later uses, including the "second-meal effect," which remains poorly understood. At the same time, the enterocyte takes up circulating fats across the basolateral membrane by mechanisms that may include receptor-mediated import of triglyceride-rich lipoproteins or their remnants, local hydrolysis and internalization of free fatty acids, or enterocyte de novo lipogenesis using basolaterally absorbed substrates. The ultimate destinations of basolateral-track fat may include fatty acid oxidation, structural lipid synthesis, storage in cytoplasmic lipid droplets, or ultimate resecretion, although the regulation and purposes of this basolateral track remain mysterious. We propose that the enterocyte integrates lipid flux along both of these tracks in order to calibrate its overall program of lipid metabolism.
Collapse
Affiliation(s)
- Joshua R. Cook
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Alison B. Kohan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY, USA,Department of Pathology and Cell Biology; Columbia University College of Physicians and Surgeons, New York, NY, USA,For correspondence: Rebecca A. Haeusler
| |
Collapse
|
2
|
Jacome-Sosa M, Hu Q, Manrique-Acevedo CM, Phair RD, Parks EJ. Human intestinal lipid storage through sequential meals reveals faster dinner appearance is associated with hyperlipidemia. JCI Insight 2021; 6:e148378. [PMID: 34369385 PMCID: PMC8489663 DOI: 10.1172/jci.insight.148378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background It is increasingly recognized that intestinal cells can store lipids after a meal, yet the effect of this phenomenon on lipid absorption patterns in insulin resistance remains unknown. Methods The kinetics of meal fat appearance were measured in insulin-sensitive (IS, n = 8) and insulin-resistant (IR, n = 8) subjects after sequential, isotopically labeled lunch and dinner meals. Plasma dynamics on triacylglycerol-rich (TAG-rich) lipoproteins and plasma hormones were analyzed using a nonlinear, non–steady state kinetic model. Results At the onset of dinner, IS subjects showed an abrupt plasma appearance of lunch lipid consistent with the “second-meal effect,” followed by slower appearance of dinner fat in plasma, resulting in reduced accumulation of dinner TAG of 48% compared with lunch. By contrast, IR subjects exhibited faster meal TAG appearance rates after both lunch and dinner. This effect of lower enterocyte storage between meals was associated with greater nocturnal and next-morning hyperlipidemia. The biochemical data and the kinetic analysis of second-meal effect dynamics are consistent with rapid secretion of stored TAG bypassing lipolysis and resynthesis. In addition, the data are consistent with a role for the diurnal pattern of plasma leptin in regulating the processing of dietary lipid. Conclusion These data support the concept that intestinal lipid storage may be physiologically beneficial in IS subjects. Trial registration ClinicalTrials.gov NCT02020343. Funding This study was supported by a grant from the American Diabetes Association (grant 1-13-TS-12).
Collapse
Affiliation(s)
| | - Qiong Hu
- Department of Nutrition and Exercise Physiology and
| | | | - Robert D Phair
- Integrative Bioinformatics, Inc., Mountain View, California, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology and.,Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Ho-Plagaro A, Santiago-Fernandez C, Rodríguez-Díaz C, Lopez-Gómez C, Garcia-Serrano S, Rodríguez-Pacheco F, Valdes S, Rodríguez-Cañete A, Alcaín-Martínez G, Ruiz-Santana N, Vázquez-Pedreño L, García-Fuentes E. Different Expression of Duodenal Genes Related to Insulin Resistance Between Nonobese Women and Those with Severe Obesity. Obesity (Silver Spring) 2020; 28:1708-1717. [PMID: 32729246 DOI: 10.1002/oby.22902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The study aim was to identify changes in duodenal gene expression associated with the development of insulin resistance according to the BMI of women. METHODS Duodenal samples were assessed by microarray in four groups of women, nonobese women and women with severe obesity, with both low and high insulin resistance. RESULTS There was a group of shared downregulated differentially expressed genes (DEGs) related to tissue homeostasis and antimicrobial humoral response in women with higher insulin resistance both with severe obesity and without obesity. In the exclusive DEGs found in severe obesity, downregulated DEGs related to the regulation of the defense response to bacterium and cell adhesion, involving pathways related to the immune system, inflammation, and xenobiotic metabolism, were observed. In the exclusive DEGs from nonobese women with higher insulin resistance, upregulated DEGs mainly related to the regulation of lipoprotein lipase activity, very low-density lipoprotein particle remodeling, lipid metabolic process, antigen processing, and the presentation of peptide antigen were found. CONCLUSIONS Independent of BMI, higher insulin resistance was associated with a downregulation of duodenal DEGs mainly related to the immune system, inflammation, and xenobiotic metabolism. Also, intestinal lipoprotein metabolism may have a certain relevance in the regulation of insulin resistance in nonobese women.
Collapse
Affiliation(s)
- Ailec Ho-Plagaro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
| | - Concepción Santiago-Fernandez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Carlos Lopez-Gómez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sara Garcia-Serrano
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sergio Valdes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Alberto Rodríguez-Cañete
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Guillermo Alcaín-Martínez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Natalia Ruiz-Santana
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Luis Vázquez-Pedreño
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
4
|
Gutiérrez-Repiso C, Moreno-Indias I, Martín-Núñez GM, Ho-Plágaro A, Rodríguez-Cañete A, Gonzalo M, García-Fuentes E, Tinahones FJ. Mucosa-associated microbiota in the jejunum of patients with morbid obesity: alterations in states of insulin resistance and metformin treatment. Surg Obes Relat Dis 2020; 16:1575-1585. [PMID: 32475753 DOI: 10.1016/j.soard.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stool samples have been widely used to evaluate gut microbiota; however, little is known about the composition of human small intestinal microbiota and the alterations provoked by insulin resistance. OBJECTIVE To describe the composition of jejunal microbiota in morbidly obese patients, as well as its link with insulin resistance and metformin treatment. SETTING Virgen de la Victoria University Hospital and Regional University Hospital, Málaga, Spain. METHODS Jejunal biopsies from 46 morbidly obese patients were analyzed by next-generation sequencing method. Patients were classified in the following 3 groups: low homeostasis model assessment of insulin resistance index (HOMA-IR) value, high HOMA-IR value, and metformin-treated type 2 diabetes patients (T2D-metf). RESULTS Richness (q = .011) together with Proteobacteria (W = 2), Fusobacteria (W = 2), and Bacteroidetes (W = 1) phyla were significantly higher in high HOMA-IR compared with low HOMA-IR group. At family level, several differences were found between low HOMA-IR and T2D-metf group, being the most important the higher abundance of Halomonadacea in T2D-metf group (W = 22). PICRUSt analysis showed that predicted genes involved in trimethylamine-N-oxide biosynthesis pathway could be increased in jejunal microbiota of T2D-metf group compared with the low HOMA-IR group, while indole biosynthesis pathway could be increased in the low HOMA-IR group compared with the high HOMA-IR group. CONCLUSION An increase in richness and an enrichment in Proteobacteria, Fusobacteria, and Bacteroidetes was observed in jejunal from morbidly obese patients with high insulin resistance. Halomonadaceae family was significantly increased in metformin-treated patients. Functional analysis of predicted metagenome suggests that trimethylamine-N-oxide biosynthesis pathway could be increased in the jejunal microbiota of T2D-meft group, while indole biosynthesis pathway could be increased in low HOMA-IR group. These results contribute to the increase in the scarce knowledge about the mucosal microbiota of the hardly accessible small intestine.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Repiso
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Madrid, Spain
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Madrid, Spain
| | - Gracia M Martín-Núñez
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Madrid, Spain
| | - Ailec Ho-Plágaro
- Unidad de Gestión Clínica de Aparato Digestivo del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Alberto Rodríguez-Cañete
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario de Málaga, Málaga, Spain; Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Málaga, Spain
| | - Monserrat Gonzalo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Eduardo García-Fuentes
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Madrid, Spain; Unidad de Gestión Clínica de Aparato Digestivo del Hospital Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga, Málaga, Spain.
| | - Francisco J Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Madrid, Spain.
| |
Collapse
|
5
|
Trehalose itself plays a critical role on lipid metabolism: Trehalose increases jejunum cytoplasmic lipid droplets which negatively correlated with mesenteric adipocyte size in both HFD-fed trehalase KO and WT mice. Nutr Metab (Lond) 2020; 17:22. [PMID: 32206077 PMCID: PMC7081596 DOI: 10.1186/s12986-020-00443-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background Trehalose is a functional disaccharide that has anti-metabolic activities such as suppression of adipocyte hypertrophy in mice and alleviation of impaired glucose tolerance in humans. Trehalase hydrolyzes trehalose in the small intestine into two glucose molecules. In this study, we investigated whether trehalose can suppress adipocyte hypertrophy in mice in the presence or absence of trehalase. Methods Trehalase knockout (KO) mice and wild-type (WT) mice were fed a high fat diet (HFD) and administered water with 0.3% (w/v) or without trehalose for 8 weeks. At the end of the experimental period, mesenteric adipose tissues and the small intestine were collected and the adipocyte size and proportion of cytoplasmic lipid droplets (CLDs, %) in jejunum epithelium were measured by image analysis. Results Trehalose treatment was associated with suppressed adipocyte hypertrophy in both trehalase KO and WT mice. The rate of CLDs in the jejunal epithelium was increased in both trehalase KO and WT mice given water containing trehalose relative to untreated control mice. There was a negative correlation between jejunal epithelial lipid droplet volume and mesenteric adipocyte size. Chylomicron-TG tended to be decreased in both trehalose-treated trehalase KO and WT mice. Addition of trehalose to differentiated Caco-2 cells in vitro increased intracytoplasmic lipid droplets and decreased secretion of the chylomicron marker ApoB-48. Moreover, the jejunal epithelium containing lipid droplets falled into the intestinal lumen, and triglyceride (TG) levels in feces tended to be higher in the KO/HFD/Tre group than in the KO/HFD/Water group. Since then, the accumulation of CLDs has been reported to suppress CM secretion, and along with our results, the effect of trehalose to increase jejunum CLDs may induce adipocyte hypertrophy. Conclusions The suppression of adipocyte hypertrophy in the presence and absence of trehalase indicates that trehalose mediates effects prior to being hydrolyzed into glucose. In both trehalase KO and WT mice, trehalose treatment increased the rate of CLDs in jejunal epithelium, reduced chylomicron migration from the intestinal epithelium to the periphery, and suppressed adipocyte hypertrophy. Thus, trehalose ingestion could prevent metabolic syndrome by trapping fat droplets in the intestinal epithelium and suppressing rapid increases in chylomicrons.
Collapse
|
6
|
Jejunal Insulin Signalling Is Increased in Morbidly Obese Subjects with High Insulin Resistance and Is Regulated by Insulin and Leptin. J Clin Med 2020; 9:jcm9010196. [PMID: 31936857 PMCID: PMC7019979 DOI: 10.3390/jcm9010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Little is known about the jejunal insulin signalling pathways in insulin resistance/diabetes states and their possible regulation by insulin/leptin. We study in jejunum the relation between insulin signalling and insulin resistance in morbidly obese subjects with low (MO-low-IR) or with high insulin resistance (MO-high-IR), and with type 2 diabetes treated with metformin (MO-metf-T2DM)), and the effect of insulin/leptin on intestinal epithelial cells (IEC). Insulin receptor substrate-1 (IRS1) and the catalytic p110β subunit (p110β) of phosphatidylinositol 3-kinase (PI3K) were higher in MO-high-IR than in MO-low-IR. The regulatory p85α subunit of PI3K (p85α)/p110β ratio was lower in MO-high-IR and MO-metf-T2DM than in MO-low-IR. Akt-phosphorylation in Ser473 was reduced in MO-high-IR compared with MO-low-IR. IRS1 and p110-β were associated with insulin and leptin levels. The improvement of body mass index (BMI) and HOMA-IR (homeostasis model assessment of insulin resistance index) after bariatric surgery was associated with a higher IRS1 and a lower p85α/p110β ratio. IEC (intestinal epithelial cells) incubation with a high glucose + insulin dose produced an increase of p85α and p110β. High dose of leptin produced an increase of IRS1, p85α and p110β. In conclusion, despite the existence of insulin resistance, the jejunal expression of genes involved in insulin signalling was increased in MO-high-IR. Their expressions were regulated mainly by leptin. IRS1 and p85α/p110β ratio was associated with the evolution of insulin resistance after bariatric surgery.
Collapse
|
7
|
Zhang P, Gao J, Pu C, Zhang Y. Apolipoprotein status in type 2 diabetes mellitus and its complications (Review). Mol Med Rep 2017; 16:9279-9286. [PMID: 29152661 DOI: 10.3892/mmr.2017.7831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Dyslipidaemia in type 2 diabetes mellitus (T2DM) is characterized by high plasma triglyceride concentrations, reduced high‑density lipoprotein concentrations and increased small density low‑density lipoprotein concentrations. Dyslipidaemia may lead to cardiovascular disease (CVD) and other complications. Apolipoproteins mainly comprise six species, apolipoprotein (apo)A, apoB, apoC, apoD, apoE and apoM, which are important components of plasma lipoproteins that carry lipids and stabilize the structure of lipoproteins. Complex metabolic disorders of apolipoproteins are present in T2DM, such as high plasma apoB, apoC‑II, apoC‑III and apoE concentrations, and low plasma apoA‑I and apoM concentrations, which are associated with dyslipidaemia and interrelated complications. Plasma concentrations of some apolipoproteins are also altered in T2DM with CVD or other complications. Several apolipoprotein polymorphisms are associated with diabetes susceptibility and/or lipid metabolism. The present review described the metabolic disorders of apolipoproteins in T2DM and its complications, and the relationship between each major apolipoprotein and T2DM, as well as the effects of apolipoprotein polymorphisms on diabetic susceptibility.
Collapse
Affiliation(s)
- Puhong Zhang
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Chun Pu
- Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macromolecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
8
|
Morita I, Tanimoto K, Akiyama N, Naya N, Fujieda K, Iwasaki T, Yukioka H. Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2017; 312:E264-E272. [PMID: 28143857 DOI: 10.1152/ajpendo.00342.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/06/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Hyperinsulinemia is widely thought to be a compensatory response to insulin resistance, whereas its potentially causal role in the progression of insulin resistance remains to be established. Here, we aimed to examine whether hyperinsulinemia could affect the progression of insulin resistance in Zucker fatty diabetic (ZDF) rats. Male ZDF rats at 8 wk of age were fed a diet ad libitum (AL) or dietary restriction (DR) of either 15 or 30% from AL feeding over 6 wk. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamp. ZDF rats in the AL group progressively developed hyperglycemia and hyperinsulinemia by 10 wk of age, and then plasma insulin rapidly declined to nearly normal levels by 12 wk of age. Compared with AL group, DR groups showed delayed onset of hyperglycemia and persistent hyperinsulinemia, leading to weight gain and raised plasma triglycerides and free fatty acids by 14 wk of age. Notably, insulin sensitivity was significantly reduced in the DR group rather than the AL group and inversely correlated with plasma levels of insulin and triglyceride but not glucose. Moreover, enhanced lipid deposition and upregulation of genes involved in lipogenesis were detected in liver, skeletal muscle, and adipose tissues of the DR group rather than the AL group. Alternatively, continuous hyperinsulinemia induced by insulin pellet implantation produced a decrease in insulin sensitivity in ZDF rats. These results suggest that chronic hyperinsulinemia may lead to the progression of insulin resistance under DR conditions in association with altered lipid metabolism in peripheral tissues in ZDF rats.
Collapse
Affiliation(s)
- Ippei Morita
- Drug Discovery and Disease Research Laboratory, Shionogi and Company, Ltd., Osaka, Japan
| | - Keiichi Tanimoto
- Drug Discovery and Disease Research Laboratory, Shionogi and Company, Ltd., Osaka, Japan
| | - Nobuteru Akiyama
- Drug Discovery and Disease Research Laboratory, Shionogi and Company, Ltd., Osaka, Japan
| | - Noriyuki Naya
- Drug Discovery and Disease Research Laboratory, Shionogi and Company, Ltd., Osaka, Japan
| | - Kumiko Fujieda
- Drug Discovery and Disease Research Laboratory, Shionogi and Company, Ltd., Osaka, Japan
| | - Takanori Iwasaki
- Drug Discovery and Disease Research Laboratory, Shionogi and Company, Ltd., Osaka, Japan
| | - Hideo Yukioka
- Drug Discovery and Disease Research Laboratory, Shionogi and Company, Ltd., Osaka, Japan
| |
Collapse
|
9
|
Gutierrez-Repiso C, Garcia-Serrano S, Moreno-Ruiz FJ, Alcain-Martinez G, Rodriguez-Pacheco F, Garcia-Fuentes E. Jejunal gluconeogenesis associated with insulin resistance level and its evolution after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2017; 13:623-630. [DOI: 10.1016/j.soard.2016.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/28/2016] [Accepted: 11/26/2016] [Indexed: 01/16/2023]
|
10
|
Monastero R, García-Serrano S, Lago-Sampedro A, Rodríguez-Pacheco F, Colomo N, Morcillo S, Martín-Nuñez GM, Gomez-Zumaquero JM, García-Fuentes E, Soriguer F, Rojo-Martínez G, García-Escobar E. Methylation patterns of Vegfb promoter are associated with gene and protein expression levels: the effects of dietary fatty acids. Eur J Nutr 2015; 56:715-726. [DOI: 10.1007/s00394-015-1115-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/22/2015] [Indexed: 12/13/2022]
|
11
|
The expression of genes involved in jejunal lipogenesis and lipoprotein synthesis is altered in morbidly obese subjects with insulin resistance. J Transl Med 2015; 95:1409-17. [PMID: 26367490 DOI: 10.1038/labinvest.2015.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/03/2015] [Accepted: 07/28/2015] [Indexed: 12/28/2022] Open
Abstract
The dyslipidemia associated with type 2 diabetes mellitus (T2DM) is an important risk factor for atherosclerotic cardiovascular disease. However, until now little attention has been paid to the role that the intestine might have. The aim of this research was to determine the relation between insulin resistance and intestinal de novo lipogenesis/lipoprotein synthesis in morbidly obese subjects and to study the effect of insulin on these processes. Jejunal mRNA expression of the different genes involved in the intestinal de novo lipogenesis/lipoprotein synthesis was analyzed in three groups of morbidly obese subjects: Group 1 with low insulin resistance (MO-low-IR), group 2 with high insulin resistance (MO-high-IR), and group 3 with T2DM and treatment with metformin (MO-metf-T2DM). In addition, intestinal epithelial cells (IECs) from MO-low-IR were incubated with different doses of insulin/glucose. In Group 2 (MO-high-IR), the jejunal mRNA expression levels of apo A-IV, ATP-citrate lyase (ACLY), pyruvate dehydrogenase (lipoamide) beta (PDHB), and sterol regulatory element-binding protein-1c (SREBP-1c) were significantly higher and acetyl-CoA carboxylase alpha (ACC1) and fatty-acid synthase lower than in Group 1 (MO-low-IR). In Group 3 (MO-metf-T2DM), only the ACLY and PDHB mRNA expressions were significantly higher than in Group 1 (MO-low-IR). The mRNA expression of most of the genes studied was significantly linked to insulin and glucose levels. The incubation of IEC with different doses of insulin and glucose produced a higher expression of diacylglycerol acyltransferase 2, microsomal triglyceride transfer protein, apo A-IV, SREBP-1c, and ACC1 when both, glucose and insulin, were at a high concentration. However, with only high insulin levels, there were higher apo A-IV, PDHB and SREBP-1c expressions, and a lower ACLY expression. In conclusion, the jejunum of MO-high-IR has a decreased mRNA expression of genes involved in de novo fatty-acid synthesis and an increase of genes involved in acetyl-CoA and lipoprotein synthesis. This effect is attenuated by metformin. In addition, the expression of most of the genes studied was found to be regulated by insulin.
Collapse
|
12
|
Uchida A, Whitsitt MC, Eustaquio T, Slipchenko MN, Leary JF, Cheng JX, Buhman KK. Reduced triglyceride secretion in response to an acute dietary fat challenge in obese compared to lean mice. Front Physiol 2012; 3:26. [PMID: 22375122 PMCID: PMC3285805 DOI: 10.3389/fphys.2012.00026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/03/2012] [Indexed: 11/13/2022] Open
Abstract
Obesity results in abnormally high levels of triglyceride (TG) storage in tissues such as liver, heart, and muscle, which disrupts their normal functions. Recently, we found that lean mice challenged with high levels of dietary fat store TGs in cytoplasmic lipid droplets in the absorptive cells of the intestine, enterocytes, and that this storage increases and then decreases over time after an acute dietary fat challenge. The goal of this study was to investigate the effects of obesity on intestinal TG metabolism. More specifically we asked whether TG storage in and secretion from the intestine are altered in obesity. We investigated these questions in diet-induced obese (DIO) and leptin-deficient (ob/ob) mice. We found greater levels of TG storage in the intestine of DIO mice compared to lean mice in the fed state, but similar levels of TG storage after a 6-h fast. In addition, we found similar TG storage in the intestine of lean and DIO mice at multiple time points after an acute dietary fat challenge. Surprisingly, we found remarkably lower TG secretion from both DIO and ob/ob mice compared to lean controls in response to an acute dietary fat challenge. Furthermore, we found altered mRNA levels for genes involved in regulation of intestinal TG metabolism in lean and DIO mice at 6 h fasting and in response to an acute dietary fat challenge. More specifically, we found that many of the genes related to TG synthesis, chylomicron synthesis, TG storage, and lipolysis were induced in response to an acute dietary fat challenge in lean mice, but this induction was not observed in DIO mice. In fact, we found a significant decrease in intestinal mRNA levels of genes related to lipolysis and fatty acid oxidation in DIO mice in response to an acute dietary fat challenge. Our findings demonstrate altered TG handling by the small intestine of obese compared to lean mice.
Collapse
Affiliation(s)
- Aki Uchida
- Interdisciplinary Life Science Program, Purdue University West Lafayette, IN, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
The chylomicron: relationship to atherosclerosis. Int J Vasc Med 2011; 2012:784536. [PMID: 22007304 PMCID: PMC3189596 DOI: 10.1155/2012/784536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022] Open
Abstract
The B-containing lipoproteins are the transporters of cholesterol, and the evidence suggests that the apo B48-containing postprandial chylomicron particles and the triglyceride-rich very low density lipoprotein (VLDL) particles play an important part in the development of the plaque both directly and indirectly by their impact on LDL composition. The ratio of dietary to synthesised cholesterol is variable but tightly regulated: hence intervention with diet at best reduces serum cholesterol by <20% andusually <10%. Statins are the mainstay of cholesterol reduction therapy, but they increase cholesterol absorption, an example of the relationship between synthesis and absorption. Inhibition of cholesterol absorption with Ezetimibe, an inhibitor of Niemann Pick C1-like 1 (NPC1-L1), the major regulator of cholesterol absorption, increases cholesterol synthesis and hence the value of adding an inhibitor of cholesterol absorption to an inhibitor of cholesterol synthesis. Apo B48, the structural protein of the chylomicron particle, is synthesised in abundance so that the release of these particles is dependent on the amount of cholesterol and triglyceride available in the intestine. This paper will discuss cholesterol absorption and synthesis, chylomicron formation, and the effect of postprandial lipoproteins on factors involved in atherosclerosis.
Collapse
|
14
|
Tinahones FJ, Queipo-Ortuño MI, Clemente-Postigo M, Fernnadez-Garcia D, Mingrone G, Cardona F. Postprandial hypertriglyceridemia predicts improvement in insulin resistance in obese patients after bariatric surgery. Surg Obes Relat Dis 2011; 9:213-8. [PMID: 22153002 DOI: 10.1016/j.soard.2011.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/04/2011] [Accepted: 08/23/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Morbidly obese patients have associated diseases, such as diabetes, hypertension, hyperlipidemia, and cardiovascular disease. Bariatric surgery improves these obesity-related co-morbidities, including insulin resistance. Evidence has shown that patients with morbid obesity have postprandial hypertriglyceridemia (HTG) and that this type of HTG is related to the degree of insulin resistance. Also, bariatric surgery produces a dramatic reduction in triglyceride levels. However, it is unknown whether patients with postprandial HTG have a different clinical evolution after bariatric surgery. The setting of our study was a university hospital. METHODS We studied 57 morbidly obese patients who had mild or severe postprandial HTG after fat overload (<30 mg/dL or >90 mg/dL increase in triglycerides, respectively). All the patients underwent bariatric surgery. After surgery, the anthropometric and biochemical variables and the Homeostasis Model Assessment of Insulin Resistance were measured for 1 year at 0, 15, 30, 45, 90, 180, and 365 days after surgery. RESULTS The patients with more severe postprandial HTG had a greater percentage of change in the Homeostasis Model Assessment of Insulin Resistance at 30, 90, and 180 days after surgery than the patients with less severe postprandial HTG. Multiple regression analysis showed that the postprandial triglyceride levels predict the variation in the Homeostasis Model Assessment of Insulin Resistance index, more so than did traditional variables, such as anthropometric, inflammatory, or hormonal data. CONCLUSION The postprandial HTG level might be the best predictor of improved insulin resistance in morbidly obese patients after bariatric surgery.
Collapse
|
15
|
García-Serrano S, Moreno-Santos I, Garrido-Sánchez L, Gutierrez-Repiso C, García-Almeida JM, García-Arnés J, Rivas-Marín J, Gallego-Perales JL, García-Escobar E, Rojo-Martinez G, Tinahones F, Soriguer F, Macias-Gonzalez M, García-Fuentes E. Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Mol Med 2011; 17:273-80. [PMID: 21060977 PMCID: PMC3060976 DOI: 10.2119/molmed.2010.00078] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/04/2010] [Indexed: 11/06/2022] Open
Abstract
Animal studies have revealed the association between stearoyl-CoA desaturase 1 (SCD1) and obesity and insulin resistance. However, only a few studies have been undertaken in humans. We studied SCD1 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from morbidly obese patients and their association with insulin resistance, sterol regulatory element binding protein-1 (SREBP-1) and ATPase p97, proteins involved in SCD1 synthesis and degradation. The insulin resistance was calculated in 40 morbidly obese patients and 11 overweight controls. Measurements were made of VAT and SAT SCD1, SREBP-1 and ATPase p97 mRNA expression and protein levels. VAT and SAT SCD1 mRNA expression levels in the morbidly obese patients were significantly lower than in the controls (P = 0.006), whereas SCD1 protein levels were significantly higher (P < 0.001). In the morbidly obese patients, the VAT SCD1 protein levels were decreased in patients with higher insulin resistance (P = 0.007). However, SAT SCD1 protein levels were increased in morbidly obese patients with higher insulin resistance (P < 0.05). Multiple linear regressions in the morbidly obese patients showed that the variable associated with the SCD1 protein levels in VAT was insulin resistance, and the variables associated with SCD1 protein levels in SAT were body mass index (BMI) and ATPase p97. In conclusion, these data suggest that the regulation of SCD1 is altered in individuals with morbid obesity and that the SCD1 protein has a different regulation in the two adipose tissues, as well as being closely linked to the degree of insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | - Jose M García-Almeida
- Endocrinology and Nutrition Service, Virgen de la Victoria Clinical Hospital, Málaga, Spain
| | - Juan García-Arnés
- Endocrinology and Nutrition Service, Carlos Haya University Hospital, Málaga, Spain
| | - Jose Rivas-Marín
- Surgery Service, Virgen de la Victoria Clinical Hospital, Málaga, Spain
| | | | - Eva García-Escobar
- CIBER Diabetes and Associated Metabolic Disorders (CIBERDEM), ISCIII, Spain
| | - Gemma Rojo-Martinez
- CIBER Diabetes and Associated Metabolic Disorders (CIBERDEM), ISCIII, Spain
- IMABIS Foundation, Málaga, Spain
| | - Francisco Tinahones
- CIBER Physiopathology Obesity and Nutrition (CIBEROBN), ISCIII, Spain
- Endocrinology and Nutrition Service, Virgen de la Victoria Clinical Hospital, Málaga, Spain
| | - Federico Soriguer
- CIBER Diabetes and Associated Metabolic Disorders (CIBERDEM), ISCIII, Spain
- Endocrinology and Nutrition Service, Carlos Haya University Hospital, Málaga, Spain
| | - Manuel Macias-Gonzalez
- IMABIS Foundation, Málaga, Spain
- CIBER Physiopathology Obesity and Nutrition (CIBEROBN), ISCIII, Spain
| | - Eduardo García-Fuentes
- IMABIS Foundation, Málaga, Spain
- CIBER Physiopathology Obesity and Nutrition (CIBEROBN), ISCIII, Spain
- Endocrinology and Nutrition Service, Carlos Haya University Hospital, Málaga, Spain
| |
Collapse
|
16
|
Oral fatty acid signaling and intestinal lipid processing: support and supposition. Physiol Behav 2011; 105:27-35. [PMID: 21324328 DOI: 10.1016/j.physbeh.2011.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 01/22/2023]
Abstract
There is increasing recognition that specialized processes once thought to be relatively isolated to the oral cavity (e.g., taste) and intestine (e.g., nutrient absorption) are better characterized as common and continuous. This is exemplified by accumulating evidence linking oral detection of dietary fats to their intestinal processing. This review first summarizes this literature focusing on purported gustatory signaling by free fatty acid stimulation and enterocyte lipid storage and mobilization in humans. It then willfully speculates on the possible functions of this integrated system. It is proposed that it may aid absorption of fat soluble nutrients, enhance acute energy intake, sustain intestinal function during long inter-meal intervals, modulate appetite and/or detoxify ingested compounds including free fatty acids.
Collapse
|