1
|
Chen YW, Li TJ, Wang LC, Yang BH, Chen YL, Chen CC, Lin HT. Prevention of Muscle Atrophy by Low-Molecular-Weight Fraction from Hirsutella sinensis Mycelium. Curr Issues Mol Biol 2024; 46:14033-14044. [PMID: 39727967 PMCID: PMC11727312 DOI: 10.3390/cimb46120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Muscle atrophy, an age-related condition, presents a growing healthcare concern within the context of global population aging. While studies have investigated Hirsutella sinensis for its potential antifatigue properties, reports on its active components remain limited. This study evaluated the efficacy of H. sinensis mycelium extract on muscle health, utilizing a 1:1 water-ethanol preparation administered to C57BL/6 mice exhibiting acute hind leg atrophy. The results indicated no adverse effects, with significant improvements in muscle endurance and soleus muscle mass observed over a 14-day period. To further elucidate the mechanisms and effects of H. sinensis mycelium on dexamethasone-induced muscle atrophy, the water extract was fractionated into components of <3.5 kDa, 3.5-10 kDa, and >10 kDa using dialysis membranes. The investigation utilized a C2C12 cell atrophy model, induced by dexamethasone, to analyze the expression of relevant genes via qPCR. The results demonstrated that the <3.5 kDa and >10 kDa fractions significantly upregulated the expression of Myh2 and Myh7 genes while simultaneously downregulating the expression of MuRF-1 and Atrogin-1. It is noteworthy that the <3.5 kDa fraction exclusively enhanced MYHC protein expression and suppressed AMPK expression, as confirmed by Western blot analysis. This comprehensive pilot study suggests that the low-molecular-weight fraction of H. sinensis mycelium exhibits considerable potential for muscle mass preservation and atrophy mitigation. As a result, it offers a promising direction for the development of supplements aimed at addressing fatigue and preventing muscle atrophy.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
| | - Li-Ching Wang
- Department of Food Safety, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Bi-Hua Yang
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; (Y.-W.C.); (T.-J.L.); (B.-H.Y.); (Y.-L.C.)
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| | - Hsin-Tang Lin
- Department of Food Safety, National Chung Hsing University, Taichung City 402, Taiwan;
| |
Collapse
|
2
|
Zhang Y, Liu SJ. Cordyceps as potential therapeutic agents for atherosclerosis. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:102-114. [PMID: 38494355 DOI: 10.1016/j.joim.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Atherosclerosis is a leading cause of mortality and morbidity worldwide. Despite the challenges in managing atherosclerosis, researchers continue to investigate new treatments and complementary therapies. Cordyceps is a traditional Chinese medicine that has recently gained attention as a potential therapeutic agent for atherosclerosis. Numerous studies have demonstrated the effectiveness of cordyceps in treating atherosclerosis through various pharmacological actions, including anti-inflammatory and antioxidant activities, lowering cholesterol, inhibiting platelet aggregation, and modulating apoptosis or autophagy in vascular endothelial cells. Notably, the current misuse of the terms cordyceps and Ophiocordyceps sinensis has caused confusion among researchers, and complicated the current academic research on cordyceps. This review focuses on the chemical composition, pharmacological actions, and underlying mechanisms contributing to the anti-atherosclerotic effects of cordyceps and the mycelium of Ophiocordyceps spp. This review provides a resource for the research on the development of new drugs for atherosclerosis from cordyceps. Please cite this article as: Zhang Y, Liu SJ. Cordyceps as potential therapeutic agents for atherosclerosis. J Integr Med. 2024; 22(2): 102-114.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marxism, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases with Integrated Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
3
|
Extraction, structure and pharmacological effects of the polysaccharides from Cordyceps sinensis: A review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
4
|
Rakhee, Mishra J, Yadav RB, Meena DK, Arora R, Sharma RK, Misra K. Novel formulation development from Ophiocordyceps sinensis (Berk.) for management of high-altitude maladies. 3 Biotech 2021; 11:9. [PMID: 33442508 PMCID: PMC7778651 DOI: 10.1007/s13205-020-02536-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Ophiocordyceps sinensis (Berk.) is a fungus closely related to medicinal mushroom, which belongs to the family Ophiocordycipitaceae. It is a well-known and rich herbal source of bioactive active constituents. The medicinal mushroom has garnered worldwide attention owing to its multifarious bioactivities. This mushroom grows on the larva of ghost moths (Hepialidae) and produces fruiting bodies, which serve as a vital natural source of medicine and supplementary diets. On account of the diverse pharmacological and bioactive constituents present in O. sinensis, it has been established as a potential antioxidant, anticancer, antibacterial, anti-proliferative, anti-inflammatory agent that has been successfully used for treating several health issues, including hypoxia-related problems encountered by mountaineers, pilgrims, tourists and soldiers occurring at high-altitude regions such as acute mountain sickness (AMS), high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE), frostbite, chilblains, hypothermia, etc. The most important pharmacologically active compounds present in the O. sinensis include nucleobases and its derivatives (adenosine, cordycepin, 3-deoxyadenosine, AMP, GMP, UMP, guanosine, uridine), polysaccharides (mannose, glucose, galactose, rhamnose, arabinose, xylose, galactose), proteins, peptides and steroids. This article focuses on the various research endeavors undertaken to scientifically establish the medicinal properties of O. sinensis, highlighting the various principally active compounds, their pharmacological action, drug designing and development and future perspective for various health benefits.
Collapse
Affiliation(s)
- Rakhee
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - Jigni Mishra
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - Renu Bala Yadav
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - D. K. Meena
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - Rajesh Arora
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| | - R. K. Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007 India
| | - Kshipra Misra
- Phyto Analytical Chemistry and Toxicology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization (DRDO), Delhi, 110054 India
| |
Collapse
|
5
|
Yang H, Lv H, Li H, Ci X, Peng L. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Commun Signal 2019; 17:62. [PMID: 31186013 PMCID: PMC6558832 DOI: 10.1186/s12964-019-0366-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Oxidative stress and the resulting inflammation are essential pathological processes in acute lung injury (ALI). Nuclear factor erythroid 2-related factor 2 (Nrf2), a vital transcriptional factor, possesses antioxidative potential and has become a primary target to treat many diseases. Oridonin (Ori), isolated from the plant Rabdosia Rrubescens, is a natural substance that possesses antioxidative and anti-inflammatory effects. Our aim was to study whether the anti-inflammatory and antioxidant effects of Ori on LPS-induced ALI were mediated by Nrf2. Methods MTT assays, Western blotting analysis, a mouse model, and hematoxylin-eosin (H & E) staining were employed to explore the mechanisms by which Ori exerts a protective effect on LPS-induced lung injury in RAW264.7 cells and in a mouse model. Results Our results indicated that Ori increased the expression of Nrf2 and its downstream genes (HO-1, GCLM), which was mediated by the activation of Akt and MAPK. Additionally, Ori inhibited LPS-induced activation of the pro-inflammatory pathways NLRP3 inflammasome and NF-κB pathways. These two pathways were also proven to be Nrf2-independent by the use of a Nrf2 inhibitor. In keeping with these findings, Ori alleviated LPS-induced histopathological changes, the enhanced production of myeloperoxidase and malondialdehyde, and the depleted expression of GSH and superoxide dismutase in the lung tissue of mice. Furthermore, the expression of LPS-induced NLRP3 inflammasome and NF-κB pathways was more evident in Nrf2-deficient mice but could still be reversed by Ori. Conclusions Our results demonstrated that Ori exerted protective effects on LPS-induced ALI via Nrf2-independent anti-inflammatory and Nrf2-dependent antioxidative activities.
Collapse
Affiliation(s)
- Huahong Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu road 519, Changchun, Jilin, 130001, People's Republic of China.,Department of Respiratory Medicine, The First Hospital of Jilin University, Xinmin road 71, Changchun, Jilin, 130001, People's Republic of China
| | - Hongming Lv
- Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu road 519, Changchun, Jilin, 130001, People's Republic of China
| | - Haijun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu road 519, Changchun, Jilin, 130001, People's Republic of China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu road 519, Changchun, Jilin, 130001, People's Republic of China. .,Department of Respiratory Medicine, The First Hospital of Jilin University, Xinmin road 71, Changchun, Jilin, 130001, People's Republic of China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Xinmin road 71, Changchun, Jilin, 130001, People's Republic of China.
| |
Collapse
|
6
|
Kang YY, Kim JY, Song J, Mok H. Enhanced intracellular uptake and stability of umbelliferone in compound mixtures from Angelica gigas in vitro. J Pharmacol Sci 2019; 140:8-13. [DOI: 10.1016/j.jphs.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
|
7
|
Pal M, Misra K. Cordyceps sp.: The Precious Mushroom for High-Altitude Maladies. MANAGEMENT OF HIGH ALTITUDE PATHOPHYSIOLOGY 2018:93-114. [DOI: 10.1016/b978-0-12-813999-8.00006-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Sheu JR, Chen ZC, Hsu MJ, Wang SH, Jung KW, Wu WF, Pan SH, Teng RD, Yang CH, Hsieh CY. CME-1, a novel polysaccharide, suppresses iNOS expression in lipopolysaccharide-stimulated macrophages through ceramide-initiated protein phosphatase 2A activation. J Cell Mol Med 2017; 22:999-1013. [PMID: 29214724 PMCID: PMC5783865 DOI: 10.1111/jcmm.13424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022] Open
Abstract
CME-1, a novel water-soluble polysaccharide purified from Ophiocordyceps sinensis mycelia, has anti-oxidative, antithrombotic and antitumour properties. In this study, other major attributes of CME-1, namely anti-inflammatory and immunomodulatory properties, were investigated. Treating lipopolysaccharide (LPS)-stimulated RAW 264.7 cells with CME-1 concentration-dependently suppressed nitric oxide formation and inducible nitric oxide synthase (iNOS) expression. In the CME-1-treated RAW 264.7 cells, LPS-induced IκBα degradation and the phosphorylation of p65, Akt and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38, were reduced. Treatment with a protein phosphatase 2A (PP2A)-specific inhibitor, significantly reversed the CME-1-suppressed iNOS expression; IκBα degradation; and p65, Akt and MAPK phosphorylation. PP2A activity up-regulation and PP2A demethylation reduction were also observed in the cells. Moreover, CME-1-induced PP2A activation and its subsequent suppression of LPS-activated RAW 264.7 cells were diminished by the inhibition of ceramide signals. LPS-induced reactive oxygen species (ROS) and hydroxyl radical formation were eliminated by treating RAW 264.7 cells with CME-1. Furthermore, the role of ceramide signalling pathway and anti-oxidative property were also demonstrated in CME-1-mediated inhibition of LPS-activated primary peritoneal macrophages. In conclusion, CME-1 suppressed iNOS expression by up-regulating ceramide-induced PP2A activation and reducing ROS production in LPS-stimulated macrophages. CME-1 is a potential therapeutic agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Joen-Rong Sheu
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhih-Cherng Chen
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Cardiology, Chi-Mei Medical Center, Tainan City, Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Wei Jung
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Fan Wu
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Szu-Han Pan
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Dun Teng
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Miao X, Wang Y, Lang H, Lin Y, Guo Q, Yang M, Guo J, Zhang Y, Zhang J, Liu J, Liu Y, Zeng L, Guo G. Preventing Electromagnetic Pulse Irradiation Damage on Testis Using Selenium-rich Cordyceps Fungi. A Preclinical Study in Young Male Mice. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:81-89. [PMID: 28186865 DOI: 10.1089/omi.2016.0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Networked 21st century society, globalization, and communications technologies are paralleled by the rise of electromagnetic energy intensity in our environments and the growing pressure of the environtome on human biology and health. The latter is the entire complement of environmental factors, including the electromagnetic energy and the technologies that generate them, enacting on the digital citizen in the new century. Electromagnetic pulse (EMP) irradiation might have serious damaging effects not only on electronic equipment but also in the whole organism and reproductive health, through nonthermal effects and oxidative stress. We sought to determine whether EMP exposure (1) induces biological damage on reproductive health and (2) the extent to which selenium-rich Cordyceps fungi (daily coadministration) offer protection on the testicles and spermatozoa. In a preclinical randomized study, 3-week-old male BALB/c mice were repeatedly exposed to EMP (peak intensity 200 kV/m, pulse edge 3.5 ns, pulse width 15 ns, 0.1 Hz, and 400 pulses/day) 5 days per week for four consecutive weeks, with or without coadministration of daily selenium-rich Cordyceps fungi (100 mg/kg). Testicular index and spermatozoa formation were measured at baseline and 1, 7, 14, 28, and 60 day time points after EMP exposure. The group without Cordyceps cotreatment displayed decreased spermatozoa formation, shrunk seminiferous tubule diameters, and diminished antioxidative capacity at 28 and 60 days after exposure (p < 0.05). The Cordyceps daily cotreatment alleviated the testicular damage by EMP exposure, increased spermatozoa formation, and reduced apoptotic spermatogenic cells. These observations warrant further preclinical and clinical studies as an innovative approach for potential protection against electromagnetic radiation in the current age of networked society and digital citizenship.
Collapse
Affiliation(s)
- Xia Miao
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yafeng Wang
- 2 Health and Epidemic Prevention Team, Navy General Hospital , Beijing, P.R. China
| | - Haiyang Lang
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yanyun Lin
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Qiyan Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Mingjuan Yang
- 3 Insititute of Disease Control and Prevention , Academy of Military Science, Beijing, P.R. China
| | - Juan Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yanjun Zhang
- 4 Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical University , Xi'an, P.R. China
| | - Jie Zhang
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Junye Liu
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yaning Liu
- 5 Central Laboratory, General Hospital of the Air Force , Beijing, P.R. China
| | - Lihua Zeng
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Guozhen Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| |
Collapse
|
10
|
Mohamed AS, Hanafi NI, Sheikh Abdul Kadir SH, Md Noor J, Abdul Hamid Hasani N, Ab Rahim S, Siran R. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1α and p53 protein. Cell Biochem Funct 2017; 35:453-463. [PMID: 29027248 DOI: 10.1002/cbf.3303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 11/06/2022]
Abstract
In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca2+ ]i ), and sphingosine-1-phosphate (S1P)-receptor via Gαi -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca2+ ]i , and S1P-Gαi -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gαi inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl2 -induced [Ca2+ ]i dynamic alteration. Pharmacological inhibition of the Gαi -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl2 detrimental effects, except for cell viability and [Ca2+ ]i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl2 -induced [Ca2+ ]i dynamic changes. We conclude that UDCA cardioprotection against CoCl2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gαi -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile acid and is currently used to treat liver diseases. Recently, UDCA is shown to have a cardioprotection effects; however, the mechanism of UDCA cardioprotection is still poorly understood. The current data generated were the first to show that UDCA is able to inhibit the activation of HIF-1α and p53 protein during CoCl2 -induced hypoxia in cardiomyocytes. This study provides an insight of UDCA mechanism in protecting cardiomyocytes against hypoxia.
Collapse
Affiliation(s)
- Anis Syamimi Mohamed
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Noorul Izzati Hanafi
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Julina Md Noor
- Department of Emergency and Trauma, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | | | - Sharaniza Ab Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Rosfaiizah Siran
- Department of Physiology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| |
Collapse
|
11
|
Lea SR, Metcalfe HJ, Plumb J, Beerli C, Poll C, Singh D, Abbott-Banner KH. Neutral sphingomyelinase-2, acid sphingomyelinase, and ceramide levels in COPD patients compared to controls. Int J Chron Obstruct Pulmon Dis 2016; 11:2139-2147. [PMID: 27660431 PMCID: PMC5019168 DOI: 10.2147/copd.s95578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Increased pulmonary ceramide levels are suggested to play a causative role in lung diseases including COPD. Neutral sphingomyelinase-2 (nSMase-2) and acid SMase (aSMase), which hydrolyze sphingomyelin to produce ceramide, are activated by a range of cellular stresses, including inflammatory cytokines and pathogens, but notably cigarette smoke appears to only activate nSMase-2. Our primary objective was to investigate nSMase-2 and aSMase protein localization and quantification in lung tissue from nonsmokers (NS), smokers (S), and COPD patients. In addition, various ceramide species (C16, C18, and C20) were measured in alveolar macrophages from COPD patients versus controls. MATERIALS AND METHODS Patients undergoing surgical resection for suspected or confirmed lung cancer were recruited, and nSMase-2 and aSMase protein was investigated in different areas of lung tissue (small airways, alveolar walls, subepithelium, and alveolar macrophages) by immunohistochemistry. Ceramide species were measured in alveolar macrophages from COPD patients and controls by mass spectrometry. RESULTS nSMase-2 and aSMase were detected in the majority of small airways. There was a significant increase in nSMase-2 immunoreactivity in alveolar macrophages from COPD patients (54%) compared with NS (31.7%) (P<0.05), and in aSMase immunoreactivity in COPD (68.2%) and S (69.5%) alveolar macrophages compared with NS (52.4%) (P<0.05). aSMase labeling was also increased in the subepithelium and alveolar walls of S compared with NS. Ceramide (C20) was significantly increased in alveolar macrophages from COPD patients compared with controls. CONCLUSION nSMase-2 and aSMase are both increased in COPD alveolar macrophages at the protein level; this may contribute toward the elevated ceramide (C20) detected in alveolar macrophages from COPD patients.
Collapse
Affiliation(s)
- Simon R Lea
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Hannah J Metcalfe
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Jonathan Plumb
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | | | - Chris Poll
- Respiratory Diseases, Novartis Institute for Biomedical Research, Horsham, West Sussex, UK
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | | |
Collapse
|
12
|
The Chemical Constituents and Pharmacological Actions of Cordyceps sinensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:575063. [PMID: 25960753 PMCID: PMC4415478 DOI: 10.1155/2015/575063] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023]
Abstract
Cordyceps sinensis, also called DongChongXiaCao (winter worm, summer grass) in Chinese, is becoming increasingly popular and important in the public and scientific communities. This study summarizes the chemical constituents and their corresponding pharmacological actions of Cordyceps sinensis. Many bioactive components of Cordyceps sinensis have been extracted including nucleoside, polysaccharide, sterol, protein, amino acid, and polypeptide. In addition, these constituents' corresponding pharmacological actions were also shown in the study such as anti-inflammatory, antioxidant, antitumour, antiapoptosis, and immunomodulatory actions. Therefore can use different effects of C. sinensis against different diseases and provide reference for the study of Cordyceps sinensis in the future.
Collapse
|
13
|
Shashidhar GM, Giridhar P, Manohar B. Functional polysaccharides from medicinal mushroom Cordyceps sinensis as a potent food supplement: extraction, characterization and therapeutic potentials – a systematic review. RSC Adv 2015. [DOI: 10.1039/c4ra13539c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As a rich source of novel polysaccharides, Cordyceps sinensis (CS), one of the valued traditional Chinese medicinal fungi, is a major focus of many natural products research efforts.
Collapse
Affiliation(s)
- G. M. Shashidhar
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Department of Food Engineering
- CSIR-Central Food Technological Research Institute
| | - P. Giridhar
- Department of Plant Cell Biotechnology
- CSIR-Central Food Technological Research Institute
- Mysore
- India
| | - B. Manohar
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Department of Food Engineering
- CSIR-Central Food Technological Research Institute
| |
Collapse
|
14
|
Lu WJ, Chang NC, Jayakumar T, Liao JC, Lin MJ, Wang SH, Chou DS, Thomas PA, Sheu JR. Ex vivo and in vivo studies of CME-1, a novel polysaccharide purified from the mycelia of Cordyceps sinensis that inhibits human platelet activation by activating adenylate cyclase/cyclic AMP. Thromb Res 2014; 134:1301-10. [PMID: 25294588 DOI: 10.1016/j.thromres.2014.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/16/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022]
Abstract
INTRODUCTION CME-1, a novel water-soluble polysaccharide, was purified from the mycelia of Cordyceps sinensis, and its chemical structure was characterized to contain mannose and galactose in a ratio of 4:6 (27.6 kDa). CME-1 was originally observed to exert a potent inhibitory effect on tumor migration and a cytoprotective effect against oxidative stress. Activation of platelets caused by arterial thrombosis is relevant to various cardiovascular diseases (CVDs). However, no data are available concerning the effects of CME-1 on platelet activation. Hence, the purpose of this study was to examine the ex vivo and in vivo antithrombotic effects of CME-1 and its possible mechanisms in platelet activation. METHODS The aggregometry, immunoblotting, flow cytometric analysis and platelet functional analysis were used in this study. RESULTS CME-1 (2.3-7.6 μM) exhibited highly potent activity in inhibiting human platelet aggregation when stimulated by collagen, thrombin, and arachidonic acid but not by U46619. CME-1 inhibited platelet activation accompanied by inhibiting Akt, mitogen-activated protein kinases (MAPKs), thromboxane B2 (TxB2) and hydroxyl radical (OH(●)) formation. However, CME-1 interrupted neither FITC-triflavin nor FITC-collagen binding to platelets. CME-1 markedly increased cyclic AMP levels, but not cyclic GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ, an inhibitor of guanylate cyclase, obviously reversed the CME-1-mediated effects on platelet aggregation and vasodilator-stimulated phosphoprotein (VASP), Akt, p38 MAPK phosphorylation, and TxB2 formation. CME-1 substantially prolonged the closure time of whole blood and the occlusion time of platelet plug formation. CONCLUSION This study demonstrates for the first time that CME-1 exhibits highly potent antiplatelet activity that may initially activate adenylate cyclase/cyclic AMP and, subsequently, inhibit intracellular signals (such as Akt and MAPKs), ultimately inhibiting platelet activation. This novel role of CME-1 indicates that CME-1 exhibits high potential for application in treating and preventing CVDs.
Collapse
Affiliation(s)
- Wan-Jung Lu
- Department of Pharmacology and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thanasekaran Jayakumar
- Department of Pharmacology and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiun-Cheng Liao
- Department of Pharmacology and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jiun Lin
- Department of Pharmacology and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Duen-Suey Chou
- Department of Pharmacology and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Philip Aloysius Thomas
- Department of Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli, Tamil Nadu, India
| | - Joen-Rong Sheu
- Department of Pharmacology and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Huang T, Li X, Hu S, Zhao B, Chen P, Liu X, Ye D, Cheng N. Analysis of fluorescent ceramide and sphingomyelin analogs: a novel approach for in vivo monitoring of sphingomyelin synthase activity. Lipids 2014; 49:1071-9. [PMID: 25108416 DOI: 10.1007/s11745-014-3940-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/24/2014] [Indexed: 02/07/2023]
Abstract
A novel sensitive high-performance liquid chromatography-fluorescence detection (HPLC-FLD) method was developed for real-time monitoring of relative sphingomyelin synthase (SMS) activity based on the measurement of a fluorescent ceramide (Cer) analog and its metabolite, a fluorescent sphingomyelin (CerPCho) analog, in plasma. Analyses were conducted using HPLC-FLD following a protein precipitation procedure. The chromatographic separations were carried out on an Agilent C18 RP column (150 × 4.6 mm, 5 μm) based on a methanol-0.1 % trifluoroacetic acid aqueous solution (88:12, by vol) elution at a flow-rate of 1 mL/min. The limit of quantification in plasma was 0.05 μM for both the fluorescent Cer analog and its metabolite. Significant differences in the fluorescent Cer analog and its metabolite concentration ratio at 5 min were found between vehicle control group and three D2 (a novel SMS inhibitor) dose groups (P < 0.05). Dose-dependent effects (D2 doses: 0, 2.5, 5, 10 mg/kg) were observed. Our method could be used to detect relative SMS activity in biochemical assays and to screen potential SMS inhibitors in vivo. D2 was found to be a potent SMS inhibitor in vivo, and may have a potential antiatherosclerotic effect, which is under further study. D609 was also selected as another model SMS inhibitor to validate our newly developed method.
Collapse
Affiliation(s)
- Taomin Huang
- School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Z, Cai F, Hu L, Lu Y. The role of mitochondrial permeability transition pore in regulating the shedding of the platelet GPIbα ectodomain. Platelets 2013; 25:373-81. [DOI: 10.3109/09537104.2013.821604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Pharmacological Effects of Cordyceps and Its Bioactive Compounds. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2013. [DOI: 10.1016/b978-0-444-59603-1.00013-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Lo HC, Hsieh C, Lin FY, Hsu TH. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in Dong-ChongXiaCao ( Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J Tradit Complement Med 2013; 3:16-32. [PMID: 24716152 PMCID: PMC3924981 DOI: 10.4103/2225-4110.106538] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The caterpillar fungus Ophiocordyceps sinensis (syn.Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either "yartsa gunbu" or "DongChongXiaCao ( Dōng Chóng Xià Cǎo)" ("winter worm-summer grass"), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as "soft gold" in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of "DongChongXiaCao" is different for O. sinensis, Cordyceps spp., and Cordyceps sp. Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols. Other bioactive components have been found as well, including two peptides (cordymin and myriocin), melanin, lovastatin, γ-aminobutyric acid, and cordysinins. Recently, the bioactivities of O. sinensis were described, and they include antiarteriosclerosis, antidepression, and antiosteoporosis activities, photoprotection, prevention and treatment of bowel injury, promotion of endurance capacity, and learning-memory improvement. H. sinensis has the ability to accelerate leukocyte recovery, stimulate lymphocyte proliferation, antidiabetes, and improve kidney injury. Starting January 1(st), 2013, regulation will dictate that one fungus can only have one name, which will end the system of using separate names for anamorphs. The anamorph name "H. sinensis" has changed by the International Code of Nomenclature for algae, fungi, and plants to O. sinensis.
Collapse
Affiliation(s)
- Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University, Xinzhuang District, New Taipei City, Taiwan
| | - Chienyan Hsieh
- Department of Biotechnology, National Kaohsiung Normal University, Yanchao Township, Kao-Hsiung County, Taiwan
| | - Fang-Yi Lin
- Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Healthcare and Department of Bioindustry Technology, Da-Yeh University, Changhua, Taiwan
| |
Collapse
|
19
|
Lo HC, Hsieh C, Lin FY, Hsu TH. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J Tradit Complement Med 2013. [DOI: 10.1016/s2225-4110(16)30164-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Lin YP, Chen TY, Tseng HW, Lee MH, Chen ST. Chemical and biological evaluation of nephrocizin in protecting nerve growth factor-differentiated PC12 cells by 6-hydroxydopamine-induced neurotoxicity. PHYTOCHEMISTRY 2012; 84:102-115. [PMID: 22954731 DOI: 10.1016/j.phytochem.2012.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. This model is crucial in the search for compounds that diminish 6-OHDA-induced nerve growth factor (NGF)-differentiated PC12 cell death. Nephrocizin (luteolin-7-O-β-D-glucopyranoside), a flavone glycoside, was isolated from widely distributed plants. The protective effects of pre-treatment with nephrocizin on the induced neurotoxicity in PC12 cells by 6-OHDA and its oxidative products, H₂O₂-, and p-quinone, were evaluated herein. Nephrocizin promoted cell viability, scavenged ROS-related products, increased cellular glutathione (GSH) levels, and reduced caspase-3 and -8 activities in 6-OHDA-, H₂O₂-, or p-quinone-treated PC12 cells. Furthermore, nephrocizin-conjugated metabolites in PC12 cells were identified with the boronate-affinity method and LC-MS technology, and preferential regioselectivity at the C2' and C5' positions by the nephrocizin-GSH (or NAC) adduct method was observed. These lines of evidence established that nephrocizin could form a dimer to diminish the intracellular ROS. These results demonstrate the first neuroprotective mechanism of nephrocizin against 6-OHDA-, H₂O₂- or p-quinone-induced cytotoxicity in PC12 cells via chemical and biological studies. These dietary antioxidants are potential candidates for use in intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Pei Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, ROC
| | | | | | | | | |
Collapse
|
21
|
Yang CH, Kao YH, Huang KS, Wang CY, Lin LW. Cordyceps militaris and mycelial fermentation induced apoptosis and autophagy of human glioblastoma cells. Cell Death Dis 2012; 3:e431. [PMID: 23190603 PMCID: PMC3542607 DOI: 10.1038/cddis.2012.172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 11/09/2022]
Abstract
This study is the first report that investigated the apoptosis-inducing effects of Cordyceps militaris (CM) and its mycelial fermentation in human glioblastoma cells. Both fractions arrested the GBM8401 cells in the G0/G1 phase, whereas the U-87MG cells were arrested at the G2/M transitional stage. Western blot data suggested that upregulation of p53 and p21 might be involved in the disruption of cell cycle progression. Induction of chromosomal condensation and the appearance of a sub-G1 hypodipoid population further supported the proapoptogenicity, possibly through the activation of caspase-3 and caspase-8, and the downregulation of antiapoptotic Bcl-2 and the upregulation of proapoptotic Bax protein expression. Downregulation of mammalian target of rapamycin and upregulation of Atg5 and LC3 II levels in GBM8401 cells implicated the involvement of autophagy. The signaling profiles with mycelial fermentation treatment indicated that mycelial fermentation triggered rapid phosphorylation of Akt, p38 MAPK, and JNK, but suppressed constitutively high levels of ERK1/2 in GBM8401 cells. Mycelial fermentation treatment only significantly increased p38 MAPK phosphorylation, but decreased constitutively high levels of Akt, ERK1/2, and JNK phosphorylation in U-87MG cells. Pretreatment with PI3K inhibitor wortmannin and MEK1 inhibitor PD98059 prevented the mycelial fermentation-induced cytotoxicity in GBM8401 and U-87MG cells, suggesting the involvement of PI3K/Akt and MEK1 pathways in mycelial fermentation-driven glioblastoma cell apoptosis and autophagy.
Collapse
Affiliation(s)
- C-H Yang
- Departmentof Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Y-H Kao
- Department of Medical Research, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - K-S Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - C-Y Wang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - L-W Lin
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Chen WF, Lee JJ, Chang CC, Lin KH, Wang SH, Sheu JR. Platelet protease-activated receptor (PAR)4, but not PAR1, associated with neutral sphingomyelinase responsible for thrombin-stimulated ceramide-NF-κB signaling in human platelets. Haematologica 2012; 98:793-801. [PMID: 23065519 DOI: 10.3324/haematol.2012.072553] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Thrombin activates platelets mainly through protease-activated receptor (PAR)1 and PAR4. However, downstream platelet signaling between PAR1 and PAR4 is not yet well understood. This study investigated the relationship between nSMase/ceramide and the NF-κB signaling pathway in PARs-mediated human platelet activation. The LC-MS/MS, aggregometry, flow cytometry, immunoprecipitation, and mesenteric microvessels of mice were used in this study. Human platelets stimulated by thrombin, 3-OMS (a neutral sphingomyelinase [nSMase] inhibitor) and Bay11-7082 (an NF-κB inhibitor) significantly inhibited platelet activation such as P-selectin expression. Thrombin also activated IκB kinase (IKK)β and IκBα phosphorylation; such phosphorylation was inhibited by 3-OMS and SB203580 (a p38 MAPK inhibitor). Moreover, 3-OMS abolished platelet aggregation, IKKβ, and p38 MAPK phosphorylation stimulated by PAR4-AP (a PAR4 agonist) but not by PAR1-AP (a PAR1 agonist). Immunoprecipitation revealed that nSMase was directly associated with PAR4 but not PAR1 in resting platelets. In human platelets, C24:0-ceramide is the predominant form of ceramides in the LC/MS-MS assay; C24:0-ceramide increases after stimulation by thrombin or PAR4-AP, but not after stimulation by PAR1-AP. We also found that C2-ceramide (a cell-permeable ceramide analog) activated p38 MAPK and IKKβ phosphorylation in platelets and markedly shortened the occlusion time of platelet plug formation in vivo. This study demonstrated that thrombin activated nSMase by binding to PAR4, but not to PAR1, to increase the C24:0-ceramide level, followed by the activation of p38 MAPK-NF-κB signaling. Our results showed a novel physiological significance of PAR4-nSMase/ceramide-p38 MAPK-NF-κB cascade in platelet activation.
Collapse
Affiliation(s)
- Wei-Fan Chen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:26-36. [DOI: 10.1016/j.cbpb.2012.05.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 12/19/2022]
|
24
|
Structural characterization and antioxidative activity of low-molecular-weights beta-1,3-glucan from the residue of extracted Ganoderma lucidum fruiting bodies. J Biomed Biotechnol 2011; 2012:673764. [PMID: 22187536 PMCID: PMC3236510 DOI: 10.1155/2012/673764] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/10/2011] [Accepted: 09/14/2011] [Indexed: 01/30/2023] Open
Abstract
The major cell wall constituent of Ganoderma lucidum (G. lucidum) is β-1,3-glucan. This study examined the polysaccharide from the residues of alkaline-extracted fruiting bodies using high-performance anion-exchange chromatography (HPAEC), and it employed nuclear magnetic resonance (NMR) and mass spectrometry (MS) to confirm the structures. We have successfully isolated low-molecular-weight β-1,3-glucan (LMG), in high yields, from the waste residue of extracted fruiting bodies of G. lucidum. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay evaluated the capability of LMG to suppress H2O2-induced cell death in RAW264.7 cells, identifying that LMG protected cells from H2O2-induced damage. LMG treatment decreased H2O2-induced intracellular reactive oxygen species (ROS) production. LMG also influenced sphingomyelinase (SMase) activity, stimulated by cell death to induce ceramide formation, and then increase cell ROS production. Estimation of the activities of neutral and acid SMases in vitro showed that LMG suppressed the activities of both neutral and acid SMases in a concentration-dependent manner. These results suggest that LMG, a water-soluble β-1,3-glucan recycled from extracted residue of G. lucidum, possesses antioxidant capability against H2O2-induced cell death by attenuating intracellular ROS and inhibiting SMase activity.
Collapse
|
25
|
Huang WC, Tsai CC, Chen CL, Chen TY, Chen YP, Lin YS, Lu PJ, Lin CM, Wang SH, Tsao CW, Wang CY, Cheng YL, Hsieh CY, Tseng PC, Lin CF. Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J 2011; 25:3661-73. [PMID: 21705667 DOI: 10.1096/fj.10-180190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inactivation of glycogen synthase kinase (GSK)-3 has been implicated in cancer progression. Previously, we showed an abundance of inactive GSK-3 in the human chronic myeloid leukemia (CML) cell line. CML is a hematopoietic malignancy caused by an oncogenic Bcr-Abl tyrosine kinase. In Bcr-Abl signaling, the role of GSK-3 is not well defined. Here, we report that enforced expression of constitutively active GSK-3 reduced proliferation and increased Bcr-Abl inhibition-induced apoptosis by nearly 1-fold. Bcr-Abl inhibition activated GSK-3 and GSK-3-dependent apoptosis. Inactivation of GSK-3 by Bcr-Abl activity is, therefore, confirmed. To reactivate GSK-3, we used glucosylceramide synthase (GCS) inhibitor PDMP to accumulate endogenous ceramide, a tumor-suppressor sphingolipid and a potent GSK-3 activator. We found that either PDMP or silence of GCS increased Bcr-Abl inhibition-induced GSK-3 activation and apoptosis. Furthermore, PDMP sensitized the most clinical problematic drug-resistant CML T315I mutant to Bcr-Abl inhibitor GNF-2-, imatinib-, or nilotinib-induced apoptosis by >5-fold. Combining PDMP and GNF-2 eliminated transplanted-CML-T315I-mutants in vivo and dose dependently sensitized primary cells from CML T315I patients to GNF-2-induced proliferation inhibition and apoptosis. The synergistic efficacy was Bcr-Abl restricted and correlated to increased intracellular ceramide levels and acted through GSK-3-mediated apoptosis. This study suggests a feasible novel anti-CML strategy by accumulating endogenous ceramide to reactivate GSK-3 and abrogate drug resistance.
Collapse
Affiliation(s)
- Wei-Ching Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bis-indole derivatives for polysaccharide compositional analysis and chiral resolution of D-, L-monosaccharides by ligand exchange capillary electrophoresis using borate-cyclodextrin as a chiral selector. Molecules 2011; 16:1682-94. [PMID: 21330957 PMCID: PMC6259635 DOI: 10.3390/molecules16021682] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/16/2011] [Indexed: 11/26/2022] Open
Abstract
A series of aldo-bis-indole derivatives (aldo-BINs) was prepared by aromatic C-alkylation reactions of aldoses and indole in acetic acid solution. Common monosaccharides such as glucose, mannose, galactose, fucose, xylose, rhamnose, ribose, arabinose and N-acetylglucosamine were smoothly derivatized to form the UV absorbing aldo-BINs. The use of a capillary electrophoretic method to separate these novel aldo-BIN derivatives was established. The capillary electrophoresis conditions were set by using borate buffer (100 mM) at high pH (pH 9.0). The limit of determination was assessed to be 25 nM. The enantioseparation of D, L-pairs of aldo-BINs based on chiral ligand-exchange capillary electrophoresis technology was also achieved by using modified hydroxypropyl-β-cyclodextrin as the chiral selector in the presence of borate buffer. This aldose labeling method was applied successfully to the compositional and configurational analysis of saccharides, exemplified by a rapid and efficient method to simultaneously analyze the composition and configuration of saccharides from the medicinal herbs Cordyceps sinensis and Dendrobium huoshanense.
Collapse
|