1
|
Prencipe F, Barzan C, Savian C, Spalluto G, Carosati E, De Amici M, Mosconi G, Gianferrara T, Federico S, Da Ros T. Gaucher Disease: A Glance from a Medicinal Chemistry Perspective. ChemMedChem 2024; 19:e202300641. [PMID: 38329692 DOI: 10.1002/cmdc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Rare diseases are particular pathological conditions affecting a limited number of people and few drugs are known to be effective as therapeutic treatment. Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, belongs to this class of disorders, and it is considered the most common among the Lysosomal Storage Diseases. The two main therapeutic approaches are the Enzyme Replacement Therapy (ERT) and the Substrate Reduction Therapy (SRT). ERT, consisting in replacing the defective enzyme by administering a recombinant enzyme, is effective in alleviating the visceral symptoms, hallmarks of the most common subtype of the disease whereas it has no effects when symptoms involve CNS, since the recombinant protein is unable to significantly cross the Blood Brain Barrier. The SRT strategy involves inhibiting glucosylceramide synthase (GCS), the enzyme responsible for the production of the associated storage molecule. The rational design of new inhibitors of GCS has been hampered by the lack of either the crystal structure of the enzyme or an in-silico model of the active site which could provide important information regarding the interactions of potential inhibitors with the target, but, despite this, interesting results have been obtained and are herein reviewed.
Collapse
Affiliation(s)
- Filippo Prencipe
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Barzan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- Molecular Genetics Institute, CNR Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Chiara Savian
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Emanuele Carosati
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milano Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Giorgio Mosconi
- Fidia Farmaceutici Via Ponte della Fabbrica 3/A, 35021, Abano Terme, Italy
| | - Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
2
|
Yamaguchi-Takegami N, Takahashi A, Mitsui J, Sugiyama Y, Chikada A, Porto KJL, Takegami N, Sakuishi K, Ishiura H, Yamada K, Shimizu J, Tsuji S, Toda T. Late-onset Myoclonic Seizure in a 78-year-old Woman with Gaucher Disease. Intern Med 2024; 63:861-865. [PMID: 37558486 PMCID: PMC11008993 DOI: 10.2169/internalmedicine.1699-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
We herein report a 78-year-old woman with Gaucher disease (GD) who was initially diagnosed with GD type 1, had been receiving long-term enzyme replacement therapy since 58 years old, and developed neurological manifestations in her 70s. The neurological manifestations included myoclonic seizures and progressive cognitive decline. Although it is rare for GD patients to first develop neurologic manifestations at such an advanced age, physicians engaged in long-term care for GD patients should be alert for this possibility.
Collapse
Affiliation(s)
| | - Akiko Takahashi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yusuke Sugiyama
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Health Administration/Prevention Medicine, Sanraku Hospital, Japan
| | - Ayaka Chikada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Neurology, National Center for Global Health and Medicine, Japan
| | | | - Naoki Takegami
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kaori Sakuishi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Neurology, Teikyo University Chiba Medical Center, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kaoru Yamada
- Department of Health Administration/Prevention Medicine, Sanraku Hospital, Japan
| | - Jun Shimizu
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Physical Therapy, Faculty of Medical Health, Tokyo University of Technology, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
3
|
El Malki K, Wehling P, Alt F, Sandhoff R, Zahnreich S, Ustjanzew A, Wilzius C, Brockmann MA, Wingerter A, Russo A, Beck O, Sommer C, Ottenhausen M, Frauenknecht KBM, Paret C, Faber J. Glucosylceramide Synthase Inhibitors Induce Ceramide Accumulation and Sensitize H3K27 Mutant Diffuse Midline Glioma to Irradiation. Int J Mol Sci 2023; 24:9905. [PMID: 37373053 DOI: 10.3390/ijms24129905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
H3K27M mutant (mut) diffuse midline glioma (DMG) is a lethal cancer with no effective cure. The glycosphingolipids (GSL) metabolism is altered in these tumors and could be exploited to develop new therapies. We tested the effect of the glucosylceramide synthase inhibitors (GSI) miglustat and eliglustat on cell proliferation, alone or in combination with temozolomide or ionizing radiation. Miglustat was included in the therapy protocol of two pediatric patients. The effect of H3.3K27 trimethylation on GSL composition was analyzed in ependymoma. GSI reduced the expression of the ganglioside GD2 in a concentration and time-dependent manner and increased the expression of ceramide, ceramide 1-phosphate, sphingosine, and sphingomyelin but not of sphingosine 1-phosphate. Miglustat significantly increased the efficacy of irradiation. Treatment with miglustat according to dose recommendations for patients with Niemann-Pick disease was well tolerated with manageable toxicities. One patient showed a mixed response. In ependymoma, a high concentration of GD2 was found only in the presence of the loss of H3.3K27 trimethylation. In conclusion, treatment with miglustat and, in general, targeting GSL metabolism may offer a new therapeutic opportunity and can be administered in close proximity to radiation therapy. Alterations in H3K27 could be useful to identify patients with a deregulated GSL metabolism.
Collapse
Affiliation(s)
- Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Pia Wehling
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Francesca Alt
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Carolin Wilzius
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Olaf Beck
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Malte Ottenhausen
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Katrin B M Frauenknecht
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- National Center of Pathology (NCP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Research Center of Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Inhibitors of Glucosylceramide Synthase. Methods Mol Biol 2023; 2613:271-288. [PMID: 36587085 DOI: 10.1007/978-1-0716-2910-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glucosylceramide synthase can be targeted by high affinity small molecular weight inhibitors for the study of glycosphingolipid metabolism and function or for the treatment of glycosphingolipid storage disorders, including Gaucher and Fabry disease. This work is exemplified by the discovery and development of eliglustat tartrate, the first stand-alone small chemical entity approved for the treatment of Gaucher disease type 1. The development of inhibitors of glucosylceramide synthase that have utility for either research or clinical purposes begins with a testing funnel for screening candidate inhibitors for activity against this enzyme and for activity in lowering the content of glucosylceramide in intact cells. Two common assays for glucosylceramide synthase, one enzyme based and another cell based, are the focus of this chapter.
Collapse
|
5
|
Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules 2022; 12:1093. [PMID: 36008987 PMCID: PMC9406097 DOI: 10.3390/biom12081093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023] Open
Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I-V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I-V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Collapse
Affiliation(s)
- Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Nurulhuda Mustafa
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119228, Singapore
| | - Mouna Medimagh
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India
- BPJ College of Arts and Science, Kozhai, Srimushnam 608703, India
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| |
Collapse
|
6
|
Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules 2022. [DOI: doi.org/10.3390/biom12081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I–V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I–V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Collapse
|
7
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
8
|
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease – more than just a rare lipid storage disease. J Mol Med (Berl) 2022; 100:499-518. [DOI: 10.1007/s00109-021-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
|
9
|
Qu Z, Zhou L. Drug Development in the Field of Sphinogolipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:169-188. [PMID: 35503181 DOI: 10.1007/978-981-19-0394-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Fujii T, Tanaka Y, Oki H, Sato S, Shibata S, Maru T, Tanaka Y, Tanaka M, Onishi T. A new brain-penetrant glucosylceramide synthase inhibitor as potential Therapeutics for Gaucher disease. J Neurochem 2021; 159:543-553. [PMID: 34398463 PMCID: PMC9293090 DOI: 10.1111/jnc.15492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Gaucher disease (GD), the most common lysosomal storage disorders, is caused by GBA gene mutations resulting in glycosphingolipids accumulations in various tissues, such as the brain. While suppressing glycosphingolipid accumulation is the central strategy for treating peripheral symptoms of GD, there is no effective treatment for the central nervous system symptoms. As glycosphingolipid biosynthesis starts from ceramide glycosylation by glucosylceramide synthase (GCS), inhibiting GCS in the brain is a promising strategy for neurological GD. Herein, we discovered T-036, a potent and brain-penetrant GCS inhibitor with a unique chemical structure and binding property. T-036 does not harbor an aliphatic amine moiety and has a noncompetitive inhibition mode to the substrates, unlike other known inhibitors. T-036 exhibited sufficient exposure and a significant reduction of glucosylsphingolipids in the plasma and brain of the GD mouse model. Therefore, T-036 could be a promising lead molecule for treating central nervous system symptoms of GD.
Collapse
Affiliation(s)
- Takahiro Fujii
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yuta Tanaka
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hideyuki Oki
- Discovery Biology, Discovery Science, Axcelead Drug Discovery Partners, Inc., Fujisawa, Kanagawa, Japan
| | - Sho Sato
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Sachio Shibata
- Discovery Biology, Discovery Science, Axcelead Drug Discovery Partners, Inc., Fujisawa, Kanagawa, Japan
| | - Takamitsu Maru
- Discovery Biology, Discovery Science, Axcelead Drug Discovery Partners, Inc., Fujisawa, Kanagawa, Japan
| | - Yuta Tanaka
- Drug Discovery Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Maiko Tanaka
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomohiro Onishi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
11
|
Babcock MC, Mikulka CR, Wang B, Chandriani S, Chandra S, Xu Y, Webster K, Feng Y, Nelvagal HR, Giaramita A, Yip BK, Lo M, Jiang X, Chao Q, Woloszynek JC, Shen Y, Bhagwat S, Sands MS, Crawford BE. Substrate reduction therapy for Krabbe disease and metachromatic leukodystrophy using a novel ceramide galactosyltransferase inhibitor. Sci Rep 2021; 11:14486. [PMID: 34262084 PMCID: PMC8280112 DOI: 10.1038/s41598-021-93601-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022] Open
Abstract
Krabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.
Collapse
Affiliation(s)
- Michael C Babcock
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Christina R Mikulka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bing Wang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Sanjay Chandriani
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Sundeep Chandra
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Yue Xu
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Katherine Webster
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Ying Feng
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Hemanth R Nelvagal
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alex Giaramita
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Bryan K Yip
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Melanie Lo
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qi Chao
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Josh C Woloszynek
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Yuqiao Shen
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Shripad Bhagwat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brett E Crawford
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA.
| |
Collapse
|
12
|
Hu Y, Gruber KA, Smith DE. Characterization of the cellular transport mechanisms for the anti-cachexia candidate compound TCMCB07. J Cachexia Sarcopenia Muscle 2020; 11:1677-1687. [PMID: 32725770 PMCID: PMC7749613 DOI: 10.1002/jcsm.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cachexia is a debilitating, life-threatening condition whose pathology includes reduced food intake accompanied by hypermetabolism, leading to a catabolic state. The hypothalamic melanocortin system is a critical regulator of metabolic rate with effects being mediated through the melanocortin-4 receptor (MC4R). MC4R activation is also critical to the initiation and maintenance of cachexia. A major problem in the design of anti-cachexia drugs has been the need to cross the blood-brain barrier to access the metabolic rate-controlling centres in the hypothalamus. The overwhelming majority of anti-cachexia drugs are only effective when administered intracerebroventricularly. TCMCB07 is a cyclic nonapeptide peptide MC4R antagonist with parenteral anti-cachexia activity in both small and large animal models. This suggests it can cross the blood-brain barrier. The aim of this study was to examine potential transport mechanisms of TCMCB07 furthering its preclinical development for subsequent studies in humans. METHODS In vitro studies were performed in transporter-transfected cells to study whether or not TCMCB07 was an inhibitor as well as substrate for OATP1A2, OATP1B1, OATP1B3, OATP2B1, OCT2, OAT1, OAT3, MATE1, MATE2-K, P-gp (MDR1), and BCRP. In vivo mass balance studies were also performed in mice to evaluate the absorption and disposition of TCMCB07 after oral and intravenous bolus administrations. RESULTS TCMCB07 inhibited the uptake of prototypical substrates in cells transfected with OATP1A2 (IC50 24.0 μM), OATP1B1 (IC50 6.8 μM), OATP1B3 (IC50 307 μM), OATP2B1 (IC50 524 μM), OCT2 (IC50 1,169 μM), MATE1 (IC50 8.7 μM), and MATE2-K (IC50 20.7 μM) but not in cells transfected with OAT1 and OAT3. TCMCB07 did not affect the P-gp (MDR1)-mediated and BCRP-mediated permeability of prototypical substrates in transfected cells. Importantly, direct evidence was shown for the uptake of TCMCB07 in OATP1A2-transfected cells (i.e. Vmax 236 pmol/mg, Km 58.4 μM, and Kd 0.39 μL/mg), demonstrating that the nonapeptide was a substrate for this transporter. Mass balance studies demonstrated that 24.2% of TCMCB07 was absorbed orally in vivo (P = 0.0033) and excreted primarily in the bile after both oral and intravenous administrations. CONCLUSIONS OATP1A2 is the transporter responsible for the oral absorption of TCMCB07 in the intestine and for its pharmacologic response in the brain.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of MichiganAnn ArborMIUSA
| | | | - David E. Smith
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
13
|
Wilson MW, Shu L, Hinkovska-Galcheva V, Jin Y, Rajeswaran W, Abe A, Zhao T, Luo R, Wang L, Wen B, Liou B, Fannin V, Sun D, Sun Y, Shayman JA, Larsen SD. Optimization of Eliglustat-Based Glucosylceramide Synthase Inhibitors as Substrate Reduction Therapy for Gaucher Disease Type 3. ACS Chem Neurosci 2020; 11:3464-3473. [PMID: 33035424 DOI: 10.1021/acschemneuro.0c00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There remain no approved therapies for rare but devastating neuronopathic glyocosphingolipid storage diseases, such as Sandhoff, Tay-Sachs, and Gaucher disease type 3. We previously reported initial optimization of the scaffold of eliglustat, an approved therapy for the peripheral symptoms of Gaucher disease type 1, to afford 2, which effected modest reductions in brain glucosylceramide (GlcCer) in normal mice at 60 mg/kg. The relatively poor pharmacokinetic properties and high Pgp-mediated efflux of 2 prompted further optimization of the scaffold. With a general objective of reducing topological polar surface area, and guided by multiple metabolite identification studies, we were successful at identifying 17 (CCG-222628), which achieves remarkably greater brain exposure in mice than 2. After demonstrating an over 60-fold improvement in potency over 2 at reducing brain GlcCer in normal mice, we compared 17 with Sanofi clinical candidate venglustat (Genz-682452) in the CBE mouse model of Gaucher disease type 3. At doses of 10 mg/kg, 17 and venglustat effected comparable reductions in both brain GlcCer and glucosylsphingosine. Importantly, 17 achieved these equivalent pharmacodynamic effects at significantly lower brain exposure than venglustat.
Collapse
Affiliation(s)
- Michael W. Wilson
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liming Shu
- Department of Internal Medicine - Nephrology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vania Hinkovska-Galcheva
- Department of Internal Medicine - Nephrology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yafei Jin
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Walajapet Rajeswaran
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Akira Abe
- Department of Internal Medicine - Nephrology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ting Zhao
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ruijuan Luo
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lu Wang
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, Ohio 45229, United States
| | - Venette Fannin
- Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, Ohio 45229, United States
| | - Duxin Sun
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, Ohio 45229, United States
| | - James A. Shayman
- Department of Internal Medicine - Nephrology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Scott D. Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Johnson PH, Weinreb NJ, Cloyd JC, Tuite PJ, Kartha RV. GBA1 mutations: Prospects for exosomal biomarkers in α-synuclein pathologies. Mol Genet Metab 2020; 129:35-46. [PMID: 31761523 PMCID: PMC7002237 DOI: 10.1016/j.ymgme.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/03/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022]
Abstract
The discovery that patients with Gaucher Disease (GD), a rare lysosomal storage disorder, were developing symptoms similar to Parkinson's disease (PD) led to investigation of the relationship between the two seemingly unrelated pathologies. GD, an autosomal recessive disorder, is the result of a biallelic mutation in the gene GBA1, which encodes for the enzyme glucocerebrosidase (GCase). Since the observation of its relation to PD, GBA1 mutations have become recognized as the most common genetic risk factor for development of synucleinopathies such as PD and dementia with Lewy bodies. Although the exact mechanism by which GBA1 mutations promote PD is unknown, current understanding suggests that impaired GCase inhibits lysosomal activity and decreases the overall ability of the cell to degrade proteins, specifically the neuronal protein α-synuclein. Decreased elimination of α-synuclein can lead to its abnormal accumulation and aggregation, an important component of PD development. Further understanding of how decreased GCase activity increases risk for α-synuclein pathology can assist with the development of clinical biomarkers for early detection of synucleinopathies, as well as promote novel treatments tailored for people with a GBA1 mutation. Historically, α-synuclein has not been a reliable biomarker for PD. However, recent research on α-synuclein content within exosomes, which are small vesicles released by cells that carry specific cellular cargo, has yielded encouraging results. Moreover, decreased GCase activity has been shown to influence exosomal contents. Exosomes have emerged as a promising new avenue for the identification of novel biomarkers and therapeutic targets aimed at improving neuronal GCase function and limiting the development of synucleinopathies.
Collapse
Affiliation(s)
- Parker H Johnson
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Neal J Weinreb
- Department of Human Genetics and Medicine (Hematology), Leonard Miller School of Medicine of University of Miami, Miami, FL, United States of America
| | - James C Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Paul J Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
15
|
Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiol Dis 2019; 127:1-12. [DOI: 10.1016/j.nbd.2019.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
|
16
|
Substrate reduction therapy for inborn errors of metabolism. Emerg Top Life Sci 2019; 3:63-73. [PMID: 33523197 PMCID: PMC7289018 DOI: 10.1042/etls20180058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Inborn errors of metabolism (IEM) represent a growing group of monogenic disorders each associated with inherited defects in a metabolic enzyme or regulatory protein, leading to biochemical abnormalities arising from a metabolic block. Despite the well-established genetic linkage, pathophysiology and clinical manifestations for many IEMs, there remains a lack of transformative therapy. The available treatment and management options for a few IEMs are often ineffective or expensive, incurring a significant burden to individual, family, and society. The lack of IEM therapies, in large part, relates to the conceptual challenge that IEMs are loss-of-function defects arising from the defective enzyme, rendering pharmacologic rescue difficult. An emerging approach that holds promise and is the subject of a flurry of pre-/clinical applications, is substrate reduction therapy (SRT). SRT addresses a common IEM phenotype associated with toxic accumulation of substrate from the defective enzyme, by inhibiting the formation of the substrate instead of directly repairing the defective enzyme. This minireview will summarize recent highlights towards the development of emerging SRT, with focussed attention towards repurposing of currently approved drugs, approaches to validate novel targets and screen for hit molecules, as well as emerging advances in gene silencing as a therapeutic modality.
Collapse
|
17
|
Liu X, Li X, Yang H, Shi X, Yang F, Jiao X, Xie P. Concise and efficient synthesis of eliglustat. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1416636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongguang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feilong Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Sands SA, LeVine SM. Substrate reduction therapy for Krabbe's disease. J Neurosci Res 2017; 94:1261-72. [PMID: 27638608 DOI: 10.1002/jnr.23791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 01/30/2023]
Abstract
Krabbe's disease (KD) is a lysosomal storage disorder in which galactosylceramide, a major glycosphingolipid of myelin, and psychosine (galactose-sphingosine) cannot be adequately metabolized because of a deficiency in galactosylceramidase. Substrate reduction therapy (SRT) has been tested in preclinical studies. The premise of SRT is to reduce the synthesis of substrates that are not adequately digested so that the substrate burden is lowered, resulting in less accumulation of unmetabolized material. SRT is used for Gaucher's disease, in which inhibitors of the terminal biosynthetic step are used. Unfortunately, an inhibitor for the final step of galactosylceramide biosynthesis, i.e., UDP glycosyltransferase 8 (a.k.a. UDP-galactose ceramide galactosyltransferase), has not been found. Approaches that inhibit an earlier biosynthetic step or that lessen the substrate burden by other means, such as genetic manipulations, have been tested in the twitcher mouse model of KD. Either as a stand-alone therapy or in combination with other approaches, SRT slowed the disease course, indicating that this approach has potential therapeutic value. For instance, in individuals with adult-onset disease, SRT theoretically could lessen the production of substrates so that residual enzymatic activity could adequately manage the lower substrate burden. In more severe forms of disease, SRT theoretically could be part of a combination therapy. However, SRT has the potential to impair normal function by reducing the synthesis of galactosylceramide to levels that impede myelin function, or SRT could have other deleterious effects. Thus, multiple issues need to be resolved before this approach is ready for testing in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Scott A Sands
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
19
|
Phelix CF, Bourdon AK, Villareal G, LeBaron RG. Modeling non-clinical and clinical drug tests in Gaucher disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1434-1438. [PMID: 28268595 DOI: 10.1109/embc.2016.7590978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is need for modeling biological systems to accelerate drug pipelines for treating metabolic diseases. The eliglustat treatment for Gaucher disease is approved by the FDA with a companion genomic test. The Transcriptome-To-Metabolome™ biosimulation technology was used to model, in silico, a standard non-clinical eliglustat test with an in vitro canine kidney cell system over-expressing a human gene; and a clinical test using human fibroblasts from control and Gaucher disease subjects. Protein homology modeling and docking studies were included to gather affinity parameters for the kinetic metabolic model. Pharmacodynamics and metabolomics analyses of the results replicated published findings and demonstrated that processing and transport of lysosomal proteins alone cannot explain the metabolic disorder. This technology shows promise for application to other diseases.
Collapse
|
20
|
Zielinski T, Reichman M, Donover PS, Lowery RG. Development and Validation of a Universal High-Throughput UDP-Glycosyltransferase Assay with a Time-Resolved FRET Signal. Assay Drug Dev Technol 2016; 14:240-51. [PMID: 27136323 DOI: 10.1089/adt.2016.711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glycosyltransferase enzymes play diverse metabolic and regulatory roles by catalyzing the transfer of sugar molecules to protein, lipid, and carbohydrate acceptors, and they are increasingly of interest as therapeutic targets in a number of diseases, including metabolic disorders, cancer, and infectious diseases. The glycosyltransferases are a challenging target class from an assay development perspective because of the diversity of both donor and acceptor substrates and the lack of suitable glycan detection methods. However, many glycosyltransferases use uridine 5'-diphosphate (UDP) sugars as donor substrates, and detection of the free UDP reaction product provides a generic approach for measuring the activity of those enzymes. To exploit this approach for a broadly applicable high-throughput screening (HTS) assay for discovery of glycosyltransferase inhibitors, we developed a Transcreener(®) assay for immunodetection of UDP with a time-resolved Förster resonance energy transfer (TR-FRET) signal. We optimized the assay for detection of glycosyltransferase activity with nucleotide diphosphate (NDP) sugars at concentrations from 10 μM to 1 mM, achieving Z' values of 0.6 or higher. The assay was validated by orthogonal pooled screening with 8,000 compounds using polypeptide N-acetylgalactosaminyltransferase T3 as the target, and the hits were confirmed using an orthogonal readout. The reagents and signal were both stable for more than 8 h at room temperature, insuring robust performance in automated HTS environments. The TR-FRET-based UDP detection assay provides a broadly applicable approach for screening glycosyltransferases that use a UDP-sugar donor.
Collapse
Affiliation(s)
| | - Melvin Reichman
- 2 Lankenau Institute for Medical Research , Wynnewood, Pennsylvania
| | | | | |
Collapse
|
21
|
Mao F, Ni W, Xu X, Wang H, Wang J, Ji M, Li J. Chemical Structure-Related Drug-Like Criteria of Global Approved Drugs. Molecules 2016; 21:75. [PMID: 26771590 PMCID: PMC6273477 DOI: 10.3390/molecules21010075] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 11/16/2022] Open
Abstract
The chemical structure of a drug determines its physicochemical properties, further determines its ADME/Tox properties, and ultimately affects its pharmacological activity. Medicinal chemists can regulate the pharmacological activity of drug molecules by modifying their structure. Ring systems and functional groups are important components of a drug. The proportion of non-hydrocarbon atoms among non-hydrogen atoms reflects the heavy atoms proportion of a drug. The three factors have considerable potential for the assessment of the drug-like properties of organic molecules. However, to the best of our knowledge, there have been no studies to systematically analyze the simultaneous effects of the number of aromatic and non-aromatic rings, the number of some special functional groups and the proportion of heavy atoms on the drug-like properties of an organic molecule. To this end, the numbers of aromatic and non-aromatic rings, the numbers of some special functional groups and the heavy atoms proportion of 6891 global approved small drugs have been comprehensively analyzed. We first uncovered three important structure-related criteria closely related to drug-likeness, namely: (1) the best numbers of aromatic and non-aromatic rings are 2 and 1, respectively; (2) the best functional groups of candidate drugs are usually -OH, -COOR and -COOH in turn, but not -CONHOH, -SH, -CHO and -SO3H. In addition, the -F functional group is beneficial to CNS drugs, and -NH2 functional group is beneficial to anti-infective drugs and anti-cancer drugs; (3) the best R value intervals of candidate drugs are in the range of 0.05-0.50 (preferably 0.10-0.35), and R value of the candidate CNS drugs should be as small as possible in this interval. We envision that the three chemical structure-related criteria may be applicable in a prospective manner for the identification of novel candidate drugs and will provide a theoretical foundation for designing new chemical entities with good drug-like properties.
Collapse
Affiliation(s)
- Fei Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, 200237 Shanghai, China.
| | - Wei Ni
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, 200237 Shanghai, China.
| | - Xiang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, 200237 Shanghai, China.
| | - Hui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, 200237 Shanghai, China.
| | - Jing Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, 200237 Shanghai, China.
| | - Min Ji
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, 200237 Shanghai, China.
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, 200237 Shanghai, China.
| |
Collapse
|
22
|
Sechi A, Dardis A, Bembi B. Profile of eliglustat tartrate in the management of Gaucher disease. Ther Clin Risk Manag 2016; 12:53-8. [PMID: 26811686 PMCID: PMC4714736 DOI: 10.2147/tcrm.s73226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gaucher disease (GD) is a lysosomal storage disorder caused by the deficient activity of acid beta glucosidase, with consequent accumulation of glucosylceramide in the spleen, liver, bone marrow, and various organs and tissues. Currently, the gold standard for GD treatment is enzyme replacement therapy (ERT). The efficacy of ERT in improving or stabilizing the visceral and hematological symptoms of GD is well-proven. However, since ERT has to be administered by frequent intravenous infusions, this therapeutic approach has an important impact on the patient’s quality of life. Eliglustat tartrate is a new substrate reduction therapy for GD, which acts as a specific and potent inhibitor of glucosylceramide synthase and can be administered orally. This review summarizes the results of the preclinical and clinical trials, which experimented with eliglustat, and discusses its possible role in the management of GD, when compared to the currently available treatments and the new experimental approaches.
Collapse
Affiliation(s)
- Annalisa Sechi
- Regional Coordinator Center for Rare Diseases, Academic Hospital of Udine, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Center for Rare Diseases, Academic Hospital of Udine, Udine, Italy
| | - Bruno Bembi
- Regional Coordinator Center for Rare Diseases, Academic Hospital of Udine, Udine, Italy
| |
Collapse
|
23
|
Barkhuizen M, Anderson DG, Grobler AF. Advances in GBA-associated Parkinson's disease--Pathology, presentation and therapies. Neurochem Int 2015; 93:6-25. [PMID: 26743617 DOI: 10.1016/j.neuint.2015.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/29/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022]
Abstract
GBA mutations are to date the most common genetic risk factor for Parkinson's disease. The GBA gene encodes the lysomal hydrolase glucocerebrosidase. Whilst bi-allelic GBA mutations cause Gaucher disease, both mono- and bi-allelic mutations confer risk for Parkinson's disease. Clinically, Parkinson's disease patients with GBA mutations resemble idiopathic Parkinson's disease patients. However, these patients have a modest reduction in age-of-onset of disease and a greater incidence of cognitive decline. In some cases, GBA mutations are also responsible for familial Parkinson's disease. The accumulation of α-synuclein into Lewy bodies is the central neuropathological hallmark of Parkinson's disease. Pathologic GBA mutations reduce enzymatic function. A reduction in glucocerebrosidase function increases α-synuclein levels and propagation, which in turn inhibits glucocerebrosidase in a feed-forward cascade. This cascade is central to the neuropathology of GBA-associated Parkinson's disease. The lysosomal integral membrane protein type-2 is necessary for normal glucocerebrosidase function. Glucocerebrosidase dysfunction also increases in the accumulation of β-amyloid and amyloid-precursor protein, oxidative stress, neuronal susceptibility to metal ions, microglial and immune activation. These factors contribute to neuronal death. The Mendelian Parkinson's disease genes, Parkin and ATP13A2, intersect with glucocerebrosidase. These factors sketch a complex circuit of GBA-associated neuropathology. To clinically interfere with this circuit, central glucocerebrosidase function must be improved. Strategies based on reducing breakdown of mutant glucocerebrosidase and increasing the fraction that reaches the lysosome has shown promise. Breakdown can be reduced by interfering with the ability of heat-shock proteins to recognize mutant glucocerebrosidase. This underlies the therapeutic efficacy of certain pharmacological chaperones and histone deacetylase inhibitors. These therapies are promising for Parkinson's disease, regardless of mutation status. Recently, there has been a boom in studies investigating the role of glucocerebrosidase in the pathology of Parkinson's disease. This merits a comprehensive review of the current cell biological processes and pathological pictures involving Parkinson's disease associated with GBA mutations.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa; Department of Paediatrics, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229, The Netherlands.
| | - David G Anderson
- Department of Neurology, Witwatersrand University Donald Gordon Medical Centre, Parktown, Johannesburg, 2193, South Africa
| | - Anne F Grobler
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
24
|
Schreiber SL, Kotz JD, Li M, Aubé J, Austin CP, Reed JC, Rosen H, White EL, Sklar LA, Lindsley CW, Alexander BR, Bittker JA, Clemons PA, de Souza A, Foley MA, Palmer M, Shamji AF, Wawer MJ, McManus O, Wu M, Zou B, Yu H, Golden JE, Schoenen FJ, Simeonov A, Jadhav A, Jackson MR, Pinkerton AB, Chung TDY, Griffin PR, Cravatt BF, Hodder PS, Roush WR, Roberts E, Chung DH, Jonsson CB, Noah JW, Severson WE, Ananthan S, Edwards B, Oprea TI, Conn PJ, Hopkins CR, Wood MR, Stauffer SR, Emmitte KA. Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes. Cell 2015; 161:1252-65. [PMID: 26046436 PMCID: PMC4564295 DOI: 10.1016/j.cell.2015.05.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 02/06/2023]
Abstract
Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.
Collapse
Affiliation(s)
- Stuart L Schreiber
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Joanne D Kotz
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Min Li
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, KS 66045, USA; Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Christopher P Austin
- NIH Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850, USA; National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - John C Reed
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, and Lake Nona, FL 32827, USA
| | - Hugh Rosen
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - E Lucile White
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - Larry A Sklar
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Craig W Lindsley
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Benjamin R Alexander
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Joshua A Bittker
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Paul A Clemons
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrea de Souza
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael A Foley
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michelle Palmer
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alykhan F Shamji
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mathias J Wawer
- Probe Development Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Owen McManus
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Meng Wu
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Beiyan Zou
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Haibo Yu
- Johns Hopkins School of Medicine Ion Channel Center, Baltimore, MD 21205, USA
| | - Jennifer E Golden
- University of Kansas Specialized Chemistry Center, Lawrence, KS 66045, USA
| | - Frank J Schoenen
- University of Kansas Specialized Chemistry Center, Lawrence, KS 66045, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850, USA; National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850, USA; National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | - Michael R Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, and Lake Nona, FL 32827, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, and Lake Nona, FL 32827, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, and Lake Nona, FL 32827, USA
| | - Patrick R Griffin
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Benjamin F Cravatt
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Peter S Hodder
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA
| | - William R Roush
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Edward Roberts
- Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, and Jupiter, FL 33458, USA
| | - Dong-Hoon Chung
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - Colleen B Jonsson
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - James W Noah
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - William E Severson
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - Subramaniam Ananthan
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, AL 35205, USA
| | - Bruce Edwards
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Tudor I Oprea
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Internal Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - P Jeffrey Conn
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Corey R Hopkins
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael R Wood
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Shaun R Stauffer
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- The Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
25
|
Abstract
Striking therapeutic advances for lysosomal diseases have harnessed the biology of this organelle and illustrate its central rôle in the dynamic economy of the cell. Further Innovation will require improved protein-targetting or realization of therapeutic gene- and cell transfer stratagems. Rescuing function before irreversible injury, mandates a deep knowledge of clinical behaviour as well as molecular pathology – and frequently requires an understanding of neuropathology. Whether addressing primary causes, or rebalancing the effects of disordered cell function, true therapeutic innovation depends on continuing scientific exploration of the lysosome. Genuine partnerships between biotech and the patients affected by this extraordinary family of disorders continue to drive productive pharmaceutical discovery.
Collapse
Affiliation(s)
- Timothy M Cox
- Department of Medicine, University of Cambridge, UK.
| |
Collapse
|
26
|
Ghisaidoobe AT, van den Berg RJBHN, Butt SS, Strijland A, Donker-Koopman WE, Scheij S, van den Nieuwendijk AMCH, Koomen GJ, van Loevezijn A, Leemhuis M, Wennekes T, van der Stelt M, van der Marel GA, van Boeckel CAA, Aerts JMFG, Overkleeft HS. Identification and Development of Biphenyl Substituted Iminosugars as Improved Dual Glucosylceramide Synthase/Neutral Glucosylceramidase Inhibitors. J Med Chem 2014; 57:9096-104. [DOI: 10.1021/jm501181z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Amar T. Ghisaidoobe
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | | | - Saleem S. Butt
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | - Anneke Strijland
- Department of Medical Biochemistry,
Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Wilma E. Donker-Koopman
- Department of Medical Biochemistry,
Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry,
Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | - Gerrit-Jan Koomen
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, , P.O. Box
94157, 1090 GD Amsterdam, The Netherlands
| | - Arnold van Loevezijn
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, , P.O. Box
94157, 1090 GD Amsterdam, The Netherlands
| | - Mark Leemhuis
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, , P.O. Box
94157, 1090 GD Amsterdam, The Netherlands
| | - Tom Wennekes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| | - Constant A. A. van Boeckel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
- Pivot Park Screening
Centre, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry,
Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg
55, 2300 RA Leiden, The Netherlands
| |
Collapse
|
27
|
Sybertz E, Krainc D. Development of targeted therapies for Parkinson's disease and related synucleinopathies. J Lipid Res 2014; 55:1996-2003. [PMID: 24668939 DOI: 10.1194/jlr.r047381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Therapeutic efforts in neurodegenerative diseases have been very challenging, particularly due to a lack of validated and mechanism-based therapeutic targets and biomarkers. The basic idea underlying the novel therapeutic approaches reviewed here is that by exploring the molecular basis of neurodegeneration in a rare lysosomal disease such as Gaucher's disease (GD), new molecular targets will be identified for therapeutic development in common synucleinopathies. Accumulation of α-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, suggesting that improved clearance of α-synuclein may be of therapeutic benefit. To achieve this goal, it is important to identify specific mechanisms and targets involved in the clearance of α-synuclein. Recent discovery of clinical, genetic, and pathological linkage between GD and PD offers a unique opportunity to examine lysosomal glucocerebrosidase, an enzyme mutated in GD, for development of targeted therapies in synucleinopathies. While modulation of glucocerebrosidase and glycolipid metabolism offers a viable approach to treating disorders associated with synuclein accumulation, the compounds described to date either lack the ability to penetrate the CNS or have off-target effects that may counteract or limit their capabilities to mediate the desired pharmacological action. However, recent emergence of selective inhibitors of glycosphingolipid biosynthesis and noninhibitory pharmacological chaperones of glycosphingolipid processing enzymes that gain access to the CNS provide a novel approach that may overcome some of the limitations of compounds reported to date. These new strategies may allow for development of targeted treatments for synucleinopathies that affect both children and adults.
Collapse
Affiliation(s)
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
28
|
Smid BE, Hollak CEM. A systematic review on effectiveness and safety of eliglustat for type 1 Gaucher disease. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.899148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Shen W, Henry AG, Paumier KL, Li L, Mou K, Dunlop J, Berger Z, Hirst WD. Inhibition of glucosylceramide synthase stimulates autophagy flux in neurons. J Neurochem 2014; 129:884-94. [PMID: 24494600 DOI: 10.1111/jnc.12672] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/16/2023]
Abstract
Aggregate-prone mutant proteins, such as α-synuclein and huntingtin, play a prominent role in the pathogenesis of various neurodegenerative disorders; thus, it has been hypothesized that reducing the aggregate-prone proteins may be a beneficial therapeutic strategy for these neurodegenerative disorders. Here, we identified two previously described glucosylceramide (GlcCer) synthase inhibitors, DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol and Genz-123346(Genz), as enhancers of autophagy flux. We also demonstrate that GlcCer synthase inhibitors exert their effects on autophagy by inhibiting AKT-mammalian target of rapamycin (mTOR) signaling. More importantly, siRNA knock down of GlcCer synthase had the similar effect as pharmacological inhibition, confirming the on-target effect. In addition, we discovered that inhibition of GlcCer synthase increased the number and size of lysosomal/late endosomal structures. Although inhibition of GlcCer synthase decreases levels of mutant α-synuclein in neurons, it does so, according to our data, through autophagy-independent mechanisms. Our findings demonstrate a direct link between glycosphingolipid biosynthesis and autophagy in primary neurons, which may represent a novel pathway with potential therapeutic value for the treatment of Parkinson's disease. Inhibition of GlcCer synthase enhances autophagy by inhibiting AKT-mTOR signaling, and increases the number and size of lysosomal/late endosomal structures. Furthermore, inhibition of GlcCer synthase decreased levels of mutant α-synuclein in neurons, which may represent a potential therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Wei Shen
- Pfizer Neuroscience Research Unit, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Ceramide serves as a central mediator in sphingolipid metabolism and signaling pathways, regulating many fundamental cellular responses. It is referred to as a 'tumor suppressor lipid', since it powerfully potentiates signaling events that drive apoptosis, cell cycle arrest, and autophagic responses. In the typical cancer cell, ceramide levels and signaling are usually suppressed by overexpression of ceramide-metabolizing enzymes or downregulation of ceramide-generating enzymes. However, chemotherapeutic drugs as well as radiotherapy increase intracellular ceramide levels, while exogenously treating cancer cells with short-chain ceramides leads to anticancer effects. All evidence currently points to the fact that the upregulation of ceramide levels is a promising anticancer strategy. In this review, we exhibit many anticancer ceramide analogs as downstream receptor agonists and ceramide-metabolizing enzyme inhibitors.
Collapse
|
31
|
Shayman JA, Larsen SD. The development and use of small molecule inhibitors of glycosphingolipid metabolism for lysosomal storage diseases. J Lipid Res 2014; 55:1215-25. [PMID: 24534703 DOI: 10.1194/jlr.r047167] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycosphingolipid (GSL) storage diseases have been the focus of efforts to develop small molecule therapeutics from design, experimental proof of concept studies, and clinical trials. Two primary alternative strategies that have been pursued include pharmacological chaperones and GSL synthase inhibitors. There are theoretical advantages and disadvantages to each of these approaches. Pharmacological chaperones are specific for an individual glycoside hydrolase and for the specific mutation present, but no candidate chaperone has been demonstrated to be effective for all mutations leading to a given disorder. Synthase inhibitors target single enzymes such as glucosylceramide synthase and inhibit the formation of multiple GSLs. A glycolipid synthase inhibitor could potentially be used to treat multiple diseases, but at the risk of lowering nontargeted cellular GSLs that are important for normal health. The basis for these strategies and specific examples of compounds that have led to clinical trials is the focus of this review.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine and Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
32
|
|
33
|
Seyfried TN, Rockwell HE, Heinecke KA, Martin DR, Sena-Esteves M. Ganglioside storage diseases: on the road to management. ADVANCES IN NEUROBIOLOGY 2014; 9:485-99. [PMID: 25151393 DOI: 10.1007/978-1-4939-1154-7_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although the biochemical and genetic basis for the GM1 and GM2 gangliosidoses has been known for decades, effective therapies for these diseases remain in early stages of development. The difficulty with many therapeutic strategies for treating the gangliosidoses comes largely from their inability to remove stored ganglioside once it accumulates in central nervous system (CNS) neurons and glia. This chapter highlights advances made using substrate reduction therapy and gene therapy in reducing CNS ganglioside storage. Information obtained from mouse and feline models provides insight on therapeutic strategies that could be effective in human clinical trials. In addition, information is presented showing how a calorie-restricted diet might facilitate therapeutic drug delivery to the CNS. The development of multiple new therapeutic approaches offers hope that longer-term management of these diseases can be achieved. It is also clear that multiple therapeutic strategies will likely be needed to provide the most complete management.
Collapse
|
34
|
Sindac JA, Barraza SJ, Dobry CJ, Xiang J, Blakely PK, Irani DN, Keep RF, Miller DJ, Larsen SD. Optimization of novel indole-2-carboxamide inhibitors of neurotropic alphavirus replication. J Med Chem 2013; 56:9222-41. [PMID: 24151954 DOI: 10.1021/jm401330r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurotropic alphaviruses, which include western equine encephalitis virus (WEEV) and Fort Morgan virus, are mosquito-borne pathogens that infect the central nervous system causing acute and potentially fatal encephalitis. We previously reported a novel series of indole-2-carboxamides as alphavirus replication inhibitors, one of which conferred protection against neuroadapted Sindbis virus infection in mice. We describe here further development of this series, resulting in 10-fold improvement in potency in a WEEV replicon assay and up to 40-fold increases in half-lives in mouse liver microsomes. Using a rhodamine123 uptake assay in MDR1-MDCKII cells, we were able to identify structural modifications that markedly reduce recognition by P-glycoprotein, the key efflux transporter at the blood-brain barrier. In a preliminary mouse PK study, we were able to demonstrate that two new analogues could achieve higher and/or longer plasma drug exposures than our previous lead and that one compound achieved measurable drug levels in the brain.
Collapse
Affiliation(s)
- Janice A Sindac
- Vahlteich Medicinal Chemistry Core and ‡Department of Medicinal Chemistry, College of Pharmacy, §Departments of Internal Medicine and Microbiology and Immunology, ∥Department of Neurology, ⊥Department of Neurosurgery, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Eliglustat tartrate is a highly specific inhibitor of glucosylceramide synthase, developed for the treatment glucosylceramide-based glycosphingolipidoses. Eliglustat is in late clinical development for Gaucher disease type 1. Phase II and III clinical trials have demonstrated clinical efficacy for eliglustat as a stand-alone agent for newly diagnosed patients that are naïve to prior therapy and for patients who have been previously treated with enzyme replacement therapy. Importantly, the reported toxicity of eliglustat has been limited. Eliglustat will be submitted for the US FDA and EMA review in late 2013. Several structurally unrelated glucosylceramide synthase inhibitors have been identified and are in various stages of development, some of which cross the blood-brain barrier. Targeting glucosylceramide synthesis is also a promising approach for the treatment of type 2 diabetes mellitus, autosomal dominant polycystic kidney disease and certain cancers.
Collapse
Affiliation(s)
- James A Shayman
- a Department of Internal Medicine, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
36
|
Morad SAF, Levin JC, Tan SF, Fox TE, Feith DJ, Cabot MC. Novel off-target effect of tamoxifen--inhibition of acid ceramidase activity in cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1657-64. [PMID: 23939396 DOI: 10.1016/j.bbalip.2013.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/18/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Acid ceramidase (AC), EC 3.5.1.23, a lysosomal enzyme, catalyzes the hydrolysis of ceramide to constituent sphingoid base, sphingosine, and fatty acid. Because AC regulates the levels of pro-apoptotic ceramide and mitogenic sphingosine-1-phosphate, it is considered an apt target in cancer therapy. The present study reveals, for the first time, that the prominent antiestrogen, tamoxifen, is a pan-effective AC inhibitor in the low, single digit micromolar range, as demonstrated in a wide spectrum of cancer cell types, prostate, pancreatic, colorectal, and breast. Prostate cancer cells were chosen for the detailed investigations. Treatment of intact PC-3 cells with tamoxifen produced time- and dose-dependent inhibition of AC activity. Tamoxifen did not impact cell viability nor did it inhibit AC activity in cell-free assays. In pursuit of mechanism of action, we demonstrate that tamoxifen induced time-, as early as 5min, and dose-dependent, as low as 5μM, increases in lysosomal membrane permeability (LMP), and time- and dose-dependent downregulation of AC protein expression. Assessing various protease inhibitors revealed that a cathepsin B inhibitor blocked tamoxifen-elicited downregulation of AC protein; however, this action failed to restore AC activity unless assayed in a cell-free system at pH4.5. In addition, pretreatment with tamoxifen inhibited PC-3 cell migration. Toremifene, an antiestrogen structurally similar to tamoxifen, was also a potent inhibitor of AC activity. This study reveals a new, off-target action of tamoxifen that may be of benefit to enhance anticancer therapies that either incorporate ceramide or target ceramide metabolism.
Collapse
Affiliation(s)
- Samy A F Morad
- John Wayne Cancer Institute at Saint John's Health Center, Department of Experimental Therapeutics, Santa Monica, CA 90404, USA
| | | | | | | | | | | |
Collapse
|
37
|
Liu YY, Hill RA, Li YT. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 2013; 117:59-89. [PMID: 23290777 DOI: 10.1016/b978-0-12-394274-6.00003-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucosylceramide synthase (GCS), converting ceramide to glucosylceramide, catalyzes the first reaction of ceramide glycosylation in sphingolipid metabolism. This glycosylation by GCS is a critical step regulating the modulation of cellular activities by controlling ceramide and glycosphingolipids (GSLs). An increase of ceramide in response to stresses, such as chemotherapy, drives cells to proliferation arrest and apoptosis or autophagy; however, ceramide glycosylation promptly eliminates ceramide and consequently, these induced processes, thus protecting cancer cells. Further, persistently enhanced ceramide glycosylation can increase GSLs, participating in selecting cancer cells to drug resistance. GCS is overexpressed in diverse drug-resistant cancer cells and in tumors of breast, colon, and leukemia that display poor response to chemotherapy. As ceramide glycosylation by GCS is a rate-limiting step in GSL synthesis, inhibition of GCS sensitizes cancer cells to anticancer drugs and eradicates cancer stem cells. Mechanistic studies indicate that uncoupling ceramide glycosylation can modulate gene expression, decreasing MDR1 through the cSrc/β-catenin pathway and restoring p53 expression via RNA splicing. These studies not only expand our knowledge in understanding how ceramide glycosylation affects cancer cells but also provide novel therapeutic approaches for targeting refractory tumors.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA, USA.
| | | | | |
Collapse
|
38
|
|
39
|
Arthur JR, Wilson MW, Larsen SD, Rockwell HE, Shayman JA, Seyfried TN. Ethylenedioxy-PIP2 oxalate reduces ganglioside storage in juvenile Sandhoff disease mice. Neurochem Res 2013; 38:866-75. [PMID: 23417430 DOI: 10.1007/s11064-013-0992-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/16/2013] [Accepted: 01/29/2013] [Indexed: 01/02/2023]
Abstract
Sandhoff disease is an incurable neurodegenerative disorder caused by mutations in the lysosomal hydrolase β-hexosaminidase. Deficiency in this enzyme leads to excessive accumulation of ganglioside GM2 and its asialo derivative, GA2, in brain and visceral tissues. Small molecule inhibitors of ceramide-specific glucosyltransferase, the first committed step in ganglioside biosynthesis, reduce storage of GM2 and GA2. Limited brain access or adverse effects have hampered the therapeutic efficacy of the clinically approved substrate reduction molecules, eliglustat tartrate and the imino sugar NB-DNJ (Miglustat). The novel eliglustat tartrate analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (EtDO-PIP2, CCG-203586 or "3h"), was recently reported to reduce glucosylceramide in murine brain. Here we assessed the therapeutic efficacy of 3h in juvenile Sandhoff (Hexb-/-) mice. Sandhoff mice received intraperitoneal injections of phosphate buffered saline (PBS) or 3h (60 mg/kg/day) from postnatal day 9 (p-9) to postnatal day 15 (p-15). Brain weight and brain water content was similar in 3h and PBS-treated mice. 3h significantly reduced total ganglioside sialic acid, GM2, and GA2 content in cerebrum, cerebellum and liver of Sandhoff mice. Data from the liver showed that 3h reduced the key upstream ganglioside precursor (glucosylceramide), providing evidence for an on target mechanism of action. No significant differences were seen in the distribution of cholesterol or of neutral and acidic phospholipids. These data suggest that 3h can be an effective alternative to existing substrate reduction molecules for ganglioside storage diseases.
Collapse
Affiliation(s)
- Julian R Arthur
- Boston College Biology Department, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
40
|
Shayman JA. The design and clinical development of inhibitors of glycosphingolipid synthesis: will invention be the mother of necessity? TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2013; 124:46-60. [PMID: 23874009 PMCID: PMC3715929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The treatment of glycosphingolipid storage diseases by synthesis inhibition was first proposed 40 years ago as an alternative approach to enzyme replacement therapy. We have pursued this strategy through the rational design of potent and selective inhibitors of glucosylceramide synthase, the first step in glycosphingolipid synthesis. Eliglustat tartrate was the result of these efforts and is currently the focus of phase 3 trials for type 1 Gaucher disease. Phase 2 studies showed a reduction in splenomegaly and hepatomegaly and improvements of anemia and thrombocytopenia at levels equivalent to or exceeding the historic response to imiglucerase. Structural analogues of eliglustat have also been designed that lack pgp-1 recognition and cross the blood brain barrier. These may have utility for central nervous system- based sphingolipidoses. Because glycosphingolipids are important regulators of receptor tyrosine kinases, glucosylceramide synthase inhibitors may also be beneficial for disorders such as type 2 diabetes mellitus and polycystic kidney disease.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine, University of Michigan, 1150 West Medical Center Dr, Ann Arbor, MI 48109-5676, USA.
| |
Collapse
|
41
|
Barth BM, Shanmugavelandy SS, Tacelosky DM, Kester M, Morad SAF, Cabot MC. Gaucher's disease and cancer: a sphingolipid perspective. Crit Rev Oncog 2013; 18:221-234. [PMID: 23510065 PMCID: PMC3604879 DOI: 10.1615/critrevoncog.2013005814] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gaucher's disease is a sphingolipidosis characterized by a specific deficiency in an acidic glucocerebrosidase, which results in aberrant accumulation of glucosylceramide primarily within the lysosome. Gaucher's disease has been correlated with cases of myeloma, leukemia, glioblastoma, lung cancer, and hepatocellular carcinoma, although the reasons for the correlation are currently being debated. Some suggest that the effects of Gaucher's disease may be linked to cancer, while others implicate the therapies used to treat Gaucher's disease. This debate is not entirely surprising, as the speculations linking Gaucher's disease with cancer fail to address the roles of ceramide and glucosylceramide in cancer biology. In this review, we will discuss, in the context of cancer biology, ceramide metabolism to glucosylceramide, the roles of glucosylceramide in multidrug-resistance, and the role of ceramide as an anticancer lipid. This review should reveal that it is most practical to associate elevated glucosylceramide, which accompanies Gaucher's disease, with the progression of cancer. Furthermore, this review proposes that the therapies used to treat Gaucher's disease, which augment ceramide accumulation, are likely not linked to correlations with cancer.
Collapse
Affiliation(s)
- Brian M. Barth
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | | | - Diana M. Tacelosky
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Mark Kester
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Samy A. F. Morad
- Experimental Therapeutics Program, John Wayne Cancer Institute, Santa Monica, CA, USA
| | - Myles C. Cabot
- Experimental Therapeutics Program, John Wayne Cancer Institute, Santa Monica, CA, USA
| |
Collapse
|
42
|
Desai PV, Raub TJ, Blanco MJ. How hydrogen bonds impact P-glycoprotein transport and permeability. Bioorg Med Chem Lett 2012; 22:6540-8. [PMID: 23006604 DOI: 10.1016/j.bmcl.2012.08.059] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/03/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
The requirement to cross a biological membrane can be a complex process especially if multidrug transporters such as P-gp must be considered. Drug partitioning into the lipid membrane and efflux by P-gp are tightly coupled processes wherein H-bonding interactions play a key role. All H-bond donors and acceptors are not equal in terms of the strength of the H-bonds that they form, hence it is important to consider their relative strength. Using various examples from literature, we illustrate the benefits of considering the relative strengths of individual H-bonds and introducing intramolecular H-bonds to increase membrane permeability and/or decrease P-gp efflux.
Collapse
Affiliation(s)
- Prashant V Desai
- Computational ADME, Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|