1
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
2
|
Oliw EH. Thirty years with three-dimensional structures of lipoxygenases. Arch Biochem Biophys 2024; 752:109874. [PMID: 38145834 DOI: 10.1016/j.abb.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.
Collapse
Affiliation(s)
- Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
3
|
Toporkova YY, Smirnova EO, Gorina SS. Epoxyalcohol Synthase Branch of Lipoxygenase Cascade. Curr Issues Mol Biol 2024; 46:821-841. [PMID: 38248355 PMCID: PMC10813956 DOI: 10.3390/cimb46010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Oxylipins are one of the most important classes of bioregulators, biosynthesized through the oxidative metabolism of unsaturated fatty acids in various aerobic organisms. Oxylipins are bioregulators that maintain homeostasis at the cellular and organismal levels. The most important oxylipins are mammalian eicosanoids and plant octadecanoids. In plants, the main source of oxylipins is the lipoxygenase cascade, the key enzymes of which are nonclassical cytochromes P450 of the CYP74 family, namely allene oxide synthases (AOSs), hydroperoxide lyases (HPLs), and divinyl ether synthases (DESs). The most well-studied plant oxylipins are jasmonates (AOS products) and traumatin and green leaf volatiles (HPL products), whereas other oxylipins remain outside of the focus of researchers' attention. Among them, there is a large group of epoxy hydroxy fatty acids (epoxyalcohols), whose biosynthesis has remained unclear for a long time. In 2008, the first epoxyalcohol synthase of lancelet Branchiostoma floridae, BfEAS (CYP440A1), was discovered. The present review collects data on EASs discovered after BfEAS and enzymes exhibiting EAS activity along with other catalytic activities. This review also presents the results of a study on the evolutionary processes possibly occurring within the P450 superfamily as a whole.
Collapse
Affiliation(s)
- Yana Y. Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia; (E.O.S.); (S.S.G.)
| | | | | |
Collapse
|
4
|
Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnol Adv 2022; 61:108046. [DOI: 10.1016/j.biotechadv.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
5
|
Oliw EH. Diversity of the manganese lipoxygenase gene family - A mini-review. Fungal Genet Biol 2022; 163:103746. [PMID: 36283615 DOI: 10.1016/j.fgb.2022.103746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/06/2023]
Abstract
Analyses of fungal genomes of escalate from biological and evolutionary investigations. The biochemical analyses of putative enzymes will inevitably lag behind and only a selection will be characterized. Plant-pathogenic fungi secrete manganese-lipoxygenases (MnLOX), which oxidize unsaturated fatty acids to hydroperoxides to support infection. Six MnLOX have been characterized so far including the 3D structures of these enzymes of the Rice blast and the Take-all fungi. The goal was to use this information to evaluate MnLOX-related gene transcripts to find informative specimens for further studies. Phylogenetic analysis, determinants of catalytic activities, and the C-terminal amino acid sequences divided 54 transcripts into three major subfamilies. The six MnLOX belonged to the same "prototype" subfamily with conserved residues in catalytic determinants and C-terminal sequences. The second subfamily retained the secretion mechanism, presumably necessary for uptake of Mn2+, but differed in catalytic determinants and by cysteine replacement of an invariant Leu residue for positioning ("clamping") of fatty acids. The third subfamily contrasted with alanine in the Gly/Ala switch for regiospecific oxidation and a minority contained unprecedented C-terminal sequences or lacked secretion signals. With these exceptions, biochemical analyses of transcripts of the three subfamilies appear to have reasonable prospects to find active enzymes.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
6
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Nanopeptide CMCS-20H loaded by carboxymethyl chitosan remarkably enhances protective efficacy against bacterial infection in fish. Int J Biol Macromol 2022; 201:226-241. [PMID: 34995671 DOI: 10.1016/j.ijbiomac.2021.12.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Oliw EH. Iron and manganese lipoxygenases of plant pathogenic fungi and their role in biosynthesis of jasmonates. Arch Biochem Biophys 2022; 722:109169. [PMID: 35276213 DOI: 10.1016/j.abb.2022.109169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Lipoxygenases (LOX) contain catalytic iron (FeLOX), but fungi also produce LOX with catalytic manganese (MnLOX). In this review, the 3D structures and properties of fungal LOX are compared and contrasted along with their associations with pathogenicity. The 3D structures and properties of two MnLOX (Magnaporthe oryzae, Geaumannomyces graminis) and the catalysis of five additional MnLOX have provided information on the metal center, substrate binding, oxygenation, tentative O2 channels, and biosynthesis of exclusive hydroperoxides. In addition, the genomes of other plant pathogens also code for putative MnLOX. Crystals of the 13S-FeLOX of Fusarium graminearum revealed an unusual altered geometry of the Fe ligands between mono- and dimeric structures, influenced by a wrapping sequence extension near the C-terminal of the dimers. In plants, the enzymes involved in jasmonate synthesis are well documented whereas the fungal pathway is yet to be fully elucidated. Conversion of deuterium-labeled 18:3n-3, 18:2n-6, and their 13S-hydroperoxides to jasmonates established 13S-FeLOX of F. oxysporum in the biosynthesis, while subsequent enzymes lacked sequence homologues in plants. The Rice-blast (M. oryzae) and the Take-all (G. graminis) fungi secrete MnLOX to support infection, invasive hyphal growth, and cell membrane oxidation, contributing to their devastating impact on world production of rice and wheat.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
8
|
Vannoni L, Pizzimenti S, Caroti G, La Nasa J, Duce C, Bonaduce I. Disclosing the chemistry of oil curing by mass spectrometry using methyl linoleate as a model binder. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Pennerman KK, Yin G, Bennett JW. Eight-carbon volatiles: prominent fungal and plant interaction compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:487-497. [PMID: 34727164 DOI: 10.1093/jxb/erab438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Signaling via volatile organic compounds (VOCs) has historically been studied mostly by entomologists; however, botanists and mycologists are increasingly aware of the physiological potential of chemical communication in the gas phase. Most research to date focuses on the observed effects of VOCs on different organisms such as differential growth or metabolite production. However, with the increased interest in volatile signaling, more researchers are investigating the molecular mechanisms for these effects. Eight-carbon VOCs are among the most prevalent and best-studied fungal volatiles. Therefore, this review emphasizes examples of eight-carbon VOCs affecting plants and fungi. These compounds display different effects that include growth suppression in both plants and fungi, induction of defensive behaviors such as accumulation of mycotoxins, phytohormone signaling cascades, and the inhibition of spore and seed germination. Application of '-omics' and other next-generation sequencing techniques is poised to decipher the mechanistic basis of volatiles in plant-fungal communication.
Collapse
Affiliation(s)
- Kayla K Pennerman
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, USA
| | - Guohua Yin
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Oliw EH. Fatty acid dioxygenase-cytochrome P450 fusion enzymes of filamentous fungal pathogens. Fungal Genet Biol 2021; 157:103623. [PMID: 34520871 DOI: 10.1016/j.fgb.2021.103623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Oxylipins designate oxygenated unsaturated C18 fatty acids. Many filamentous fungi pathogens contain dioxygenases (DOX) in oxylipin biosynthesis with homology to human cyclooxygenases. They contain a DOX domain, which is often fused to a functional cytochrome P450 at the C-terminal end. A Tyr radical in the DOX domain initiates dioxygenation of linoleic acid by hydrogen abstraction with formation of 8-, 9-, or 10-hydroperoxy metabolites. The P450 domains can catalyze heterolytic cleavage of 8- and 10-hydroperoxides with oxidation of the heme thiolate iron for hydroxylation at C-5, C-7, C-9, or C-11 and for epoxidation of the 12Z double bond; thus displaying linoleate diol synthase (LDS) and epoxy alcohol synthase (EAS) activities. LSD activities are present in the rice blast pathogen Magnaporthe oryzae, Botrytis cinerea causing grey mold and the black scurf pathogen Rhizoctonia solani. 10R-DOX-EAS has been found in M. oryzae and Fusarium oxysporum. The P450 domains may also catalyze homolytic cleavage of 8- and 9-hydroperoxy fatty acids and dehydration to produce epoxides with an adjacent double bond, i.e., allene oxides, thus displaying 8- and 9-DOX-allene oxide synthases (AOS). F. oxysporum, F. graminearum, and R. solani express 9S-DOX-AOS and Zymoseptoria tritici 8S-and 9R-DOX-AOS. Homologues are present in endemic human-pathogenic fungi with extensive studies in Aspergillus fumigatus, A. flavus (also a plant pathogen) as well as the genetic model A. nidulans. 8R-and 10R-DOX appear to bind fatty acids "headfirst" in the active site, whereas 9S-DOX binds them "tail first" in analogy with cyclooxygenases. The biological relevance of 8R-DOX-5,8-LDS (also designated PpoA) was first discovered in relation to sporulation of A. nidulans and recently for development and programmed hyphal branching of A. fumigatus. Gene deletion DOX-AOS homologues in F. verticillioides, A. flavus, and A. nidulans alters, inter alia, mycotoxin production, sporulation, and gene expression.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
11
|
Oliw EH. WITHDRAWN: Fatty acid dioxygenase-cytochrome P450 fusion enzymes of the top 10 fungal pathogens in molecular plant pathology and human-pathogenic fungi. Fungal Genet Biol 2021:103603. [PMID: 34214670 DOI: 10.1016/j.fgb.2021.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
12
|
Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum – Modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genet Biol 2020; 139:103383. [DOI: 10.1016/j.fgb.2020.103383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
|
13
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
14
|
Sugio A, Østergaard LH, Matsui K, Takagi S. Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae. J Biosci Bioeng 2018; 126:436-444. [PMID: 29805113 DOI: 10.1016/j.jbiosc.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Akiko Sugio
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan
| | | | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shinobu Takagi
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan.
| |
Collapse
|
15
|
Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf. Int J Mol Sci 2017; 18:ijms18122722. [PMID: 29244752 PMCID: PMC5751323 DOI: 10.3390/ijms18122722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 02/08/2023] Open
Abstract
Black rice (Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.
Collapse
|
16
|
Gessler NN, Filippovich SY, Bachurina GP, Kharchenko EA, Groza NV, Belozerskaya TA. Oxylipins and oxylipin synthesis pathways in fungi. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Newie J, Neumann P, Werner M, Mata RA, Ficner R, Feussner I. Lipoxygenase 2 from Cyanothece sp. controls dioxygen insertion by steric shielding and substrate fixation. Sci Rep 2017; 7:2069. [PMID: 28522865 PMCID: PMC5437038 DOI: 10.1038/s41598-017-02153-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023] Open
Abstract
The biological function of lipoxygenases depends on the regio and stereo specific formation of fatty acid-derived hydroperoxides and different concepts exist to explain the mechanism that directs dioxygen to a specific carbon atom within the substrate. Here, we report the 1.8 Å resolution crystal structure of a cyanobacterial lipoxygenase that produces bis-allylic hydroperoxides (CspLOX2). Site directed mutagenesis experiments combined with computational approaches reveal that residues around the active site direct dioxygen to a preferred carbon atom and stereo configuration in the substrate fatty acid. Modulating the cavity volume around the pentadiene system of linoleic acid shifted the product formation towards 9S-, 9R-, 13S- or 13R-hydroperoxides in correlation with the site of mutation, thus decreasing the amount of the bis-allylic 11R-hydroperoxide. Decreasing the channel size of a 9R-lipoxygenase (CspLOX1) on the other hand could in turn induce formation of the bis-allylic 11R-hydroperoxide. Together this study suggests that an active site clamp fixing the pentadiene system of the substrate together with steric shielding controls the stereo and regio specific positioning of dioxygen at all positions of the reacting pentadiene system of substrate fatty acids.
Collapse
Affiliation(s)
- Julia Newie
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Piotr Neumann
- University of Goettingen, Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Martin Werner
- University of Goettingen, Institute for Physical Chemistry, Tammannstr. 6, 37077, Goettingen, Germany
| | - Ricardo A Mata
- University of Goettingen, Institute for Physical Chemistry, Tammannstr. 6, 37077, Goettingen, Germany
| | - Ralf Ficner
- University of Goettingen, Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| |
Collapse
|
18
|
Chen Y, Wennman A, Karkehabadi S, Engström Å, Oliw EH. Crystal structure of linoleate 13R-manganese lipoxygenase in complex with an adhesion protein. J Lipid Res 2016; 57:1574-88. [PMID: 27313058 DOI: 10.1194/jlr.m069617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of 13R-manganese lipoxygenase (MnLOX) of Gaeumannomyces graminis (Gg) in complex with zonadhesin of Pichia pastoris was solved by molecular replacement. Zonadhesin contains β-strands in two subdomains. A comparison of Gg-MnLOX with the 9S-MnLOX of Magnaporthe oryzae (Mo) shows that the protein fold and the geometry of the metal ligands are conserved. The U-shaped active sites differ mainly due to hydrophobic residues of the substrate channel. The volumes and two hydrophobic side pockets near the catalytic base may sanction oxygenation at C-13 and C-9, respectively. Gly-332 of Gg-MnLOX is positioned in the substrate channel between the entrance and the metal center. Replacements with larger residues could restrict oxygen and substrate to reach the active site. C18 fatty acids are likely positioned with C-11 between Mn(2+)OH2 and Leu-336 for hydrogen abstraction and with one side of the 12Z double bond shielded by Phe-337 to prevent antarafacial oxygenation at C-13 and C-11. Phe-347 is positioned at the end of the substrate channel and replacement with smaller residues can position C18 fatty acids for oxygenation at C-9. Gg-MnLOX does not catalyze the sequential lipoxygenation of n-3 fatty acids in contrast to Mo-MnLOX, which illustrates the different configurations of their substrate channels.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Anneli Wennman
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Åke Engström
- Department of Biochemistry and Microbiology, Uppsala University Biomedical Center, SE-751 23 Uppsala, Sweden
| | - Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
19
|
Wennman A, Oliw EH, Karkehabadi S, Chen Y. Crystal Structure of Manganese Lipoxygenase of the Rice Blast Fungus Magnaporthe oryzae. J Biol Chem 2016; 291:8130-9. [PMID: 26783260 PMCID: PMC4825015 DOI: 10.1074/jbc.m115.707380] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/12/2016] [Indexed: 02/01/2023] Open
Abstract
Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungusMagnaporthe oryzae(Mo), was expressed inPichia pastoris.Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX.
Collapse
Affiliation(s)
- Anneli Wennman
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ernst H Oliw
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Yang Chen
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
20
|
Newie J, Kasanmascheff M, Bennati M, Feussner I. Kinetics of Bis-Allylic Hydroperoxide Synthesis in the Iron-Containing Lipoxygenase 2 from Cyanothece and the Effects of Manganese Substitution. Lipids 2016; 51:335-47. [PMID: 26832735 DOI: 10.1007/s11745-016-4127-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/19/2016] [Indexed: 01/18/2023]
Abstract
Lipoxygenases (LOX) catalyze the regio- and stereospecific insertion of dioxygen into polyunsaturated fatty acids. While the catalytic metal of LOX is typically a non-heme iron, some fungal LOX contain manganese as catalytic metal (MnLOX). In general, LOX insert dioxygen at C9 or C13 of linoleic acid leading to the formation of conjugated hydroperoxides. MnLOX (EC 1.13.11.45), however, catalyze the oxygen insertion also at C11, resulting in bis-allylic hydroperoxides. Interestingly, the iron-containing CspLOX2 (EC 1.13.11.B6) from Cyanothece PCC8801 also produces bis-allylic hydroperoxides. What role the catalytic metal plays and how this unusual reaction is catalyzed by either MnLOX or CspLOX2 is not understood. Our findings suggest that only iron is the catalytically active metal in CspLOX2. The enzyme loses its catalytic activity almost completely when iron is substituted with manganese, suggesting that the catalytic metal is not interchangeable. Using kinetic and spectroscopic approaches, we further found that first a mixture of bis-allylic and conjugated hydroperoxy products is formed. This is followed by the isomerization of the bis-allylic product to conjugated products at a slower rate. These results suggest that MnLOX and CspLOX2 share a very similar reaction mechanism and that LOX with a Fe or Mn cofactor have the potential to form bis-allylic products. Therefore, steric factors are probably responsible for this unusual specificity. As CspLOX2 is the LOX with the highest proportion of the bis-allylic product known so far, it will be an ideal candidate for further structural analysis to understand the molecular basis of the formation of bis-allylic hydroperoxides.
Collapse
Affiliation(s)
- Julia Newie
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry, Electron Paramagnetic Resonance Spectroscopy Group, Am Fassberg 11, 37077, Göttingen, Germany
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Tammanstrasse 4, 37077, Göttingen, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, Electron Paramagnetic Resonance Spectroscopy Group, Am Fassberg 11, 37077, Göttingen, Germany
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Tammanstrasse 4, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
- Department of Plant Biochemistry, Goettingen International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
21
|
Sooman L, Wennman A, Hamberg M, Hoffmann I, Oliw EH. Replacement of two amino acids of 9 R -dioxygenase-allene oxide synthase of Aspergillus niger inverts the chirality of the hydroperoxide and the allene oxide. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:108-118. [DOI: 10.1016/j.bbalip.2015.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 01/25/2023]
|
22
|
Wennman A, Jernerén F, Magnuson A, Oliw EH. Expression and characterization of manganese lipoxygenase of the rice blast fungus reveals prominent sequential lipoxygenation of α-linolenic acid. Arch Biochem Biophys 2015; 583:87-95. [PMID: 26264916 DOI: 10.1016/j.abb.2015.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/09/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022]
Abstract
Magnaporthe oryzae causes rice blast disease and has become a model organism of fungal infections. M. oryzae can oxygenate fatty acids by 7,8-linoleate diol synthase, 10R-dioxygenase-epoxy alcohol synthase, and by a putative manganese lipoxygenase (Mo-MnLOX). The latter two are transcribed during infection. The open reading frame of Mo-MnLOX was deduced from genome and cDNA analysis. Recombinant Mo-MnLOX was expressed in Pichia pastoris and purified to homogeneity. The enzyme contained protein-bound Mn and oxidized 18:2n-6 and 18:3n-3 to 9S-, 11-, and 13R-hydroperoxy metabolites by suprafacial hydrogen abstraction and oxygenation. The 11-hydroperoxides were subject to β-fragmentation with formation of 9S- and 13R-hydroperoxy fatty acids. Oxygen consumption indicated apparent kcat values of 2.8 s(-1) (18:2n-6) and 3.9 s(-1) (18:3n-3), and UV analysis yielded apparent Km values of 8 and 12 μM, respectively, for biosynthesis of cis-trans conjugated metabolites. 9S-Hydroperoxy-10E,12Z,15Z-octadecatrienoic acid was rapidly further oxidized to a triene, 9S,16S-dihydroperoxy-10E,12Z,14E-octadecatrienoic acid. In conclusion, we have expressed, purified and characterized a new MnLOX from M. oryzae. The pathogen likely secretes Mo-MnLOX and phospholipases to generate oxylipins and to oxidize lipid membranes of rice cells and the cuticle.
Collapse
Affiliation(s)
- Anneli Wennman
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden.
| | - Fredrik Jernerén
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ann Magnuson
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
23
|
Wennman A, Magnuson A, Hamberg M, Oliw EH. Manganese lipoxygenase of F. oxysporum and the structural basis for biosynthesis of distinct 11-hydroperoxy stereoisomers. J Lipid Res 2015; 56:1606-15. [PMID: 26113537 DOI: 10.1194/jlr.m060178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 01/22/2023] Open
Abstract
The biosynthesis of jasmonates in plants is initiated by 13S-lipoxygenase (LOX), but details of jasmonate biosynthesis by fungi, including Fusarium oxysporum, are unknown. The genome of F. oxysporum codes for linoleate 13S-LOX (FoxLOX) and for F. oxysporum manganese LOX (Fo-MnLOX), an uncharacterized homolog of 13R-MnLOX of Gaeumannomyces graminis. We expressed Fo-MnLOX and compared its properties to Cg-MnLOX from Colletotrichum gloeosporioides. Electron paramagnetic resonance and metal analysis showed that Fo-MnLOX contained catalytic Mn. Fo-MnLOX oxidized 18:2n-6 mainly to 11R-hydroperoxyoctadecadienoic acid (HPODE), 13S-HPODE, and 9(S/R)-HPODE, whereas Cg-MnLOX produced 9S-, 11S-, and 13R-HPODE with high stereoselectivity. The 11-hydroperoxides did not undergo the rapid β-fragmentation earlier observed with 13R-MnLOX. Oxidation of [11S-(2)H]18:2n-6 by Cg-MnLOX was accompanied by loss of deuterium and a large kinetic isotope effect (>30). The Fo-MnLOX-catalyzed oxidation occurred with retention of the (2)H-label. Fo-MnLOX also oxidized 1-lineoyl-2-hydroxy-glycero-3-phosphatidylcholine. The predicted active site of all MnLOXs contains Phe except for Ser(348) in this position of Fo-MnLOX. The Ser348Phe mutant of Fo-MnLOX oxidized 18:2n-6 to the same major products as Cg-MnLOX. Our results suggest that Fo-MnLOX, with support of Ser(348), binds 18:2n-6 so that the proR rather than the proS hydrogen at C-11 interacts with the metal center, but retains the suprafacial oxygenation mechanism observed in other MnLOXs.
Collapse
Affiliation(s)
- Anneli Wennman
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-75124 Uppsala, Sweden
| | - Ann Magnuson
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Mats Hamberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Solna, Sweden
| | - Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-75124 Uppsala, Sweden
| |
Collapse
|
24
|
Yang L, Xie L, Xue B, Goodwin PH, Quan X, Zheng C, Liu T, Lei Z, Yang X, Chao Y, Wu C. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici. PLoS One 2015; 10:e0120691. [PMID: 25875107 PMCID: PMC4397062 DOI: 10.1371/journal.pone.0120691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/25/2015] [Indexed: 12/15/2022] Open
Abstract
Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt), is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs) were identified with 2,107 (65%) being 2-fold up-regulated and 1,151 (35%) being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots.
Collapse
Affiliation(s)
- Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Lihua Xie
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Baoguo Xue
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Xin Quan
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Chuanlin Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Taiguo Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhensheng Lei
- Research Centre for Wheat, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Yueen Chao
- Research Centre for Wheat, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Chao Wu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| |
Collapse
|
25
|
Heshof R, de Graaff LH, Villaverde JJ, Silvestre AJ, Haarmann T, Dalsgaard TK, Buchert J. Industrial potential of lipoxygenases. Crit Rev Biotechnol 2015; 36:665-74. [DOI: 10.3109/07388551.2015.1004520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ruud Heshof
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Leo H. de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Juan J. Villaverde
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal,
- On leave to INIA, DTEVPF, Plant Protection Products Unit, Ctra. de La Coruña, Madrid, Spain,
| | | | | | - Trine K. Dalsgaard
- Department of Food Sciences, Faculty of Science and Technology, Aarhus University, Tjele, Denmark, and
| | | |
Collapse
|
26
|
Hoffmann I, Jernerén F, Oliw EH. Epoxy alcohol synthase of the rice blast fungus represents a novel subfamily of dioxygenase-cytochrome P450 fusion enzymes. J Lipid Res 2014; 55:2113-23. [PMID: 25121983 DOI: 10.1194/jlr.m051755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the rice blast fungus Magnaporthe oryzae codes for two proteins with N-terminal dioxygenase (DOX) and C-terminal cytochrome P450 (CYP) domains, respectively. One of them, MGG_13239, was confirmed as 7,8-linoleate diol synthase by prokaryotic expression. The other recombinant protein (MGG_10859) possessed prominent 10R-DOX and epoxy alcohol synthase (EAS) activities. This enzyme, 10R-DOX-EAS, transformed 18:2n-6 sequentially to 10(R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE) and to 12S(13R)-epoxy-10(R)-hydroxy-8(E)-octadecenoic acid as the end product. Oxygenation at C-10 occurred by retention of the pro-R hydrogen of C-8 of 18:2n-6, suggesting antarafacial hydrogen abstraction and oxygenation. Experiments with (18)O2 and (16)O2 gas confirmed that the epoxy alcohol was formed from 10R-HPODE, likely by heterolytic cleavage of the dioxygen bond with formation of P450 compound I, and subsequent intramolecular epoxidation of the 12(Z) double bond. Site-directed mutagenesis demonstrated that the cysteinyl heme ligand of the P450 domain was required for the EAS activity. Replacement of Asn(965) with Val in the conserved AsnGlnXaaGln sequence revealed that Asn(965) supported formation of the epoxy alcohol. 10R-DOX-EAS is the first member of a novel subfamily of DOX-CYP fusion proteins of devastating plant pathogens.
Collapse
Affiliation(s)
- Inga Hoffmann
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Fredrik Jernerén
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Ernst H Oliw
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| |
Collapse
|
27
|
Wennman A, Karkehabadi S, Oliw EH. Kinetic investigation of the rate-limiting step of manganese- and iron-lipoxygenases. Arch Biochem Biophys 2014; 555-556:9-15. [PMID: 24857825 DOI: 10.1016/j.abb.2014.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 11/17/2022]
Abstract
Lipoxygenases (LOX) oxidize polyunsaturated fatty acids to hydroperoxides, which are generated by proton coupled electron transfer to the metal center with FeIIIOH- or MnIIIOH-. Hydrogen abstraction by FeIIIOH- of soybean LOX-1 (sLOX-1) is associated with a large deuterium kinetic isotope effect (D-KIE). Our goal was to compare the D-KIE and other kinetic parameters at different temperatures of sLOX-1 with 13R-LOX with catalytic manganese (13R-MnLOX). The reaction rate and the D-KIE of sLOX-1 with unlabeled and [11-2H2]18:2n-6 were almost temperature independent with an apparent D-KIE of ∼56 at 30°C, which is in agreement with previous studies. In contrast, the reaction rate of 13R-MnLOX increased 7-fold with temperature (8-50°C), and the apparent D-KIE decreased linearly from ∼38 at 8°C to ∼20 at 50°C. The kinetic lag phase of 13R-MnLOX was consistently extended at low temperatures. The Phe337Ile mutant of 13R-MnLOX, which catalyzes antarafacial hydrogen abstraction and oxygenation in analogy with sLOX-1, retained the large D-KIE and its temperature-dependent reaction rate. The kinetic differences between 13R-MnLOX and sLOX-1 may be due to protein dynamics, hydrogen donor-acceptor distances, and to the metal ligands, which may not equalize the 0.7V-gap between the redox potentials of the free metals.
Collapse
Affiliation(s)
- Anneli Wennman
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
28
|
Abstract
A bacterial lipoxygenase (LOX) shows a deuterium kinetic isotope effect (KIE) that is similar in magnitude and temperature dependence to the very large KIE of eukaryotic LOXs. This occurs despite the evolutionary distance, an ~25% smaller catalytic domain, and an increase in Ea of ~11 kcal/mol. Site-specific mutagenesis leads to a protein variant with an Ea similar to that of the prototypic plant LOX, providing possible insight into the origin of evolutionary differences. These findings, which extend the phenomenon of hydrogen tunneling to a prokaryotic LOX, are discussed in the context of a role for protein size and/or flexibility in enzymatic hydrogen tunneling.
Collapse
Affiliation(s)
- Cody A Marcus Carr
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §California Institute for Quantitative Biosciences (QB3), University of California , Berkeley, California 94720, United States
| | | |
Collapse
|
29
|
Wennman A, Oliw EH, Karkehabadi S. Crystallization and preliminary crystallographic analysis of manganese lipoxygenase. Acta Crystallogr F Struct Biol Commun 2014; 70:522-5. [PMID: 24699754 PMCID: PMC3976078 DOI: 10.1107/s2053230x14005548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/11/2014] [Indexed: 11/10/2022] Open
Abstract
Lipoxygenases constitute a family of nonhaem metal enzymes with catalytic iron or, occasionally, catalytic manganese. Lipoxygenases oxidize polyunsaturated fatty acids with position specificity and stereospecificity to hydroperoxides, which contribute to inflammation and the development of cancer. Little is known about the structural differences between lipoxygenases with Fe or Mn and the metal-selection mechanism. A Pichia pastoris expression system was used for the production of the manganese lipoxygenase of the take-all fungus of wheat, Gaeumannomyces graminis. The active enzyme was treated with α-mannosidase, purified to apparent homogeneity and subjected to crystal screening and X-ray diffraction. The crystals diffracted to 2.6 Å resolution and belonged to space group C2, with unit-cell parameters a = 226.6, b = 50.6, c = 177.92 Å, β = 91.70°.
Collapse
Affiliation(s)
- Anneli Wennman
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ernst H. Oliw
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
30
|
Kelle S, Zelena K, Krings U, Linke D, Berger RG. Expression of soluble recombinant lipoxygenase from Pleurotus sapidus in Pichia pastoris. Protein Expr Purif 2014; 95:233-9. [DOI: 10.1016/j.pep.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
31
|
Heshof R, Jylhä S, Haarmann T, Jørgensen ALW, Dalsgaard TK, de Graaff LH. A novel class of fungal lipoxygenases. Appl Microbiol Biotechnol 2013; 98:1261-70. [PMID: 24276623 DOI: 10.1007/s00253-013-5392-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
Lipoxygenases (LOXs) are well-studied enzymes in plants and mammals. However, fungal LOXs are less studied. In this study, we have compared fungal LOX protein sequences to all known characterized LOXs. For this, a script was written using Shell commands to extract sequences from the NCBI database and to align the sequences obtained using Multiple Sequence Comparison by Log-Expectation. We constructed a phylogenetic tree with the use of Quicktree to visualize the relation of fungal LOXs towards other LOXs. These sequences were analyzed with respect to the signal sequence, C-terminal amino acid, the stereochemistry of the formed oxylipin, and the metal ion cofactor usage. This study shows fungal LOXs are divided into two groups, the Ile- and the Val-groups. The Ile-group has a conserved WRYAK sequence that appears to be characteristic for fungal LOXs and has as a C-terminal amino acid Ile. The Val-group has a highly conserved WL-L/F-AK sequence that is also found in LOXs of plant and animal origin. We found that fungal LOXs with this conserved sequence have a Val at the C-terminus in contrast to other LOXs of fungal origin. Also, these LOXs have signal sequences implying these LOXs will be expressed extracellularly. Our results show that in this group, in addition to the Gaeumannomyces graminis and the Magnaporthe salvinii LOXs, the Aspergillus fumigatus LOX uses manganese as a cofactor.
Collapse
Affiliation(s)
- Ruud Heshof
- Laboratory of Systems and Synthetic Biology, Microbial Systems Biology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
32
|
Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I. An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 2013; 8:e64919. [PMID: 23741422 PMCID: PMC3669278 DOI: 10.1371/journal.pone.0064919] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/21/2013] [Indexed: 12/03/2022] Open
Abstract
Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum) are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX) was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives.
Collapse
Affiliation(s)
- Florian Brodhun
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Hoffmann I, Jernerén F, Oliw EH. Expression of fusion proteins of Aspergillus terreus reveals a novel allene oxide synthase. J Biol Chem 2013; 288:11459-69. [PMID: 23479731 DOI: 10.1074/jbc.m113.458257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aspergilli oxidize C18 unsaturated fatty acids by dioxygenase-cytochrome P450 fusion proteins to signal molecules involved in reproduction and host-pathogen interactions. Aspergillus terreus expresses linoleate 9R-dioxygenase (9R-DOX) and allene oxide synthase (AOS) activities in membrane fractions. The genome contains five genes (ATEG), which may code for a 9R-DOX-AOS fusion protein. The genes were cloned and expressed, but none of them oxidized 18:2n-6 to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE). ATEG_02036 transformed 9R-HPODE to an unstable allene oxide, 9(R),10-epoxy-10,12(Z)-octadecadienoic acid. A substitution in the P450 domain (C1073S) abolished AOS activity. The N964V and N964D mutants both showed markedly reduced AOS activity, suggesting that Asn(964) may facilitate homolytic cleavage of the dioxygen bond of 9R-HPODE with formation of compound II in analogy with plant AOS (CYP74) and prostacyclin synthase (CYP8A1). ATEG_03992 was identified as 5,8-linoleate diol synthase (5,8-LDS). Replacement of Asn(878) in 5,8-LDS with leucine (N878L) mainly shifted ferryl oxygen insertion from C-5 toward C-6, but replacements of Gln(881) markedly affected catalysis. The Q881L mutant virtually abolished the diol synthase activity. Replacement of Gln(881) with Asn, Glu, Asp, or Lys residues augmented the homolytic cleavage of 8R-HPODE with formation of 10-hydroxy-8(9)-epoxy-12(Z)-octadecenoic acid (erythro/threo, 1-4:1) and/or shifted ferryl oxygen insertion from C-5 toward C-11. We conclude that homolysis and heterolysis of the dioxygen bond with formation of compound II in AOS and compound I in 5,8-LDS are influenced by Asn and Gln residues, respectively, of the I-helices. AOS of A. terreus appears to have evolved independently of CYP74 but with an analogous reaction mechanism.
Collapse
Affiliation(s)
- Inga Hoffmann
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | | | | |
Collapse
|