1
|
Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023; 74:75-89. [PMID: 37357879 PMCID: PMC10291501 DOI: 10.2478/aiht-2023-74-3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
This paper brings a brief review of the human patatin-like phospholipase domain-containing protein (PNPLA) family. Even though it consists of only nine members, their physiological roles and mechanisms of their catalytic activity are not fully understood. However, the results of a number of knock-out and gain- or loss-of-function research models suggest that these enzymes have an important role in maintaining the homeostasis and integrity of organelle membranes, in cell growth, signalling, cell death, and the metabolism of lipids such as triacylglycerol, phospholipids, ceramides, and retinyl esters. Research has also revealed a connection between PNPLA family member mutations or irregular catalytic activity and the development of various diseases. Here we summarise important findings published so far and discuss their structure, localisation in the cell, distribution in the tissues, specificity for substrates, and their potential physiological role, especially in view of their potential as drug targets.
Collapse
Affiliation(s)
- Ana-Marija Lulić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| |
Collapse
|
2
|
Fedotcheva T, Shimanovsky N, Fedotcheva N. Specific Features of Mitochondrial Dysfunction under Conditions of Ferroptosis Induced by t-Butylhydroperoxide and Iron: Protective Role of the Inhibitors of Lipid Peroxidation and Mitochondrial Permeability Transition Pore Opening. MEMBRANES 2023; 13:372. [PMID: 37103799 PMCID: PMC10145271 DOI: 10.3390/membranes13040372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Recent studies have indicated the critical importance of mitochondria in the induction and progression of ferroptosis. There is evidence indicating that tert-butyl hydroperoxide (TBH), a lipid-soluble organic peroxide, is capable of inducing ferroptosis-type cell death. We investigated the effect of TBH on the induction of nonspecific membrane permeability measured by mitochondrial swelling and on oxidative phosphorylation and NADH oxidation assessed by NADH fluo rescence. TBH and iron, as well as their combinations, induced, with a respective decrease in the lag phase, the swelling of mitochondria, inhibited oxidative phosphorylation and stimulated NADH oxidation. The lipid radical scavenger butylhydroxytoluene (BHT), the inhibitor of mitochondrial phospholipase iPLA2γ bromoenol lactone (BEL), and the inhibitor of the mitochondrial permeability transition pore (MPTP) opening cyclosporine A (CsA) were equally effective in protecting these mitochondrial functions. The radical-trapping antioxidant ferrostatin-1, a known indicator of ferroptotic alteration, restricted the swelling but was less effective than BHT. ADP and oligomycin significantly decelerated iron- and TBH-induced swelling, confirming the involvement of MPTP opening in mitochondrial dysfunction. Thus, our data showed the participation of phospholipase activation, lipid peroxidation, and the MPTP opening in the mitochondria-dependent ferroptosis. Presumably, their involvement took place at different stages of membrane damage initiated by ferroptotic stimuli.
Collapse
Affiliation(s)
- Tatiana Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| | - Nikolai Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| | - Nadezhda Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Pushchino 142290, Russia
| |
Collapse
|
3
|
Nakajima R, Takemura A, Ikeyama Y, Ito K. Lipopolysaccharide administration increases the susceptibility of mitochondrial permeability transition pore opening via altering adenine nucleotide translocase conformation in the mouse liver. J Toxicol Sci 2023; 48:65-73. [PMID: 36725022 DOI: 10.2131/jts.48.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, induces various biological reactions in vivo. Our previous study suggested that LPS administration disrupts respiratory chain complex activities, enhances reactive oxygen species production, especially in the liver mitochondria, and sensitizes mitochondrial permeability transition (MPT) pore opening in rats. However, it is unknown whether LPS-induced MPT pore opening in rats is similarly observed in mice and whether the mechanism is the same. LPS administration to mice increased not only cyclosporin A-sensitive swelling (MPT pore opening) susceptibility, but also induced cyclosporin A-insensitive basal swelling, unlike in rats. In addition, respiratory activity observed after adding ADP was significantly decreased. Based on these results, we further investigated the role of adenine nucleotide translocase (ANT). Carboxyatractyloside (CATR; an ANT inhibitor) treatment decreased respiratory activity after ADP was added in vehicle-treated mitochondria similarly to LPS administration. Additionally, CATR treatment increased MPT pore opening susceptibility in LPS-treated mitochondria compared to that of vehicle-treated mitochondria. Our study shows that ANT maintained a c-state conformation upon LPS administration, which increased MPT pore opening susceptibility in mice. These results suggest that LPS enhances MPT pore opening susceptibility across species, but the mechanism may differ between rat and mouse.
Collapse
Affiliation(s)
- Ryota Nakajima
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Akinori Takemura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yugo Ikeyama
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
4
|
Abstract
Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak.
Collapse
Affiliation(s)
- Ambre M. Bertholet
- Department of Physiology, University of California San Francisco, 600 16 Street, San Francisco, CA 94158, USA,Department of Physiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA,Corresponding authors: ,
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
5
|
Role of respiratory uncoupling in drug-induced mitochondrial permeability transition. Toxicol Appl Pharmacol 2021; 427:115659. [PMID: 34332991 DOI: 10.1016/j.taap.2021.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial injury contributes to severe drug-induced liver injury. Particularly, mitochondrial permeability transition (MPT) is thought to be relevant to cytolytic hepatitis. However, the mechanism of drug-induced MPT is unclear and prediction of MPT is not adequately evaluated in the preclinical stage. In a previous study, we found that troglitazone, a drug withdrawn due to liver injury, induced MPT via mild depolarization probably resulting from uncoupling. Herein, we investigated whether other drugs that induce MPT share similar properties as troglitazone, using isolated mitochondria from rat liver. Of the 22 test drugs examined, six drugs, including troglitazone, induced MPT and showed an uncoupling effect. Additionally, receiver operating characteristic analysis was conducted to predict the MPT potential from the respiratory control ratio, an indicator of uncoupling intensity. Results showed that 2.5 was the best threshold that exhibited high sensitivity (1.00) and high specificity (0.81), indicating that uncoupling was correlated with MPT potential. Activation of calcium-independent phospholipase A2 appeared to be involved in uncoupling-induced MPT. Furthermore, a strong relationship between MPT intensity and the uncoupling effect among similar compounds was confirmed. These results may help in predicting MPT potential using cultured cells and modifying the chemical structures of the drugs to reduce MPT risk.
Collapse
|
6
|
Sato T, Segawa M, Sekine S, Ito K. Mild depolarization is involved in troglitazone-induced liver mitochondrial membrane permeability transition via mitochondrial iPLA 2 activation. J Toxicol Sci 2019; 44:811-820. [DOI: 10.2131/jts.44.811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tomoyuki Sato
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Masahiro Segawa
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
7
|
Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson's disease. Exp Neurol 2018; 300:74-86. [DOI: 10.1016/j.expneurol.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
|
8
|
Rauckhorst AJ, Pfeiffer DR, Broekemeier KM. The iPLA2γ is identified as the membrane potential sensitive phospholipase in liver mitochondria. FEBS Lett 2015. [DOI: 10.1016/j.febslet.2015.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Adakeeva SI, Dubinin MV, Samartsev VN. Malonate as an inhibitor of cyclosporine A-sensitive calcium-independent free oxidation in liver mitochondria induced by fatty acids. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s199074781501002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tyurina YY, Polimova AM, Maciel E, Tyurin VA, Kapralova VI, Winnica DE, Vikulina AS, Domingues RM, McCoy J, Sanders LH, Bayır H, Greenamyre JT, Kagan VE. LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson's disease. Free Radic Res 2015; 49:681-91. [PMID: 25740198 PMCID: PMC4430340 DOI: 10.3109/10715762.2015.1005085] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exposure to rotenone in vivo results in selective degeneration of dopaminergic neurons and development of neuropathologic features of Parkinson's disease (PD). As rotenone acts as an inhibitor of mitochondrial respiratory complex I, we employed oxidative lipidomics to assess oxidative metabolism of a mitochondria-specific phospholipid, cardiolipin (CL), in substantia nigra (SN) of exposed animals. We found a significant reduction in oxidizable polyunsaturated fatty acid (PUFA)-containing CL molecular species. We further revealed increased contents of mono-oxygenated CL species at late stages of the exposure. Notably, linoleic acid in sn-1 position was the major oxidation substrate yielding its mono-hydroxy- and epoxy-derivatives whereas more readily "oxidizable" fatty acid residues (arachidonic and docosahexaenoic acids) remained non-oxidized. Elevated levels of PUFA CLs were detected in plasma of rats exposed to rotenone. Characterization of oxidatively modified CL molecular species in SN and detection of PUFA-containing CL species in plasma may contribute to better understanding of the PD pathogenesis and lead to the development of new biomarkers of mitochondrial dysfunction associated with this disease.
Collapse
Affiliation(s)
- Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
| | - Anastasia M. Polimova
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Biophysics, Faculty of Fundamental Medicine, MV Lomonosov Moscow State University, Moscow 119192, Russia
| | - Elisabete Maciel
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
| | - Valentina I. Kapralova
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
| | - Daniel E. Winnica
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
| | - Anna S. Vikulina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
| | - Rosario M. Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jennifer McCoy
- Department of Neurology, University of Pittsburgh, Pittsburgh PA, 15219, USA
| | - Laurie H. Sanders
- Department of Neurology, University of Pittsburgh, Pittsburgh PA, 15219, USA
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh PA, 15219, USA
| | | | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA, 15219, USA
| |
Collapse
|
11
|
Nordmann C, Strokin M, Schönfeld P, Reiser G. Putative roles of Ca(2+) -independent phospholipase A2 in respiratory chain-associated ROS production in brain mitochondria: influence of docosahexaenoic acid and bromoenol lactone. J Neurochem 2014; 131:163-76. [PMID: 24923354 DOI: 10.1111/jnc.12789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
Abstract
Ca(2+) -independent phospholipase A2 (iPLA2 ) is hypothesized to control mitochondrial reactive oxygen species (ROS) generation. Here, we modulated the influence of iPLA2 -induced liberation of non-esterified free fatty acids on ROS generation associated with the electron transport chain. We demonstrate enzymatic activity of membrane-associated iPLA2 in native, energized rat brain mitochondria (RBM). Theoretically, enhanced liberation of free fatty acids by iPLA2 modulates mitochondrial ROS generation, either attenuating the reversed electron transport (RET) or deregulating the forward electron transport of electron transport chain. For mimicking such conditions, we probed the effect of docosahexaenoic acid (DHA), a major iPLA2 product on ROS generation. We demonstrate that the adenine nucleotide translocase partly mediates DHA-induced uncoupling, and that low micromolar DHA concentrations diminish RET-dependent ROS generation. Uncoupling proteins have no effect, but the adenine nucleotide translocase inhibitor carboxyatractyloside attenuates DHA-linked uncoupling effect on RET-dependent ROS generation. Under physiological conditions of forward electron transport, low micromolar DHA stimulates ROS generation. Finally, exposure of RBM to the iPLA2 inhibitor bromoenol lactone (BEL) enhanced ROS generation. BEL diminished RBM glutathione content. BEL-treated RBM exhibits reduced Ca(2+) retention capacity and partial depolarization. Thus, we rebut the view that iPLA2 attenuates oxidative stress in brain mitochondria. However, the iPLA2 inhibitor BEL has detrimental activities on energy-dependent mitochondrial functions. The Ca(2+) -independent phospholipase A2 (iPLA2 ), a FFA (free fatty acids)-generating membrane-attached mitochondrial phospholipase, is potential to regulate ROS (reactive oxygen species) generation by mitochondria. FFA can either decrease reversed electron transport (RET)-linked or enhance forward electron transport (FET)-linked ROS generation. In the physiological mode of FET, iPLA2 activity increases ROS generation. The iPLA2 inhibitor BEL exerts detrimental effects on energy-dependent mitochondrial functions.
Collapse
Affiliation(s)
- Caroline Nordmann
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Mikhail Strokin
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Georg Reiser
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| |
Collapse
|