1
|
Zhang Y, Hao H, Li H, Duan Q, Zheng X, Feng Y, Yang K, Shen S. Cellular Metabolomics Reveals Differences in the Scope of Liver Protection Between Ammonium-Based Glycyrrhizinate and Magnesium Isoglycyrrhizinate. Metabolites 2025; 15:263. [PMID: 40278392 PMCID: PMC12029898 DOI: 10.3390/metabo15040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Despite the well-established liver-protective efficacy of monoammonium glycyrrhizinate (MONO), diammonium glycyrrhizinate (DIAM), and magnesium isoglycyrrhizinate (MAGN), which has been translated into clinical practice, their clinical differentiation remains elusive owing to their structural similarities and overlapping therapeutic effects. Methods: The present study delves into the pharmacokinetics, cellular-level liver-protective potencies, and underlying mechanisms of action of these three compounds through a comprehensive analysis. Results: The findings reveal that both DIAM and MAGN exhibit superior bioavailability and hepatoprotective profiles compared to MONO. Notably, an investigation of the metabolic pathways mediating liver protection in normal human liver cells (LO2), utilizing an ultra-performance liquid chromatography-time of flight tandem mass spectrometry (UPLC-TOF-MS/MSe) platform, demonstrated that MAGN augments antioxidant components, thereby favoring its application in drug-induced liver injury (DILI). Conversely, DIAM appears to be a more suitable candidate for addressing non-alcoholic fatty liver disease (NAFLD) and viral hepatitis. Conclusion: This study contributes novel perspectives on the mechanisms of action and potential clinical utilities of DIAM and MAGN in liver disease prevention and management.
Collapse
Affiliation(s)
- Yihua Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China;
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Han Hao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
| | - Hui Li
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Qiong Duan
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Xiaoming Zheng
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Yan Feng
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (H.L.); (Q.D.); (X.Z.); (Y.F.)
| | - Kun Yang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China;
| |
Collapse
|
2
|
Chitkara S, Atilla-Gokcumen GE. Decoding ceramide function: how localization shapes cellular fate and how to study it. Trends Biochem Sci 2025; 50:356-367. [PMID: 40000311 DOI: 10.1016/j.tibs.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Recent studies emphasize that lipid synthesis, metabolism, and transport are crucial in modulating lipid function, underscoring the significance of lipid localization within the cell, in addition to their chemical structure. Ceramides stand out in this context because of their multifaceted roles in cellular processes. Here, we focus on the role of ceramides in apoptosis, senescence, and autophagy as these processes offer unique and contrasting perspectives on how ceramides function and can be intricately linked to their subcellular localization, providing critical insights into their complex biological interactions. Additionally, we highlight recent advancements in tools and techniques that have boosted our understanding of ceramide dynamics and different mechanisms of lipid functioning.
Collapse
Affiliation(s)
- Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
3
|
Hornemann T. Sphingoid Base Diversity. Atherosclerosis 2025; 401:119091. [PMID: 39824719 DOI: 10.1016/j.atherosclerosis.2024.119091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Sphingolipids (SL) are crucial components of cellular membranes and play pivotal roles in various biological processes, including cell growth, differentiation, apoptosis, and stress responses. All SL contain a sphingoid base (SPB) backbone which is the shared and class-defining element. SPBs are heterogeneous in length and structure. This review summarizes our current understanding on minor SPBs and the role of the serine palmitoyltransferase (SPT) in particular of its subunits SPTLC3 and SPTSSA/B in forming a spectrum of structurally and metabolically distinct SPBs. Some minor SPBs, such as 1-deoxysphingolipids (1-deoxySL) are neurotoxic and associated with neurological disorders such as hereditary sensory neuropathy type 1 (HSAN1) and diabetic neuropathy. Furthermore, the review discusses the pathological implications of atypical SPBs in cardiometabolic conditions such as obesity, type 2 diabetes or cardiomyopathy, where the induction of the SPTLC3 subunit alters the SPB profile and contributes to disease progression. Understanding these, often neglected aspects of the sphingolipid metabolism provides potential therapeutic targets for metabolic and neurodegenerative diseases, emphasizing the need for continued research in this area.
Collapse
Affiliation(s)
- Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland.
| |
Collapse
|
4
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
5
|
Wang T, Li X, Liao G, Wang Z, Han X, Gu J, Mu X, Qiu J, Qian Y. AFB1 Triggers Lipid Metabolism Disorders through the PI3K/Akt Pathway and Mediates Apoptosis Leading to Hepatotoxicity. Foods 2024; 13:163. [PMID: 38201191 PMCID: PMC10778638 DOI: 10.3390/foods13010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
As the most prevalent mycotoxin in agricultural products, aflatoxin B1 not only causes significant economic losses but also poses a substantial threat to human and animal health. AFB1 has been shown to increase the risk of hepatocellular carcinoma (HCC) but the underlying mechanism is not thoroughly researched. Here, we explored the toxicity mechanism of AFB1 on human hepatocytes following low-dose exposure based on transcriptomics and lipidomics. Apoptosis-related pathways were significantly upregulated after AFB1 exposure in all three hES-Hep, HepaRG, and HepG2 hepatogenic cell lines. By conducting a comparative analysis with the TCGA-LIHC database, four biomarkers (MTCH1, PPM1D, TP53I3, and UBC) shared by AFB1 and HCC were identified (hazard ratio > 1), which can be used to monitor the degree of AFB1-induced hepatotoxicity. Simultaneously, AFB1 induced abnormal metabolism of glycerolipids, sphingolipids, and glycerophospholipids in HepG2 cells (FDR < 0.05, impact > 0.1). Furthermore, combined analysis revealed strong regulatory effects between PIK3R1 and sphingolipids (correlation coefficient > 0.9), suggesting potential mediation by the phosphatidylinositol 3 kinase (PI3K) /protein kinase B (AKT) signaling pathway within mitochondria. This study revealed the dysregulation of lipid metabolism induced by AFB1 and found novel target genes associated with AFB-induced HCC development, providing reliable evidence for elucidating the hepatotoxicity of AFB as well as assessing food safety risks.
Collapse
Affiliation(s)
- Tiancai Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiabing Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Guangqin Liao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zishuang Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoxu Han
- National Center of Technology Innovation for Dairy, Hohhot 010100, China;
| | - Jingyi Gu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiyan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (X.L.); (G.L.); (Z.W.); (J.G.); (X.M.); (J.Q.)
- Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
6
|
Yang Y, Ding Y, Gao H, Jiang X, Zhao Q. TCQA, A Natural Caffeoylquinic Acid Derivative Attenuates H2O2-Induced Neuronal Apoptosis by Suppressing Phosphorylation of MAPKs Signaling Pathway. PLANTA MEDICA 2022; 88:1132-1140. [PMID: 34861701 DOI: 10.1055/a-1683-6361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
1,3,5-Tri-O-caffeoyl quinic acid is a caffeoylquinic acid derivative isolated from the roots of Arctium lappa L. Our previous studies have revealed that the ethyl acetate extract of the roots of A. lappa L. and the caffeoylquinic acids contained in it possess antioxidant properties, especially 1,3,5-tri-O-caffeoyl quinic acid. The present study aimed to investigate the protective effects of 1,3,5-tri-O-caffeoyl quinic acid against hydrogen peroxide-induced oxidative stress and explore the underlying mechanism. We found that 1,3,5-tri-O-caffeoyl quinic acid prevented the decline of cell viability and excessive release of lactate dehydrogenase induced by hydrogen peroxide. In addition, Hoechst 33 342 staining and Annexin V-PI double staining showed that 1,3,5-tri-O-caffeoyl quinic acid inhibited hydrogen peroxide-induced neuronal cell apoptosis. 1,3,5-Tri-O-caffeoyl quinic acid reduced the excessive production of intracellular reactive oxygen species, decreased the malondialdehyde content, and improved the activity of superoxide dismutase. Furthermore, 1,3,5-tri-O-caffeoyl quinic acid restored the loss of mitochondrial membrane potential in SH-SY5Y cells induced by hydrogen peroxide. 1,3,5-Tri-O-caffeoyl quinic acid downregulated the overexpression of proapoptotic proteins, including Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3 as well as promoted the expression of the antiapoptotic protein Bcl-2. Moreover, the phosphorylation of mitogen-activated protein kinases induced by hydrogen peroxide was inhibited by 1,3,5-tri-O-caffeoyl quinic acid. Pretreatment with 1,3,5-tri-O-caffeoyl quinic acid also promoted the activation of phosphorylated Akt. Taken together, these findings suggest that 1,3,5-tri-O-caffeoyl quinic acid exerts protective effects against hydrogen peroxide-induced neuronal apoptosis. In addition, inhibition of the mitogen-activated protein kinase signaling pathway and the activation of Akt are implicated in the antioxidant activity of 1,3,5-tri-O-caffeoyl quinic acid, giving new insight in searching for a compound with antioxidant activity for the treatment of oxidative stress-associated neurological diseases.
Collapse
Affiliation(s)
- Yue Yang
- School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yufang Ding
- Department of pharmacy, Taizhou Second People's Hospital, Taizhou, Jiangsu, China
| | - Huan Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xiaowen Jiang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Wang D, Ho ES, Cotticelli MG, Xu P, Napierala JS, Hauser LA, Napierala M, Himes BE, Wilson RB, Lynch DR, Mesaros C. Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia. J Lipid Res 2022; 63:100255. [PMID: 35850241 PMCID: PMC9399481 DOI: 10.1016/j.jlr.2022.100255] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and β-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.
Collapse
Affiliation(s)
- Dezhen Wang
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elaine S Ho
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peining Xu
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill S Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Lauren A Hauser
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Marek Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David R Lynch
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
9
|
Melero-Fernandez de Mera RM, Villaseñor A, Rojo D, Carrión-Navarro J, Gradillas A, Ayuso-Sacido A, Barbas C. Ceramide Composition in Exosomes for Characterization of Glioblastoma Stem-Like Cell Phenotypes. Front Oncol 2022; 11:788100. [PMID: 35127492 PMCID: PMC8814423 DOI: 10.3389/fonc.2021.788100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is one of the most malignant central nervous system tumor types. Comparative analysis of GBM tissues has rendered four major molecular subtypes. From them, two molecular subtypes are mainly found in their glioblastoma cancer stem-like cells (GSCs) derived in vitro: proneural (PN) and mesenchymal (MES) with nodular (MES-N) and semi-nodular (MES-SN) disseminations, which exhibit different metabolic, growth, and malignancy properties. Many studies suggest that cancer cells communicate between them, and the surrounding microenvironment, via exosomes. Identifying molecular markers that allow the specific isolation of GSC-derived exosomes is key in the development of new therapies. However, the differential exosome composition produced by main GSCs remains unknown. The aim of this study was to determine ceramide (Cer) composition, one of the critical lipids in both cells and their cell-derived exosomes, from the main three GSC phenotypes using mass spectrometry-based lipidomics. GSCs from human tissue samples and their cell-derived exosomes were measured using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) in an untargeted analysis. Complete characterization of the ceramide profile, in both cells and cell-derived exosomes from GSC phenotypes, showed differential distributions among them. Results indicate that such differences of ceramide are chain-length dependent. Significant changes for the C16 Cer and C24:1 Cer and their ratio were observed among GSC phenotypes, being different for cells and their cell-derived exosomes.
Collapse
Affiliation(s)
- Raquel M Melero-Fernandez de Mera
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Josefa Carrión-Navarro
- Brain Tumor Laboratory, Faculty of Experimental Sciences and Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Angel Ayuso-Sacido
- Brain Tumor Laboratory, Faculty of Experimental Sciences and Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain.,Fundación Vithas, Grupo Vithas Hospitales, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
10
|
Toward the Development of Personalized Syndrome Discriminant Systems: A Discriminant System for Hypertension with Liver Yang Hyperactivity Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4532279. [PMID: 34819981 PMCID: PMC8608503 DOI: 10.1155/2021/4532279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Traditional Chinese medicine has shown promising results in treating the symptoms of hypertension, a major global health concern not yet fully managed by modern medicine. It is, therefore, of high priority to clarify the altered pathophysiology of hypertension in individuals with liver Yang hyperactivity syndrome (HLYH) in response to effective treatments to better understand this disorder. The primary aim of this study was to construct a personalized syndrome discriminant system based on data capable of informing management strategies prior to the initiation of antihypertensive therapy or the implementation of screening strategies in at-risk HLYH. Based on the successful replication of HLYH rat models, we extracted the core discriminant factors of the disorder through the integration of physical signs, biochemical indicators, and metabolic markers. Macro and micro information was correlated to construct a syndrome discriminant system. At the macroscopic level, HLYH rat models characterized by elevated blood pressure were found to be associated with significant changes in water intake, pain threshold, retention time on a rotating platform, and body surface temperature. A total of 27 potential biomarkers and 14 metabolic pathways appeared to reflect the primary metabolic characteristics. Through the integration of these data, we successfully constructed a combined macro-micro personalized syndrome discriminant system, which provides a foundation for research regarding the risk loci of HLYH. Our findings also broaden our understanding of the biological pathways involved in HLYH.
Collapse
|
11
|
Pitman M, Oehler MK, Pitson SM. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal 2021; 81:109949. [PMID: 33571664 DOI: 10.1016/j.cellsig.2021.109949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the most lethal gynaecological malignancy. It is commonly diagnosed at advanced stage when it has metastasised to the abdominal cavity and treatment becomes very challenging. While current standard therapy involving debulking surgery and platinum + taxane-based chemotherapy is associated with high response rates initially, the large majority of patients relapse and ultimately succumb to chemotherapy-resistant disease. In order to improve survival novel strategies for early detection and therapeutics against treatment-refractory disease are urgently needed. A promising new target against ovarian cancer is the sphingolipid pathway which is commonly hijacked in cancer to support cell proliferation and survival and has been shown to promote chemoresistance and metastasis in a wide range of malignant neoplasms. In particular, the sphingosine kinase 1-sphingosine 1-phosphate receptor 1 axis has been shown to be altered in ovarian cancer in multiple ways and therefore represents an attractive therapeutic target. Here we review the roles of sphingolipids in ovarian cancer progression, metastasis and chemoresistance, highlighting novel strategies to target this pathway that represent potential avenues to improve patient survival.
Collapse
Affiliation(s)
- MelissaR Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia.
| | - Martin K Oehler
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
12
|
Neurotoxicity assessment of triazole fungicides on mitochondrial oxidative respiration and lipids in differentiated human SH-SY5Y neuroblastoma cells. Neurotoxicology 2020; 80:76-86. [PMID: 32585290 DOI: 10.1016/j.neuro.2020.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Indiscriminate overuse or occupational exposure to agricultural chemicals can lead to neurotoxicity. Many pesticides act to impair mitochondrial function which can lead to exacerbation of neurodegeneration. Triazole fungicides are applied to grain, fruit, and vegetable crops to combat mold and fungi and their use is increasing worldwide. Here, we assessed the in vitro toxicity of two widely used triazole fungicides, propiconazole and tebuconazole, to mitochondria using differentiated SH-SY5Y neuroblastoma cells as an in vitro cell model used in Parkinson's disease research. Cell viability (based on ATP levels), mitochondrial membrane potential, oxidative respiration, and reactive oxygen species (ROS) were measured following fungicide treatments. Cell viability was decreased with 100 μM propiconazole after 24 and 48 h, while tebuconazole required higher doses to affect viability (-200 μM at 24 h). Mitochondrial membrane potential (MMP) was reduced with 50 μM propiconazole after 24 h while 200 μM tebuconazole reduced MMP. Oxidative respiration of SH-SY5Y cells was then measured using a XFe24 Flux analyzer and 100 μM propiconazole reduced basal respiration, oligomycin-induced ATP production, and FCCP-induced maximum respiration by -40-50%, while tebuconazole did not affect mitochondrial bioenergetics at the concentrations tested. Acute exposure to 100 μM propiconazole over 4 h did not immediately affect oxidative respiration in SH-SY5Y cells. ROS were not induced by propiconazole and tebuconazole up to 100 and 300 μM respectively. Based on these results, we focused our lipidomics investigations on SH-SY5Y exposed only to propiconazole, as lipid dysregulation is associated with mitochondrial dysfunction. Both 50 and 100 μM propiconazole altered the abundance of some ceramides, specifically reducing glucosylceramide non-hydroxyfatty acid-sphingosine (HexCer-NS) and increasing N-stearoyl-phytosphingosine (CerNP). Moreover, a recently discovered bioactive lipid called fatty acid ester of hydroxy fatty acid (FAHFA) was increased 5-fold, hypothesized to be a neuroprotective mechanism that has been demonstrated in other studies of human diseases. Additional lipids reduced in abundance included oxidized phosphatidylcholine (OxPC) and oxidized phosphatidylethanolamine (OxPE). There were no changes in cellular triacylglycerols nor total lipids with exposure to propiconazole. Taken together, this study provides insight into the toxicity of triazole fungicides in neuronal cells, which has implications for neurodegenerative diseases that involve the mitochondria such as Parkinson's disease.
Collapse
|
13
|
Couttas TA, Rustam YH, Song H, Qi Y, Teo JD, Chen J, Reid GE, Don AS. A Novel Function of Sphingosine Kinase 2 in the Metabolism of Sphinga-4,14-Diene Lipids. Metabolites 2020; 10:metabo10060236. [PMID: 32521763 PMCID: PMC7344861 DOI: 10.3390/metabo10060236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we observed a marked accumulation of lipids containing a di-unsaturated sphingadiene base in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). The double bonds were localized to positions C4–C5 and C14–C15 of sphingadiene using ultraviolet photodissociation-tandem mass spectrometry (UVPD-MS/MS). Phosphorylation of sphingoid bases by sphingosine kinase 1 (SphK1) or SphK2 forms the penultimate step in the lysosomal catabolism of all sphingolipids. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments in an oligodendrocyte cell line demonstrated that ceramides with a sphingosine base are more rapidly metabolized than those with a sphingadiene base. Since SphK2 is the dominant sphingosine kinase in brain, we propose that the accumulation of sphingadiene-based lipids in SphK2-deficient brains results from the slower catabolism of these lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We have therefore uncovered a previously unappreciated role for SphK2 in lipid quality control.
Collapse
Affiliation(s)
- Timothy Andrew Couttas
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yepy Hardi Rustam
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
| | - Huitong Song
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jonathan David Teo
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Gavin Edmund Reid
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony Simon Don
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: ; Tel.: +61-28627-5578
| |
Collapse
|
14
|
Karsai G, Lone M, Kutalik Z, Brenna JT, Li H, Pan D, von Eckardstein A, Hornemann T. FADS3 is a Δ14Z sphingoid base desaturase that contributes to gender differences in the human plasma sphingolipidome. J Biol Chem 2020; 295:1889-1897. [PMID: 31862735 PMCID: PMC7029104 DOI: 10.1074/jbc.ac119.011883] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids (SLs) are structurally diverse lipids that are defined by the presence of a long-chain base (LCB) backbone. Typically, LCBs contain a single Δ4E double bond (DB) (mostly d18:1), whereas the dienic LCB sphingadienine (d18:2) contains a second DB at the Δ14Z position. The enzyme introducing the Δ14Z DB is unknown. We analyzed the LCB plasma profile in a gender-, age-, and BMI-matched subgroup of the CoLaus cohort (n = 658). Sphingadienine levels showed a significant association with gender, being on average ∼30% higher in females. A genome-wide association study (GWAS) revealed variants in the fatty acid desaturase 3 (FADS3) gene to be significantly associated with the plasma d18:2/d18:1 ratio (p = -log 7.9). Metabolic labeling assays, FADS3 overexpression and knockdown approaches, and plasma LCB profiling in FADS3-deficient mice confirmed that FADS3 is a bona fide LCB desaturase and required for the introduction of the Δ14Z double bond. Moreover, we showed that FADS3 is required for the conversion of the atypical cytotoxic 1-deoxysphinganine (1-deoxySA, m18:0) to 1-deoxysphingosine (1-deoxySO, m18:1). HEK293 cells overexpressing FADS3 were more resistant to m18:0 toxicity than WT cells. In summary, using a combination of metabolic profiling and GWAS, we identified FADS3 to be essential for forming Δ14Z DB containing LCBs, such as d18:2 and m18:1. Our results unravel FADS3 as a Δ14Z LCB desaturase, thereby disclosing the last missing enzyme of the SL de novo synthesis pathway.
Collapse
Affiliation(s)
- Gergely Karsai
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091 Zürich, Switzerland
| | - Museer Lone
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091 Zürich, Switzerland
| | - Zoltán Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, 1010 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Departments of Chemistry, Pediatrics, and Nutrition, University of Texas, Austin, Texas 78723
| | - Hongde Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Duojia Pan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091 Zürich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|
15
|
Zhang T, Trauger SA, Vidoudez C, Doane KP, Pluimer BR, Peterson RT. Parallel Reaction Monitoring reveals structure-specific ceramide alterations in the zebrafish. Sci Rep 2019; 9:19939. [PMID: 31882772 PMCID: PMC6934720 DOI: 10.1038/s41598-019-56466-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Extensive characterisations of the zebrafish genome and proteome have established a foundation for the use of the zebrafish as a model organism; however, characterisation of the zebrafish lipidome has not been as comprehensive. In an effort to expand current knowledge of the zebrafish sphingolipidome, a Parallel Reaction Monitoring (PRM)-based liquid chromatography-mass spectrometry (LC-MS) method was developed to comprehensively quantify zebrafish ceramides. Comparison between zebrafish and a human cell line demonstrated remarkable overlap in ceramide composition, but also revealed a surprising lack of most sphingadiene-containing ceramides in the zebrafish. PRM analysis of zebrafish embryogenesis identified developmental stage-specific ceramide changes based on long chain base (LCB) length. A CRISPR-Cas9-generated zebrafish model of Farber disease exhibited reduced size, early mortality, and severe ceramide accumulation where the amplitude of ceramide change depended on both acyl chain and LCB lengths. Our method adds an additional level of detail to current understanding of the zebrafish lipidome, and could aid in the elucidation of structure-function associations in the context of lipid-related diseases.
Collapse
Affiliation(s)
- Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Sunia A Trauger
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Kim P Doane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Brock R Pluimer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
16
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
17
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
18
|
Lone MA, Santos T, Alecu I, Silva LC, Hornemann T. 1-Deoxysphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:512-521. [PMID: 30625374 DOI: 10.1016/j.bbalip.2018.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Sphingolipids (SLs) are fundamental components of eukaryotic cells. 1-Deoxysphingolipids differ structurally from canonical SLs as they lack the essential C1-OH group. Consequently, 1-deoxysphingolipids cannot be converted to complex sphingolipids and are not degraded over the canonical catabolic pathways. Pathologically elevated 1-deoxySLs are involved in several disease conditions. Within this review, we will provide an up-to-date overview on the metabolic, physiological and pathophysiological aspects of this enigmatic class of "headless" sphingolipids.
Collapse
Affiliation(s)
- M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - T Santos
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland; iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - I Alecu
- Neural Regeneration Laboratory, India Taylor Lipidomic Research Platform, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Ottawa Brain and Mind Research Institute, University of Ottawa, Canada
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland.
| |
Collapse
|
19
|
Zhao P, Aguilar AE, Lee JY, Paul LA, Suh JH, Puri L, Zhang M, Beckstead J, Witkowski A, Ryan RO, Saba JD. Sphingadienes show therapeutic efficacy in neuroblastoma in vitro and in vivo by targeting the AKT signaling pathway. Invest New Drugs 2018; 36:743-754. [PMID: 29335887 PMCID: PMC6047934 DOI: 10.1007/s10637-017-0558-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/27/2017] [Indexed: 02/02/2023]
Abstract
Neuroblastoma is a childhood malignancy that accounts for approximately 15% of childhood cancer deaths. Only 20-35% of children with metastatic neuroblastoma survive with standard therapy. Identification of more effective therapies is essential to improving the outcome of children with high-stage disease. Sphingadienes (SD) are growth-inhibitory sphingolipids found in natural sources including soy. They exhibit chemopreventive activity in mouse models of colon cancer, where they mediate cytotoxicity by inhibiting key pro-carcinogenic signaling pathways. In this study, the effect of SD on neuroblastoma was analyzed. Low micromolar concentrations of SD were cytotoxic to transformed and primary neuroblastoma cells independently of N-Myc amplification status. SD induced both caspase-dependent apoptosis and autophagy in neuroblastoma cells. However, only inhibition of caspase-dependent apoptosis protected neuroblastoma cells from SD-mediated cytotoxicity. SD also inhibited AKT activation in neuroblastoma cells as shown by reduced phosphorylated AKT levels. Pre-treatment with insulin attenuated SD-mediated cytotoxicity in vitro. SD-loaded nanoparticles (NP) administered parenterally to immunodeficient mice carrying neuroblastoma xenografts resulted in cytotoxic levels of SD in the circulation and significantly reduced tumor growth compared to vehicle-treated controls. Analysis of tumor extracts demonstrated reduced AKT activation in tumors of mice treated with SD-NP compared to controls treated with empty NP. Our findings indicate SD are novel potential chemotherapeutic agents that promote neuroblastoma cell death and reduce tumorigenicity in vivo.
Collapse
Affiliation(s)
- Piming Zhao
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Ana E Aguilar
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
- Arnold Palmer Hospital for Children, 92 W Miller St MP 318 2nd floor, Orlando, FL, 32806, USA
| | - Joanna Y Lee
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Lucy A Paul
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Jung H Suh
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Latika Puri
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
- St Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Meng Zhang
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Jennifer Beckstead
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Andrzej Witkowski
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Robert O Ryan
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Julie D Saba
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
| |
Collapse
|
20
|
DHA and 19,20-EDP induce lysosomal-proteolytic-dependent cytotoxicity through de novo ceramide production in H9c2 cells with a glycolytic profile. Cell Death Discov 2018; 4:29. [PMID: 30131878 PMCID: PMC6102239 DOI: 10.1038/s41420-018-0090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Docosahexaenoic acid (DHA) and their CYP-derived metabolites, epoxydocosapentaenoic acids (EDPs), are important fatty acids obtained from dietary sources. While it is known that they have significant biological effects, which can differ between cell type and disease state, our understanding of how they work remains limited. Previously, we demonstrated that DHA and 19,20-EDP triggered pronounced cytotoxicity in H9c2 cells correlating with increased ceramide production. In this study, we examine whether DHA- and 19,20-EDP-induced cell death depends on the type of metabolism (glycolysis or OXPHOS). We cultivated H9c2 cells in distinct conditions that result in either glycolytic or oxidative metabolism. Our major findings suggest that DHA and its epoxy metabolite, 19,20-EDP, trigger cytotoxic effects toward H9c2 cells with a glycolytic metabolic profile. Cell death occurred through a mechanism involving activation of a lysosomal-proteolytic degradation pathway. Importantly, accumulation of ceramide played a critical role in the susceptibility of glycolytic H9c2 cells to cytotoxicity. Furthermore, our data suggest that an alteration in the cellular metabolic profile is a major factor determining the type and magnitude of cellular toxic response. Together, the novelty of this study demonstrates that DHA and 19,20-EDP induce cell death in H9c2 cells with a glycolytic metabolicwct 2 profile through a lysosomal-proteolytic mechanism.
Collapse
|
21
|
|
22
|
Li N, Lizardo DY, Atilla-Gokcumen GE. Specific Triacylglycerols Accumulate via Increased Lipogenesis During 5-FU-Induced Apoptosis. ACS Chem Biol 2016; 11:2583-7. [PMID: 27428610 DOI: 10.1021/acschembio.6b00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids are emerging as key regulators of fundamental cellular processes including cell survival, division, and death. Apoptosis, a form of programmed cell death, is accompanied by numerous membrane-related phenotypic changes. However, we have an incomplete understanding of the involvement of specific lipid structures during this process. Here, we report that triacylglycerols are regulated at the molecular level during 5-fluorouracil-induced apoptosis in HCT-116. Mass-spectrometry-based global lipid profiling shows that specific triacylglycerols accumulate during apoptosis. Expression levels and activities of enzymes that are responsible for the biosynthesis and metabolic processing of triacylglycerols suggest that triacylglycerol biosynthesis is responsible for these accumulations. Based on our data, we propose that regulation of triacylglycerols at the molecular level happens downstream of p53 activation and potentially is a mechanism to prevent lipid oxidation during apoptosis.
Collapse
Affiliation(s)
- Nasi Li
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Darleny Y. Lizardo
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
23
|
Steiner R, Saied EM, Othman A, Arenz C, Maccarone AT, Poad BLJ, Blanksby SJ, von Eckardstein A, Hornemann T. Elucidating the chemical structure of native 1-deoxysphingosine. J Lipid Res 2016; 57:1194-203. [PMID: 27165858 DOI: 10.1194/jlr.m067033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
The 1-deoxysphingolipids (1-deoxySLs) are formed by an alternate substrate usage of the enzyme, serine-palmitoyltransferase, and are devoid of the C1-OH-group present in canonical sphingolipids. Pathologically elevated 1-deoxySL levels are associated with the rare inherited neuropathy, HSAN1, and diabetes type 2 and might contribute to β cell failure and the diabetic sensory neuropathy. In analogy to canonical sphingolipids, it was assumed that 1-deoxySLs also bear a (4E) double bond, which is normally introduced by sphingolipid delta(4)-desaturase 1. This, however, was never confirmed. We therefore supplemented HEK293 cells with isotope-labeled D3-1-deoxysphinganine and compared the downstream formed D3-1-deoxysphingosine (1-deoxySO) to a commercial synthetic SPH m18:1(4E)(3OH) standard. Both compounds showed the same m/z, but differed in their RPLC retention time and atmospheric pressure chemical ionization in-source fragmentation, suggesting that the two compounds are structural isomers. Using dimethyl disulfide derivatization followed by MS(2) as well as differential-mobility spectrometry combined with ozone-induced dissociation MS, we identified the carbon-carbon double bond in native 1-deoxySO to be located at the (Δ14) position. Comparing the chromatographic behavior of native 1-deoxySO to chemically synthesized SPH m18:1(14Z) and (14E) stereoisomers assigned the native compound to be SPH m18:1(14Z). This indicates that 1-deoxySLs are metabolized differently than canonical sphingolipids.
Collapse
Affiliation(s)
- Regula Steiner
- Institute of Clinical Chemistry, University and University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Essa M Saied
- Institute for Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Alaa Othman
- Institute of Clinical Chemistry, University and University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Christoph Arenz
- Institute for Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Alan T Maccarone
- Mass Spectrometry User Resource and Research Facility, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University and University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital of Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
24
|
Yu P, Ren TT, Cheng ML, Zhao DB. Effect of blueberry on expression of Bcl-2 and Bax in non-alcoholic fatty liver disease in mice. Shijie Huaren Xiaohua Zazhi 2016; 24:842-850. [DOI: 10.11569/wcjd.v24.i6.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of blueberry on non-alcoholic fatty liver disease in mice and the underlying mechanism.
METHODS: Forty healthy SD mice were randomly divided into a normal control group, a blueberry group, a curcumin group and a model group. The normal control group was given a normal diet, and the other groups were all given a high fat diet. The blueberry group was intragastrically given blueberry juice [15 mL/(kg•d)], the curcumin group was given curcumin solution [200 mg/(kg•d)], and the other groups were given physiological saline daily. At the end of 12 wk, all mice were sacrificed. Liver cell injury and fat deposition were assessed by HE staining and oil red O staining, respectively. The levels of alanine transaminase (ALT), aspartate transaminase (AST), triglyeride (TG) and total cholesterol (TC) in serum were detected with an automatic biochemical analyzer. Hepatic TG, TC, malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD) were quantified by ELISA. The expression of Bcl-2 and Bax in liver tissue was detected by immunohistochemistry, Western blot and RT-PCR.
RESULTS: Compared to the model group, the blueberry and curcumin groups showed significantly decreased lipid accumulation, serum levels of ALT, AST, TG and TC (P < 0.01), and hepatic levels of TG and MDA (P < 0.01), and increased GSH contents and SOD activity (P < 0.01). Compared to the model group, the blueberry and curcumin groups also showed significantly increased Bcl-2 mRNA and protein expression (P < 0.01), significantly decreased Bax mRNA and protein expression (P < 0.01), and significantly increased Bcl-2/Bax ratio (P < 0.01).
CONCLUSION: Blueberry has a protective effect on non-alcoholic fatty liver disease in mice, and the mechanism may be associated with up-regulating the Bcl-2 expression, down-regulating Bax expression, correcting balance disorders, and enhancing the body's antioxidant ability to inhibit liver cell apoptosis.
Collapse
|
25
|
del Solar V, Lizardo D, Li N, Hurst J, Brais C, Atilla-Gokcumen G. Differential Regulation of Specific Sphingolipids in Colon Cancer Cells during Staurosporine-Induced Apoptosis. ACTA ACUST UNITED AC 2015; 22:1662-70. [DOI: 10.1016/j.chembiol.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
|